SUPPLEMENTARY ONLINE MATERIAL for Tanystropheid

Total Page:16

File Type:pdf, Size:1020Kb

SUPPLEMENTARY ONLINE MATERIAL for Tanystropheid http://app.pan.pl/SOM/app63‐Oliveira_etal_SOM.pdf SUPPLEMENTARY ONLINE MATERIAL FOR Tanystropheid archosauromorphs in the Lower Triassic of Gondwana Tiane Macedo De Oliveira, Daniel Oliveira, Cesar L. Schultz, Leonardo Kerber, and Felipe L. Pinheiro Published in Acta Palaeontologica Polonica 2018 63 (4): 713-723. https://doi.org/10.4202/app.00489.2018 Supplementary Online Material SOM 1. Taxa excluded a priori from the analysis SOM 2. 3D reconstructions available at http://app.pan.pl/SOM/app63-Oliveira_etal_SOM/SOM2_UFRGS-PV_492-T.pdf http://app.pan.pl/SOM/app63-Oliveira_etal_SOM/ SOM2_UFRGS-PV_6471.pdf http://app.pan.pl/SOM/app63-Oliveira_etal_SOM/ SOM2_UNIPAMPA_733.pdf SOM 3. Results of the phylogenetic analysis Fig. 1. Result of the phylogenetic analysis including specimen UNIPAMPA 733. Fig. 2. Result of the phylogenetic analysis including specimen UFRGS-PV-492-T. SOM 4. List of sinapomorphies SOM 1. Taxa excluded a priori from the analysis The analyses conducted here are based in the reduced matrix proposed by Sengupta et al. (2017), which is a modification of Ezcurra (2016) database. We exluded 23 terminals a priori from the analyses. Excluded terminals are OTUs considered as problematic both by Ezcurra (2016) and Sengupta et al. (2017): Eorasaurus olsoni, Prolacertoides jimusarensis, Kadimakara australiensis holotype, Archosaurus rossicus, “Proterosuchus fergusi” holotype, “Chasmatosaurus ultimus”, Ankistrodon indicus, Exilisuchus tubercularis, Blomosuchus georgii, Vonhuenia friedrichi, Chasmatosuchus rossicus combined, Chasmatosuchus magnus, Gamosaurus lozovskii, Chasmatosuchus magnus combined, Chasmatosuchus vjushkovi, SAM P41754 Long Reef, Kalisuchus rewanensis, Garjania madiba holotype, Shansisuchus kuyeheensis, “Dongusia colorata”, Uralosaurus magnus holotype, and Uralosaurus magnus combined. SOM. 3 Fig. 1. Result of the phylogenetic analysis including specimen UNIPAMPA 733. Fig. 2. Result of the phylogenetic analysis including specimen UFRGS-PV-492-T. SOM 4. List of sinapomorphies of the clade composed by the specimens UNIPAMPA 733, UFRGS-492-T, Jesairosaurus lehmani and Tanystropheidae recovered in this analysis: 42 : 2->1 121 : 0->1 131 : 0->1 160 : 0->1 197 : 0->1 202 :1->2 340 : 0->1 407 : 0->1 425 : 1->0 446 : 2->1 558 : 0->1 564 : 0->1 565 : 0->1 .
Recommended publications
  • A Reexamination of Four Prolacertiforms \Tith Implications for Pterosaur Phylogenesis
    Rìvista Italiana di Paleontologia e Stratigrafia Dicembre 2000 I--r4-""l*-I-."-''* 1 A REEXAMINATION OF FOUR PROLACERTIFORMS \TITH IMPLICATIONS FOR PTEROSAUR PHYLOGENESIS DAVID PETERS ReceìterJ October 23, 1999; accepted October 20, 200A Kqt uorcls: Pterosauria, Prolacertiiormes (Reprilia, Diapsida), Traditionally the answer has been rhat prerosaurs Phyìogeny, Cladisric an:ìy.is. are archosaurs (Romer 1956); the sister group of the Riassunto . Tradizionalmente gli prerosauri venir.ano considerati Dinosauria, ScleromochÌus a.nd Lagosuclcws/Maraswchus come appartenenti agli Archosaurifomes e molti specìalistì contempo_ (Benton 1985, 1990, 1999; Padian 1984; Gauthter 1984, ranei considerano gli pterosauri quali sisrer groups di Lagosuchus, 1986; Sereno 1991, 1994; Kellner 1996); or perhaps Schleromochlus e dei Dinosauria. La nuova analisi filogenerica qui pro- archosauriformes close posta merte in discussione queste affinirà jn quanto tutte le presunte to prorerosuchids and eryrhro- sinapomorfie che collegherebbero gli Pterosauria con gli Archosauri_ suchids (Bennett 1996a), chiefly because prerosaurs formes o con gli pterosaurìa, Ornìthodira mancano in realtà negli have a prominent anrorbiral fenestra and a suite of other oppure sono condivise anche da alcuni taxa di prolacertiformi. ll archosaur-like characrers almosr entirely recente riesame degli olotipi dt confined to the Cosesaurus a,Liceps, Longisquama ìnsig_ hind nis e di Sharovipteryx mìrabi/ìs suggeriscono che molti caratteri potreb- limb (Bennert 1996a). Although Benton (1982, bero venire interpretati in maniera diversa rispetto alle precedenti L984) initially indicated that the prerosauria are descrìzioni. I risultati di molteplici analisì cladistjche suggeriscono che archosauromorphs and the sister-group ro all other questi tre prolacertìformi enigmatici, uniramente a Langobardìsawrws, archosauromorphs, later work (Benton 1985, 1.990, recentemente descritto, costituirebbero i sister taxa degli prerosauri, in base ad un insieme di sinapomorfie di nuova identificazione.
    [Show full text]
  • University of Birmingham the Earliest Bird-Line Archosaurs and The
    University of Birmingham The earliest bird-line archosaurs and the assembly of the dinosaur body plan Nesbitt, Sterling; Butler, Richard; Ezcurra, Martin; Barrett, Paul; Stocker, Michelle; Angielczyk, Kenneth; Smith, Roger; Sidor, Christian; Niedzwiedzki, Grzegorz; Sennikov, Andrey; Charig, Alan DOI: 10.1038/nature22037 License: None: All rights reserved Document Version Peer reviewed version Citation for published version (Harvard): Nesbitt, S, Butler, R, Ezcurra, M, Barrett, P, Stocker, M, Angielczyk, K, Smith, R, Sidor, C, Niedzwiedzki, G, Sennikov, A & Charig, A 2017, 'The earliest bird-line archosaurs and the assembly of the dinosaur body plan', Nature, vol. 544, no. 7651, pp. 484-487. https://doi.org/10.1038/nature22037 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 03/03/2017. General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
    [Show full text]
  • And Early Jurassic Sediments, and Patterns of the Triassic-Jurassic
    and Early Jurassic sediments, and patterns of the Triassic-Jurassic PAUL E. OLSEN AND tetrapod transition HANS-DIETER SUES Introduction parent answer was that the supposed mass extinc- The Late Triassic-Early Jurassic boundary is fre- tions in the tetrapod record were largely an artifact quently cited as one of the thirteen or so episodes of incorrect or questionable biostratigraphic corre- of major extinctions that punctuate Phanerozoic his- lations. On reexamining the problem, we have come tory (Colbert 1958; Newell 1967; Hallam 1981; Raup to realize that the kinds of patterns revealed by look- and Sepkoski 1982, 1984). These times of apparent ing at the change in taxonomic composition through decimation stand out as one class of the great events time also profoundly depend on the taxonomic levels in the history of life. and the sampling intervals examined. We address Renewed interest in the pattern of mass ex- those problems in this chapter. We have now found tinctions through time has stimulated novel and com- that there does indeed appear to be some sort of prehensive attempts to relate these patterns to other extinction event, but it cannot be examined at the terrestrial and extraterrestrial phenomena (see usual coarse levels of resolution. It requires new fine- Chapter 24). The Triassic-Jurassic boundary takes scaled documentation of specific faunal and floral on special significance in this light. First, the faunal transitions. transitions have been cited as even greater in mag- Stratigraphic correlation of geographically dis- nitude than those of the Cretaceous or the Permian junct rocks and assemblages predetermines our per- (Colbert 1958; Hallam 1981; see also Chapter 24).
    [Show full text]
  • Live Birth in an Archosauromorph Reptile
    ARTICLE Received 8 Sep 2016 | Accepted 30 Dec 2016 | Published 14 Feb 2017 DOI: 10.1038/ncomms14445 OPEN Live birth in an archosauromorph reptile Jun Liu1,2,3, Chris L. Organ4, Michael J. Benton5, Matthew C. Brandley6 & Jonathan C. Aitchison7 Live birth has evolved many times independently in vertebrates, such as mammals and diverse groups of lizards and snakes. However, live birth is unknown in the major clade Archosauromorpha, a group that first evolved some 260 million years ago and is represented today by birds and crocodilians. Here we report the discovery of a pregnant long-necked marine reptile (Dinocephalosaurus) from the Middle Triassic (B245 million years ago) of southwest China showing live birth in archosauromorphs. Our discovery pushes back evidence of reproductive biology in the clade by roughly 50 million years, and shows that there is no fundamental reason that archosauromorphs could not achieve live birth. Our phylogenetic models indicate that Dinocephalosaurus determined the sex of their offspring by sex chromosomes rather than by environmental temperature like crocodilians. Our results provide crucial evidence for genotypic sex determination facilitating land-water transitions in amniotes. 1 School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China. 2 Chengdu Center, China Geological Survey, Chengdu 610081, China. 3 State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, CAS, Nanjing 210008, China. 4 Department of Earth Sciences, Montana State University, Bozeman, Montana 59717, USA. 5 School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK. 6 School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia.
    [Show full text]
  • Elachistosuchus Huenei Janensch, 1949 (Reptilia: Diapsida) from the Upper Triassic of Germany and Its Relevance for the Origin of Sauria
    RESEARCH ARTICLE Anatomy of the Enigmatic Reptile Elachistosuchus huenei Janensch, 1949 (Reptilia: Diapsida) from the Upper Triassic of Germany and Its Relevance for the Origin of Sauria Gabriela Sobral1☯*, Hans-Dieter Sues2☯, Johannes Müller1☯ 1 Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany, 2 Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, MRC 121, Washington, DC, United States of America ☯ These authors contributed equally to this work. * [email protected] OPEN ACCESS Citation: Sobral G, Sues H-D, Müller J (2015) Abstract Anatomy of the Enigmatic Reptile Elachistosuchus huenei Janensch, 1949 (Reptilia: Diapsida) from the The holotype and only known specimen of the enigmatic small reptile Elachistosuchus hue- Upper Triassic of Germany and Its Relevance for the nei Janensch, 1949 from the Upper Triassic (Norian) Arnstadt Formation of Saxony-Anhalt Origin of Sauria. PLoS ONE 10(9): e0135114. μ doi:10.1371/journal.pone.0135114 (Germany) is redescribed using CT scans of the material. This re-examination revealed new information on the morphology of this taxon, including previously unknown parts of the Editor: Shree Ram Singh, National Cancer Institute, UNITED STATES skeleton such as the palate, braincase, and shoulder girdle. Elachistosuchus is diagnosed especially by the presence of the posterolateral process of the frontal, the extension of the Received: January 27, 2015 maxillary tooth row to the posterior margin of the orbit, the free posterior process of the Accepted: July 19, 2015 jugal, and the notched anterior margin of the interclavicle. Phylogenetic analyses using two Published: September 9, 2015 recently published character-taxon matrices recovered conflicting results for the phyloge- Copyright: This is an open access article, free of all netic position of Elachistosuchus–either as an archosauromorph, as a lepidosauromorph or copyright, and may be freely reproduced, distributed, as a more basal, non-saurian diapsid.
    [Show full text]
  • What Really Happened in the Late Triassic?
    Historical Biology, 1991, Vol. 5, pp. 263-278 © 1991 Harwood Academic Publishers, GmbH Reprints available directly from the publisher Printed in the United Kingdom Photocopying permitted by license only WHAT REALLY HAPPENED IN THE LATE TRIASSIC? MICHAEL J. BENTON Department of Geology, University of Bristol, Bristol, BS8 1RJ, U.K. (Received January 7, 1991) Major extinctions occurred both in the sea and on land during the Late Triassic in two major phases, in the middle to late Carnian and, 12-17 Myr later, at the Triassic-Jurassic boundary. Many recent reports have discounted the role of the earlier event, suggesting that it is (1) an artefact of a subsequent gap in the record, (2) a complex turnover phenomenon, or (3) local to Europe. These three views are disputed, with evidence from both the marine and terrestrial realms. New data on terrestrial tetrapods suggests that the late Carnian event was more important than the end-Triassic event. For tetrapods, the end-Triassic extinction was a whimper that was followed by the radiation of five families of dinosaurs and mammal- like reptiles, while the late Carnian event saw the disappearance of nine diverse families, and subsequent radiation of 13 families of turtles, crocodilomorphs, pterosaurs, dinosaurs, lepidosaurs and mammals. Also, for many groups of marine animals, the Carnian event marked a more significant turning point in diversification than did the end-Triassic event. KEY WORDS: Triassic, mass extinction, tetrapod, dinosaur, macroevolution, fauna. INTRODUCTION Most studies of mass extinction identify a major event in the Late Triassic, usually placed at the Triassic-Jurassic boundary.
    [Show full text]
  • An Early Late Triassic Long-Necked Reptile with a Bony Pectoral Shield and Gracile Appendages
    An early Late Triassic long-necked reptile with a bony pectoral shield and gracile appendages JERZY DZIK and TOMASZ SULEJ Dzik, J. and Sulej, T. 2016. An early Late Triassic long-necked reptile with a bony pectoral shield and gracile appendages. Acta Palaeontologica Polonica 61 (4): 805–823. Several partially articulated specimens and numerous isolated bones of Ozimek volans gen. et sp. nov., from the late Carnian lacustrine deposits exposed at Krasiejów in southern Poland, enable a reconstruction of most of the skeleton. The unique character of the animal is its enlarged plate-like coracoids presumably fused with sterna. Other aspects of the skeleton seem to be comparable to those of the only known specimen of Sharovipteryx mirabilis from the latest Middle Triassic of Kyrgyzstan, which supports interpretation of both forms as protorosaurians. One may expect that the pectoral girdle of S. mirabilis, probably covered by the rock matrix in its only specimen, was similar to that of O. volans gen. et sp. nov. The Krasiejów material shows sharp teeth, low crescent scapula, three sacrals in a generalized pelvis (two of the sacrals being in contact with the ilium) and curved robust metatarsal of the fifth digit in the pes, which are unknown in Sharovipteryx. Other traits are plesiomorphic and, except for the pelvic girdle and extreme elongation of appendages, do not allow to identify any close connection of the sharovipterygids within the Triassic protorosaurians. Key words: Archosauromorpha, Sharovipteryx, protorosaurs, gliding, evolution, Carnian, Poland. Jerzy Dzik [[email protected]], Instytut Paleobiologii PAN, ul. Twarda 51/55, 00-818 Warszawa, Poland and Wydział Biologii Uniwersytetu Warszawskiego, Centrum Nauk Biologiczno-Chemicznych, ul.
    [Show full text]
  • Reptile Family Tree - Peters 2017 1112 Taxa, 231 Characters
    Reptile Family Tree - Peters 2017 1112 taxa, 231 characters Note: This tree does not support DNA topologies over 100 Eldeceeon 1990.7.1 67 Eldeceeon holotype long phylogenetic distances. 100 91 Romeriscus Diplovertebron Certain dental traits are convergent and do not define clades. 85 67 Solenodonsaurus 100 Chroniosaurus 94 Chroniosaurus PIN3585/124 Chroniosuchus 58 94 Westlothiana Casineria 84 Brouffia 93 77 Coelostegus Cheirolepis Paleothyris Eusthenopteron 91 Hylonomus Gogonasus 78 66 Anthracodromeus 99 Osteolepis 91 Protorothyris MCZ1532 85 Protorothyris CM 8617 81 Pholidogaster Protorothyris MCZ 2149 97 Colosteus 87 80 Vaughnictis Elliotsmithia Apsisaurus Panderichthys 51 Tiktaalik 86 Aerosaurus Varanops Greererpeton 67 90 94 Varanodon 76 97 Koilops <50 Spathicephalus Varanosaurus FMNH PR 1760 Trimerorhachis 62 84 Varanosaurus BSPHM 1901 XV20 Archaeothyris 91 Dvinosaurus 89 Ophiacodon 91 Acroplous 67 <50 82 99 Batrachosuchus Haptodus 93 Gerrothorax 97 82 Secodontosaurus Neldasaurus 85 76 100 Dimetrodon 84 95 Trematosaurus 97 Sphenacodon 78 Metoposaurus Ianthodon 55 Rhineceps 85 Edaphosaurus 85 96 99 Parotosuchus 80 82 Ianthasaurus 91 Wantzosaurus Glaucosaurus Trematosaurus long rostrum Cutleria 99 Pederpes Stenocybus 95 Whatcheeria 62 94 Ossinodus IVPP V18117 Crassigyrinus 87 62 71 Kenyasaurus 100 Acanthostega 94 52 Deltaherpeton 82 Galechirus 90 MGUH-VP-8160 63 Ventastega 52 Suminia 100 Baphetes Venjukovia 65 97 83 Ichthyostega Megalocephalus Eodicynodon 80 94 60 Proterogyrinus 99 Sclerocephalus smns90055 100 Dicynodon 74 Eoherpeton
    [Show full text]
  • Raibliania Calligarisi Gen. N., Sp. N., a New Tanystropheid (Diapsida, Tanystropheidae) from the Upper Triassic (Carnian) of Northeastern Italy
    Rivista Italiana di Paleontologia e Stratigrafia (Research in Paleontology and Stratigraphy) vol. 126(1): 197-222. March 2020 RAIBLIANIA CALLIGARISI GEN. N., SP. N., A NEW TANYSTROPHEID (DIAPSIDA, TANYSTROPHEIDAE) FROM THE UPPER TRIASSIC (CARNIAN) OF NORTHEASTERN ITALY FABIO MARCO DALLA VECCHIA Museo Friulano di Storia Naturale, Via Sabbadini 22-34, I-33100 Udine, Italy; Institut Català de Paleontologia Miquel Crusafont (ICP), Carrer de l’Escola Industrial 23, E-08201, Sabadell, Spain. E-mail: [email protected] To cite this article: Dalla Vecchia F.M. (2020) - Raibliania calligarisi gen. n., sp. n., a new tanystropheid (Diapsida, Tanystropheidae) from the Upper Triassic (Carnian) of northeastern Italy. Riv. It. Paleontol. Strat., 126(1): 197-222. Keywords: Reptilia; Archosauromorpha; Predil Limestone; Friuli Venezia Giulia; Julian Alps. Abstract. Tetrapod remains are extremely rare in the early Carnian (Late Triassic) Calcare del Predil Forma- tion on the Italian side of the Julian Alps (Friuli Venezia Giulia Autonomous Region), which yielded the Raibl fossil assemblage including the famous “Raibl ichthyofauna”. A new tanystropheid archosauromorph, Raibliania calligarisi, is here named based on a partial skeleton found in this formation along the Prasnig Brook. The new taxon is similar to Tanystropheus, sharing with it the very elongated cervical vertebrae, but is characterized by the presence of relatively large button-like teeth; apex of the neural spines not transversely thickened; articular facets on the upper corners of the neural spines of the dorsal vertebrae; short and distally pointed pleurapophyses of the second and last ‘lumbar’ vertebra; ilium with a long preacetabular process bearing a robust and transversely thick tuberosity and a medial rid- ge bordering the entire ventral part of the iliac blade; and pubis with a cranial process.
    [Show full text]
  • Extant Taxa Stem Frogs Stem Turtles Stem Lepidosaurs Stem Squamates
    Stem Taxa - Peters 2016 851 taxa, 228 characters 100 Eldeceeon 1990.7.1 91 Eldeceeon holotype 100 Romeriscus Ichthyostega Gephyrostegus watsoni Pederpes 85 Eryops 67 Solenodonsaurus 87 Proterogyrinus 100 Chroniosaurus Eoherpeton 94 72 Chroniosaurus PIN3585/124 98 Seymouria Chroniosuchus Kotlassia Stem 58 94 Westlothiana Utegenia Casineria 84 81 Amphibamus Brouffia 95 72 Cacops 93 77 Coelostegus Paleothyris 98 Doleserpeton 84 91 78 100 Gerobatrachus Hylonomus Rana Archosauromorphs Protorothyris MCZ1532 95 66 98 Adelospondylus 85 Protorothyris CM 8617 89 Brachydectes Protorothyris MCZ 2149 Eocaecilia 87 86 Microbrachis Vaughnictis Pantylus 80 89 75 94 Anthracodromeus Elliotsmithia 90 Utaherpeton 51 Apsisaurus Kirktonecta 95 90 86 Aerosaurus 96 Tuditanus 67 90 Varanops Stem Frogs 59 94 Eoserpeton Varanodon Diplocaulus Varanosaurus FMNH PR 1760 100 Sauropleura 62 84 Varanosaurus BSPHM 1901 XV20 88 Ptyonius 89 Archaeothyris 70 Scincosaurus Euryodus primus Ophiacodon 74 82 84 Micraroter Haptodus 91 Rhynchonkos 97 82 Secodontosaurus Batropetes 85 76 100 Dimetrodon 97 Sphenacodon Silvanerpeton Ianthodon 85 Edaphosaurus Gephyrostegeus bohemicus 99 Stem100 Reptiles 80 82 Ianthasaurus Glaucosaurus 94 Cutleria 100 Urumqia Bruktererpeton Stenocybus Stem Mammals 63 97 Thuringothyris MNG 7729 62 IVPP V18117 82 Thuringothyris MNG 10183 87 62 71 Kenyasaurus 82 Galechirus 52 Suminia Saurorictus Venjukovia 99 99 97 83 70 Cephalerpeton Opisthodontosaurus 94 Eodicynodon 80 98 Reiszorhinus 100 Dicynodon 75 Concordia KUVP 8702a Hipposaurus 100 98 96 Concordia
    [Show full text]
  • (Revised with Costs), Petrified Forest National Park
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Natural Resource Condition Assessment Petrified Forest National Park (Revised with Costs) Natural Resource Report NPS/PEFO/NRR—2020/2186 The production of this document cost $ 112,132, including costs associated with data collection, processing, analysis, and subsequent authoring, editing, and publication. ON THE COVER Milky Way over Battleship Rock, Petrified Forest National Park Jacob Holgerson, NPS Natural Resource Condition Assessment Petrified Forest National Park (Revised with Costs) Natural Resource Report NPS/PEFO/NRR—2020/2186 J. Judson Wynne1 1 Department of Biological Sciences Merriam-Powell Center for Environmental Research Northern Arizona University Box 5640 Flagstaff, AZ 86011 November 2020 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • 1 a New Lepidosaur Clade
    A new lepidosaur clade: the Tritosauria DAVID PETERS Independent researcher, 311 Collinsville Avenue, Collinsville, Illinois 62234 U.S.A. [email protected] RH: PETERS—TRITOSAURIA 1 ABSTRACT—Several lizard-like taxa do not nest well within the Squamata or the Rhynchocephalia. Their anatomical differences separate them from established clades. In similar fashion, macrocnemids and cosesaurids share few traits with putative sisters among the prolacertiformes. Pterosaurs are not at all like traditional archosauriforms. Frustrated with this situation, workers have claimed that pterosaurs appeared without obvious antecedent in the fossil record. All these morphological ‘misfits’ have befuddled researchers seeking to shoehorn them into established clades using traditional restricted datasets. Here a large phylogenetic analysis of 413 taxa and 228 characters resolves these issues by opening up the possibilities, providing more opportunities for enigma taxa to nest more parsimoniously with similar sisters. Remarkably, all these ‘misfits’ nest together in a newly recovered and previously unrecognized clade of lepidosaurs, the Tritosauria or ‘third lizards,’ between the Rhynchocephalia and the Squamata. Tritosaurs range from small lizard-like forms to giant marine predators and volant monsters. Some tritosaurs were bipeds. Others had chameleon-like appendages. With origins in the Late Permian, the Tritosauria became extinct at the K–T boundary. Overall, the new tree topology sheds light on this clade and several other ‘dark corners’ in the family tree of the Amniota. Now pterosaurs have more than a dozen antecedents in the fossil record documenting a gradual accumulation of pterosaurian traits. INTRODUCTION The Lepidosauria was erected by Romer (1956) to include diapsids lacking archosaur characters. Later, with the advent of computer-assisted phylogenetic analyses, 2 many of Romer’s ‘lepidosaurs’ (Protorosauria/Prolacertiformes, Trilophosauria, and Rhynchosauria) were transferred to the Archosauromorpha (Benton, 1985; Gauthier, 1986).
    [Show full text]