Red Giant Mass-Loss: Studying Evolved Stellar Winds with FUSE and HST/STIS

Total Page:16

File Type:pdf, Size:1020Kb

Red Giant Mass-Loss: Studying Evolved Stellar Winds with FUSE and HST/STIS Red Giant Mass-Loss: Studying Evolved Stellar Winds with FUSE and HST/STIS A dissertation submitted to the University of Dublin for the degree of Doctor of Philosophy Cian Crowley Supervisor: Dr. Brian R. Espey Trinity College Dublin, July 2006 School of Physics University of Dublin Trinity College Dublin ii For Mam and Dad Declaration I hereby declare that this thesis has not been submitted as an exercise for a degree at this or any other University and that it is entirely my own work. I agree that the Library may lend or copy this thesis upon request. Signed, Cian Crowley July 25, 2006. Publications Crowley, C., Espey, B. R.,. & McCandliss, S. R., 2006, In prep., ‘FUSE and HST/STIS Observations of the Eclipsing Symbiotic Binary EG Andromedae’ Acknowledgments I wish to acknowledge and thank Brian Espey, Stephan McCandliss and Peter Hauschildt for their contributions to this work. Most especially I would like to express my gratitude to my supervisor Brian Espey for his enthusiastic supervision, patience and encourage- ment. His help, support and advice is very much appreciated. In addition, the helpful and insightful comments and advice from numerous people, inlcuding, Graham Harper, Philip Bennett, Alex Brown, Gary Ferland, Tom Ake, B-G Anderson and Dugan With- erick, were invaluable and again, very much appreciated. Also, a special word of thanks for their viva comments and feedback for Alex Brown and Peter Gallagher. This work was supported by Enterprise Ireland Basic Research grant SC/2002/370 from EU funded NDP. The FUSE data were obtained under the Guest Investigator Pro- gram and supported by NASA grants NAG5-8994 and NAG5-10403 to the Johns Hopkins University (JHU). The NASA-CNES-CSA Far Ultraviolet Spectroscopic Explorer is oper- ated for NASA by the JHU under NASA contract NAS5-32985. STIS data were obtained under the Guest Observer program STSI-GO0948701 provided by NASA through a grant to JHU from the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. Kait photometric data were obtained with the kind help of Weidong Li. Summary The changes that a star undergoes during the dying process are the most dramatic of its lifetime. These changes result in the most important interactions between a star and its environment, indeed it is in this area of research that some of the most challenging astrophysical problems still remain. For most stars, mass-loss becomes significant when they approach the end of their lives and enter the red giant evolutionary phase. This mass is lost in the form of a relatively dense and slow-moving wind which enriches the interstellar medium with material that has been processed inside the star and which is required for the formation of new stars and planets. However, despite the importance and ubiquity of these winds much remains unknown about the outflow conditions and charac- teristics and, furthermore, the physical processes which drive the mass-loss are unknown. Indeed, the mass-loss question remains arguably the most important outstanding problem of stellar astrophysics. For isolated giant stars, the diagnostics that can be obtained from observations are limited, with only disk-averaged information being directly observable. Spatially resolved observational constraints, in particular within the wind acceleration zone at the base of the outflow and close to the stellar photosphere, are required. This thesis presents a series of 20 FUSE (Far Ultraviolet Spectroscopic Explorer) and HST/STIS (Hubble Space Telescope/Space Telescope Imaging Spectrograph) observations of the bright symbiotic system EG Andromedae. The system consists of a low-luminosity white dwarf and a mass-losing, non-dusty M2.4 red giant star. The main motivation be- hind obtaining these ultraviolet spectra is to derive spatially resolved information on the giant wind in order to understand the mass-loss and wind heating mechanisms at work in evolved giants. The orbital elements of the binary are well understood and the dwarf star is known to undergo eclipse every 482 days. The ultraviolet observations follow the white dwarf continuum through periodic eclipses by the wind and chromosphere of the giant, providing a unique, spatially resolved diagnosis of the circumstellar gas in absorp- tion against the attenuated dwarf continuum. The atomic transitions in the ultraviolet wavelength region enable both the hot, ionised gas close to the dwarf and also the cooler material in the wind to be diagnosed. In addition, optical spectra and photometry are presented. Analysis of high and low-resolution optical spectra shows that the atmospheric struc- ture of the giant star is not severely perturbed, either radiatively or tidally, by the presence of the binary companion. It emerges that, although the photosphere is heated slightly and the atmosphere is elliptically distorted on the 7-8% level, these effects are minimal. The v photospheric spectrum remains similar to that of isolated stars and the atmosphere can be modelled as a normal giant. The photometry shows pulsational activity of the giant which is typical of similarly evolved stars, as well as relatively large periodic variations in the U-band. The ultraviolet spectral variations are dominated by the effects related to the eclipse of the dwarf by the giant atmosphere and wind. The uneclipsed spectra are dominated by the dwarf continuum with emission lines from an ionised portion of the giant wind superimposed on the continuum. The high ionisation features, such as the O VI resonance doublet (which is present as a variable, broad wind profile) diagnose the hot gas close to the dwarf component. This feature is variable on hourly timescales. During total eclipse of the hot component, the spectrum is dominated by emission lines originating from both the giant chromosphere and the extended photoionised section of the cool wind. Spectra observed at stages of partial eclipse display a host of low-ionisation, narrow absorption lines, with transitions observed from lower energy-levels up to 5 eV above ground. This ∼ absorption is due to chromospheric/wind material along the line of sight, with most lines being due to transitions of Si II, P II, N I, Fe II and Ni II. Photoionisation modelling shows that the white dwarf radiation does not dominate the wind acceleration region of the giant, and that any derived thermal and dynamic wind properties are most likely representative of isolated red giants. Analysis of the wind absorption features provides spatially resolved information through- out the base of the wind. The wind is found to be isothermal throughout the region that is probed, with a derived Fe II excitation temperature of 8, 000 K. The ionisation level ∼ along each line of sight is observed to be constant and symmetric around eclipse and hydrogen remains predominately neutral. The absorption spectra are modelled success- fully assuming collisional excitation and over 4,000 lines are identified and modelled. No molecular features are observed in the wind acceleration region despite the sensitivity of FUSE to molecular hydrogen. The terminal wind velocity is found to be 75 km s−1 and −8 −1 the mass-loss rate to be on the order of 10 M⊙yr . The damped wings of the hydrogen transitions define the ultraviolet continuum shape at absorbed phases and allow a mapping of the distribution of material around the giant. This information is used to derive a wind velocity profile that is incompatible with a low- order beta law and implies a delayed onset of acceleration. This result is confirmed by a photoionisation analysis of each sightline. The small-scale structure of the wind is found to be clumpy, with the flocculi having scale dimensions of 0.2 solar radii. Further analysis ∼ shows that the wind acceleration is unrelated to the presence of dust or molecular/atomic opacity, but is likely to be related to photospheric pulsations. Contents Contents vi List of Figures ix List of Tables xviii List of Acronyms xix 1 Red Giant Mass-loss and Symbiotic Stars 1 1.1 StellarEvolutionandMass-loss . .... 2 1.1.1 EvolutiontotheRedGiantBranch . 2 1.1.2 Stellar Photospheres, Chromospheres and Winds . ...... 4 1.1.3 Overview of Known Wind Driving Mechanisms . 10 1.1.4 Relevance to Other Fields of Study . 12 1.2 SymbioticStars ................................. 12 1.3 ThisThesis ................................... 14 1.3.1 Probing Giant Winds with Symbiotic Stars . ... 15 1.3.2 RelationshiptoIsolatedGiants . .. 16 1.3.3 OutlineofthisThesis. .. .. 17 2 Target Star, Observations and Data Processing 19 2.1 TheChoiceofBinarySystem . 19 2.2 EGAndromedae ................................ 21 2.3 The Ultraviolet Observing Program . .... 24 2.4 FUSE ...................................... 24 2.4.1 Data Processing and Instrumental Effects . ... 27 2.5 EG And FUSE Data .............................. 27 2.6 HST/STIS.................................... 29 vi CONTENTS vii 2.7 EGAndSTISData............................... 30 2.8 OpticalObservations . .. .. 32 2.8.1 LowResolutionData . .. .. 32 2.8.2 HighResolutionData. 33 2.8.3 PhotometricData............................ 33 3 The Giant Photosphere: Observations and Modelling 34 3.1 OpticalDataandAnalysis . 35 3.1.1 LowResolutionData . .. .. 35 3.1.2 HighResolutionData. 39 3.2 PhotosphericModelling. .. 42 3.2.1 ThePHOENIXModel ......................... 45 3.3 Photometry ................................... 45 3.4 MgIIhandkLines .............................. 47 3.5 Conclusions ..................................
Recommended publications
  • Accretion Flows in Nonmagnetic White Dwarf Binaries As Observed in X-Rays
    Accretion Flows in Nonmagnetic White Dwarf Binaries as Observed in X-rays Şölen Balmana,< aKadir Has University, Faculty of Engineering and Natural Sciences, Cibali 34083, Istanbul, Turkey ARTICLEINFO ABSTRACT Keywords: Cataclysmic Variables (CVs) are compact binaries with white dwarf (WD) primaries. CVs and other cataclysmic variables - accretion, accre- accreting WD binaries (AWBs) are useful laboratories for studying accretion flows, gas dynamics, tion disks - thermal emission - non-thermal outflows, transient outbursts, and explosive nuclear burning under different astrophysical plasma con- emission - white dwarfs - X-rays: bina- ditions. They have been studied over decades and are important for population studies of galactic ries X-ray sources. Recent space- and ground-based high resolution spectral and timing studies, along with recent surveys indicate that we still have observational and theoretical complexities yet to an- swer. I review accretion in nonmagnetic AWBs in the light of X-ray observations. I present X-ray diagnostics of accretion in dwarf novae and the disk outbursts, the nova-like systems, and the state of the research on the disk winds and outflows in the nonmagnetic CVs together with comparisons and relations to classical and recurrent nova systems, AM CVns and Symbiotic systems. I discuss how the advective hot accretion flows (ADAF-like) in the inner regions of accretion disks (merged with boundary layer zones) in nonmagnetic CVs explain most of the discrepancies and complexities that have been encountered in the X-ray observations. I stress how flickering variability studies from optical to X-rays can be probes to determine accretion history and disk structure together with how the temporal and spectral variability of CVs are related to that of LMXBs and AGNs.
    [Show full text]
  • Astro2020 Science White Paper Unlocking the Secrets of Late-Stage Stellar Evolution and Mass Loss Through Radio Wavelength Imaging
    Astro2020 Science White Paper Unlocking the Secrets of Late-Stage Stellar Evolution and Mass Loss through Radio Wavelength Imaging Thematic Areas: Planetary Systems Star and Planet Formation Formation and Evolution of Compact Objects Cosmology and Fundamental Physics 7 Stars and Stellar Evolution Resolved Stellar Populations and their Environments Galaxy Evolution Multi-Messenger Astronomy and Astrophysics Principal Author: Name: Lynn D. Matthews Institution: Massachusetts Institute of Technology Haystack Observatory Email: [email protected] Co-authors: Mark J Claussen (National Radio Astronomy Observatory) Graham M. Harper (University of Colorado - Boulder) Karl M. Menten (Max Planck Institut fur¨ Radioastronomie) Stephen Ridgway (National Optical Astronomy Observatory) Executive Summary: During the late phases of evolution, low-to-intermediate mass stars like our Sun undergo periods of extensive mass loss, returning up to 80% of their initial mass to the interstellar medium. This mass loss profoundly affects the stellar evolutionary history, and the resulting circumstellar ejecta are a primary source of dust and heavy element enrichment in the Galaxy. However, many details concerning the physics of late-stage stellar mass loss remain poorly understood, including the wind launching mechanism(s), the mass loss geometry and timescales, and the mass loss histories of stars of various initial masses. These uncertainties have implications not only for stellar astrophysics, but for fields ranging from star formation to extragalactic astronomy and cosmology. Observations at centimeter, millimeter, and submillimeter wavelengths that resolve the radio surfaces and extended atmospheres of evolved arXiv:1903.05592v1 [astro-ph.SR] 13 Mar 2019 stars in space, time, and frequency are poised to provide groundbreaking new insights into these questions in the coming decade.
    [Show full text]
  • Správa O Činnosti Organizácie SAV Za Rok 2017
    Astronomický ústav SAV Správa o činnosti organizácie SAV za rok 2017 Tatranská Lomnica január 2018 Obsah osnovy Správy o činnosti organizácie SAV za rok 2017 1. Základné údaje o organizácii 2. Vedecká činnosť 3. Doktorandské štúdium, iná pedagogická činnosť a budovanie ľudských zdrojov pre vedu a techniku 4. Medzinárodná vedecká spolupráca 5. Vedná politika 6. Spolupráca s VŠ a inými subjektmi v oblasti vedy a techniky 7. Spolupráca s aplikačnou a hospodárskou sférou 8. Aktivity pre Národnú radu SR, vládu SR, ústredné orgány štátnej správy SR a iné organizácie 9. Vedecko-organizačné a popularizačné aktivity 10. Činnosť knižnično-informačného pracoviska 11. Aktivity v orgánoch SAV 12. Hospodárenie organizácie 13. Nadácie a fondy pri organizácii SAV 14. Iné významné činnosti organizácie SAV 15. Vyznamenania, ocenenia a ceny udelené organizácii a pracovníkom organizácie SAV 16. Poskytovanie informácií v súlade so zákonom o slobodnom prístupe k informáciám 17. Problémy a podnety pre činnosť SAV PRÍLOHY A Zoznam zamestnancov a doktorandov organizácie k 31.12.2017 B Projekty riešené v organizácii C Publikačná činnosť organizácie D Údaje o pedagogickej činnosti organizácie E Medzinárodná mobilita organizácie F Vedecko-popularizačná činnosť pracovníkov organizácie SAV Správa o činnosti organizácie SAV 1. Základné údaje o organizácii 1.1. Kontaktné údaje Názov: Astronomický ústav SAV Riaditeľ: Mgr. Martin Vaňko, PhD. Zástupca riaditeľa: Mgr. Peter Gömöry, PhD. Vedecký tajomník: Mgr. Marián Jakubík, PhD. Predseda vedeckej rady: RNDr. Luboš Neslušan, CSc. Člen snemu SAV: Mgr. Marián Jakubík, PhD. Adresa: Astronomický ústav SAV, 059 60 Tatranská Lomnica http://www.ta3.sk Tel.: 052/7879111 Fax: 052/4467656 E-mail: [email protected] Názvy a adresy detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty Dúbravská cesta 9, 845 04 Bratislava Vedúci detašovaných pracovísk: Astronomický ústav - Oddelenie medziplanetárnej hmoty prof.
    [Show full text]
  • Extremely Extended Dust Shells Around Evolved Intermediate Mass Stars: Probing Mass Loss Histories,Thermal Pulses and Stellar Evolution
    EXTREMELY EXTENDED DUST SHELLS AROUND EVOLVED INTERMEDIATE MASS STARS: PROBING MASS LOSS HISTORIES,THERMAL PULSES AND STELLAR EVOLUTION A Thesis presented to the Faculty of the Graduate School at the University of Missouri In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy by BASIL MENZI MCHUNU Dr. Angela K. Speck December 2011 The undersigned, appointed by the Dean of the Graduate School, have examined the dissertation entitled: EXTREMELY EXTENDED DUST SHELLS AROUND EVOLVED INTERMEDIATE MASS STARS PROBING MASS LOSS HISTORIES, THERMAL PULSES AND STELLAR EVOLUTION USING FAR-INFRARED IMAGING PHOTOMETRY presented by Basil Menzi Mchunu, a candidate for the degree of Doctor of Philosophy and hereby certify that, in their opinion, it is worthy of acceptance. Dr. Angela K. Speck Dr. Sergei Kopeikin Dr. Adam Helfer Dr. Bahram Mashhoon Dr. Haskell Taub DEDICATION This thesis is dedicated to my family, who raised me to be the man I am today under challenging conditions: my grandfather Baba (Samuel Mpala Mchunu), my grandmother (Ma Magasa, Nonhlekiso Mchunu), my aunt Thembeni, and my mother, Nombso Betty Mchunu. I would especially like to thank my mother for all the courage she gave me, bringing me chocolate during my undergraduate days to show her love when she had little else to give, and giving her unending support when I was so far away from home in graduate school. She passed away, when I was so close to graduation. To her, I say, ′′Ulale kahle Macingwane.′′ I have done it with the help from your spirit and courage. I would also like to thank my wife, Heather Shawver, and our beautiful children, Rosemary and Brianna , for making me see life with a new meaning of hope and prosperity.
    [Show full text]
  • Astronomy & Astrophysics on the Properties of Massive Population III
    A&A 382, 28–42 (2002) Astronomy DOI: 10.1051/0004-6361:20011619 & c ESO 2002 Astrophysics On the properties of massive Population III stars and metal-free stellar populations D. Schaerer Observatoire Midi-Pyr´en´ees, Laboratoire d’Astrophysique, UMR 5572, 14 Av. E. Belin, 31400 Toulouse, France Received 2 July 2001 / Accepted 13 November 2001 Abstract. We present realistic models for massive Population III stars and stellar populations based on non-LTE model atmospheres, recent stellar evolution tracks and up-to-date evolutionary synthesis models, with the aim to study their spectral properties, including their dependence on age, star formation history, and IMF. A comparison of plane parallel non-LTE model atmospheres and comoving frame calculations shows that even in the presence of some putative weak mass loss, the ionising spectra of metal-free populations differ little or negligibly from those obtained using plane parallel non-LTE models. As already discussed by Tumlinson & Shull (2000), the main salient property of Pop III stars is their increased ionising flux, especially in the He+ continuum (>54 eV). The main result obtained for individual Pop III stars is the following: due to their redward evolution off the zero age main sequence (ZAMS) the spectral hardness measured by the He+/H ionising flux is decreased by a factor ∼2 when averaged over their lifetime. If such stars would suffer strong mass loss, their spectral appearance could, however, remain similar to that of their ZAMS position. The main results regarding integrated stellar populations are: – for young bursts and the case of a constant SFR, nebular continuous emission – neglected in previous studies – dominates the spectrum redward of Lyman-α if the escape fraction of ionising photons out of the considered region is small or negligible.
    [Show full text]
  • Aerosols in Astrophysics Stars Complete Their Cycle of Existence, There R.E.Stencel, C.A
    Aerosols in Astrophysics stars complete their cycle of existence, there R.E.Stencel, C.A. Jurgenson & is a wholesale return of modified material T.A. Ostrowski-Fukuda back to the interstellar medium, affecting the The Observatories, University of Denver, next generation of star and planet formation. Department of Physics & Astronomy, Denver, Colorado 80208, USA Submitted: Evolved stars are characterized by surface 2002December30, Email: [email protected] temperatures low enough to allow molecules and solid-phase particles to exist in their ABSTRACT: atmospheres. In contrast to the nearly 6000K surface temperature of the Sun, the Solid phase material exists in low density kinetic temperatures of evolved stars may astrophysical environments, from stellar range between 2000K near their “surfaces” atmospheres to interstellar clouds, from to a few hundred K in their circumstellar current times to early phases of the universe. envelopes [CSE] at a few stellar radii We consider the origin, composition and distance. Time-dependent phase transitions evolution of solid phase materials in the from ionized plasma to cold, solid state are particular case of stellar outer atmospheres, observed, spectroscopically, to exist. as representative of many conditions. Also considered are the dynamics and interactions Some terminology may be helpful for the in circumstellar and galactic environments. reader not already acquainted with stellar Finally, new observational prospects for evolution. Solar mass stars are predicted to spectroscopy, polarimetry and leave the hydrogen-fusing “main sequence” interferometry are discussed. after approximately ten billion years, and progress through a rapid series of internal changes during what is known as the red 1.0 INTRODUCTION giant and asymptotic giant branch [RGB, AGB] phases, lasting one percent of the Solid phase material can be found nearly main sequence lifetime.
    [Show full text]
  • THE PROGENITORS of TYPE IIP SUPERNOVAE Emma R. Beasor
    THE PROGENITORS OF TYPE IIP SUPERNOVAE Emma R. Beasor A thesis submitted in partial fulfilment of the requirements of Liverpool John Moores University for the degree of Doctor of Philosophy. April 2019 Declaration The work presented in this thesis was carried out at the Astrophysics Research Insti- tute, Liverpool John Moores University. Unless otherwise stated, it is the original work of the author. While registered as a candidate for the degree of Doctor of Philosophy, for which sub- mission is now made, the author has not been registered as a candidate for any other award. This thesis has not been submitted in whole, or in part, for any other degree. Emma R. Beasor Astrophysics Research Institute Liverpool John Moores University IC2, Liverpool Science Park 146 Brownlow Hill Liverpool L3 5RF UK ii Abstract Mass-loss prior to core collapse is arguably the most important factor affecting the evolution of a massive star across the Hertzsprung-Russel (HR) diagram, making it the key to understanding what mass-range of stars produce supernova (SN), and how these explosions will appear. It is thought that most of the mass-loss occurs during the red supergiant (RSG) phase, when strong winds dictate the onward evolutionary path of the star and potentially remove the entire H-rich envelope. Uncertainty in the driving mechanism for RSG winds means the mass-loss rate (M_ ) cannot be determined from first principles, and instead, stellar evolution models rely on empirical recipes to inform their calculations. At present, the most commonly used M_ -prescription comes from a literature study, whereby many measurements of mass- loss were compiled.
    [Show full text]
  • Appendix: Spectroscopy of Variable Stars
    Appendix: Spectroscopy of Variable Stars As amateur astronomers gain ever-increasing access to professional tools, the science of spectroscopy of variable stars is now within reach of the experienced variable star observer. In this section we shall examine the basic tools used to perform spectroscopy and how to use the data collected in ways that augment our understanding of variable stars. Naturally, this section cannot cover every aspect of this vast subject, and we will concentrate just on the basics of this field so that the observer can come to grips with it. It will be noticed by experienced observers that variable stars often alter their spectral characteristics as they vary in light output. Cepheid variable stars can change from G types to F types during their periods of oscillation, and young variables can change from A to B types or vice versa. Spec­ troscopy enables observers to monitor these changes if their instrumentation is sensitive enough. However, this is not an easy field of study. It requires patience and dedication and access to resources that most amateurs do not possess. Nevertheless, it is an emerging field, and should the reader wish to get involved with this type of observation know that there are some excellent guides to variable star spectroscopy via the BAA and the AAVSO. Some of the workshops run by Robin Leadbeater of the BAA Variable Star section and others such as Christian Buil are a very good introduction to the field. © Springer Nature Switzerland AG 2018 M. Griffiths, Observer’s Guide to Variable Stars, The Patrick Moore 291 Practical Astronomy Series, https://doi.org/10.1007/978-3-030-00904-5 292 Appendix: Spectroscopy of Variable Stars Spectra, Spectroscopes and Image Acquisition What are spectra, and how are they observed? The spectra we see from stars is the result of the complete output in visible light of the star (in simple terms).
    [Show full text]
  • Curriculum Vitae Stephan Robert Mccandliss
    August 2015 Curriculum Vitae Stephan Robert McCandliss Research Professor - JHU [email protected] Johns Hopkins University tel: 410-516-5272 Department of Physics & Astronomy fax: 410-516-8260 Baltimore, Maryland 21218 http://www.pha.jhu.edu/~stephan Familial History 1955/09/07 Born Salinas California 1989/01/01 Married Ann Marie McCandliss (nee Selander) 1989/11/10 Daughter Rachel Pearl McCandliss 1992/05/26 Son Ian Frederick McCandliss Education 1988 Ph.D. Astrophysics University of Colorado, Boulder 1981 B.S. Physics University of Washington, Seattle 1981 B.S. Astronomy University of Washington, Seattle Work History 2015 – present Director, Center for Astrophysical Sciences Johns Hopkins University 2010 – present Research Professor Johns Hopkins University 2002 – 2010 Principal Research Scientist Johns Hopkins University 1994 – 2002 Research Scientist Johns Hopkins University 1988 – 1994 Associate Research Scientist Johns Hopkins University 1981 – 1988 Ph.D. Candidate University of Colorado, Boulder 1977 – 1981 Reader and Lab Assistant University of Washington, Seattle Primary Research Interests The ionization history of the universe. Spectral signatures of dust, molecules and atoms in astrophysical environments. Rapid-response space science missions and enabling low-cost access to space. Space-based astronomical instrumentation. Service 2013 HST Cycle 21 Proposal Review Panel 2011 NASA APRA/SAT UV/Vis Review Panel Chair 2011 NSF Astronomy Advanced Technology and Instrumentation Opt/IR Panel 2008 – present Astrophysics Sounding Rocket
    [Show full text]
  • The Star Newsletter
    THE HOT STAR NEWSLETTER ? An electronic publication dedicated to A, B, O, Of, LBV and Wolf-Rayet stars and related phenomena in galaxies No. 41 June/July 1998 editor: Philippe Eenens http://www.astro.ugto.mx/∼eenens/hot/ [email protected] http://www.star.ucl.ac.uk/∼hsn/index.html Contents of this newsletter From the Editor . 1 Abstracts of 24 accepted papers . 2 Abstracts of 2 submitted paper . 16 Abstracts of 2 proceedings papers . 17 Book ......................................................................18 Meetings ...................................................................20 From the editor This issue covers two months of publications and is dominated by η Car, other LBVs and B[e] stars. Other papers tell us about massive stars in the Galactic Center and R136, OB stars, polarimetry, wind models and [WC] central stars of Planetary Nebulae. We also present a book and remind readers about future meetings: two special sessions during IAU symposium 193 in Mexico (on HD5980 and on the XMEGA campaign) as well as IAU colloquium 175 in Spain in June 1999 (on Be stars). 1 Accepted Papers On the Multiplicity of η Carinae Henny J.G.L.M. Lamers1,2, Mario Livio1, Nino Panagia1,3, & Nolan R. Walborn1 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2 Astronomical Institute and SRON Laboratory for Space Research, Princetonplein 2, 3584CC Utrecht, The Netherlands 3 On assignment from the Astrophysics Division, Space Science Department of ESA. The nebula around the luminous blue variable η Car is extremely N-rich and C,O-poor, indicative of CNO-cycle products. On the other hand, the recent HST-GHRS observation of the nucleus of η Car shows the spectrum of a star with stellar-wind lines of C ii,C iv, Si ii, Si iv etc.
    [Show full text]
  • Orbital Separation Amplification in Fragile Binaries with Evolved
    Publications 11-22-2011 Orbital Separation Amplification in rF agile Binaries with Evolved Components K. B. Johnston Florida Institute of Technology, [email protected] Terry D. Oswalt Florida Institute of Technology, [email protected] Follow this and additional works at: https://commons.erau.edu/publication Part of the Stars, Interstellar Medium and the Galaxy Commons Scholarly Commons Citation Johnston, K. B., & Oswalt, T. D. (2011). Orbital Separation Amplification in rF agile Binaries with Evolved Components. New Astronomy, 17(4). https://doi.org/10.1016/j.newast.2011.11.004 This Article is brought to you for free and open access by Scholarly Commons. It has been accepted for inclusion in Publications by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Orbital Separation Amplification in Fragile Binaries with Evolved Components K.B. Johnston and T. D. Oswalt∗ D.Valls-Gabaudy November 8, 2018 Abstract The secular stellar mass-loss causes an amplification of the orbital separation in fragile, common proper motion, binary systems with separations of the order of 1000 A.U. In these systems, companions evolve as two independent coeval stars as they experience negligible mutual tidal interactions or mass transfer. We present models for how post-main sequence mass-loss statistically distorts the frequency distribution of separations in fragile binaries. These models demonstrate the expected increase in orbital seapration resulting from stellar mass-loss, as well as a perturbation of associated orbital parameters. Comparisons between our models and observations resulting from the Luyten survey of wide visual binaries, specif- ically those containing MS and white-dwarf pairs, demonstrate a good agreement between the calculated and the observed angular separation distribution functions.
    [Show full text]
  • Identifying Stars of Mass> 150 Msun from Their Eclipse by a Binary
    Mon. Not. R. Astron. Soc. 000, 1–1 (2012) Printed 24 September 2018 (MN LATEX style file v2.2) Identifying Stars of Mass > 150M⊙ from Their Eclipse by a Binary Companion Tony Pan1, Abraham Loeb1 1Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 24 September 2018 ABSTRACT We examine the possibility that very massive stars greatly exceeding the com- monly adopted stellar mass limit of 150M⊙ may be present in young star clusters in the local universe. We identify ten candidate clusters, some of which may host stars with masses up to 600M⊙ formed via runaway collisions. We estimate the probabilities of these very massive stars being in eclipsing binaries to be & 30%. Although most of these systems cannot be resolved at present, their transits can be detected at distances of 3 Mpc even under the contamination of the background cluster light, due to the 7 6 large associated luminosities ∼ 10 L⊙ and mean transit depths of ∼ 10 L⊙. Discov- ery of very massive eclipsing binaries would flag possible progenitors of pair-instability supernovae and intermediate-mass black holes. Key words: binaries: general – galaxies: star clusters 1 INTRODUCTION The most accurate method of constraining the stellar masses of distant stars is by measuring the radial velocity Many observations support the statistical argument that and light curves of the star in an eclipsing binary (Bonanos the upper limit to initial stellar masses is ∼ 150M⊙ for 2009; Torres, Andersen & Gim´enez 2010). The light curve Pop II/I stars (Figer 2005; Zinnecker & Yorke 2007). How- provides a wealth of information about the binary, includ- ever, this common notion is challenged by the recent spec- ing its orbital period, inclination, eccentricity, as well as the troscopic analyses of Crowther et al.
    [Show full text]