Abstract Characterization of Potential Anti-Infective

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Characterization of Potential Anti-Infective ABSTRACT CHARACTERIZATION OF POTENTIAL ANTI-INFECTIVE AGENTS OF Burkholderia pseudomallei TARGETING IspF Joy Michelle Blain, Ph.D. Department of Chemistry and Biochemistry Northern Illinois University, 2016 James R. Horn, Co-Director Timothy J. Hagen, Co-Director There is an urgent need for new anti-infective agents. Pathogenic organisms continue to develop resistance to modern-day antibiotics, while there has been a significant decline in the development of antibiotics over the last 30 years. One particular pathway of interest in the development of new antibiotics is the biosynthesis of isoprenoids. These compounds are essential chemical building blocks in pathogenic organisms such as Plasmodium falciparum, Mycobacterium tuberculosis, and Burkholderia pseudomallei. Notably, there are two distinct pathways in the biosynthesis of isoprenoids called the Mevalonate (MVA) pathway and the 2C-methyl-D-erythritol phosphate (MEP) pathway. The MEP pathway enzymes are attractive targets in developing novel anti-infective agents due to the fact that humans only use the MVA pathway to produce isoprenoids. Burkholderia pseudomallei is a Gram-negative bacterium found in untreated water and soil in Southeast Asia and northern Australia. The bacterium has been classified as a category B bioterrorism agent/disease by the category B bioterrorism agent/disease by the Centers for Disease Control and Prevention. Antibiotic resistance to traditional anti-microbial agents in such pathogenic organisms has increased due to the primary mechanisms of resistance, which are enzyme inactivation, drug efflux from the cell, and target deletion. Consequently, new anti- infective agents targeting B. pseudomallei are of great interest. The focus of this research project was to examine the inhibition of the fifth enzyme in the MEP pathway, 2C-methyl-D-erythritol 2,4-cyclodiphosphate synthase (IspF) using small molecules that were developed based on fragment hits and structure activity relationships (SAR). In this study, enzyme engineering was utilized for the development of a high throughput thermal-shift assay. The assay was used to assess the relative potency of compounds targeting IspF. The inhibitor binding affinities and thermodynamics were determined using Surface Plasmon Resonance (SPR) and Isothermal Titration Calorimetry (ITC). Enzyme inhibition values for the most potent inhibitors were then evaluated using a High Performance Liquid Chromatography (HPLC) activity assay. Finally, structural analysis for two compounds in complex with IspF was completed to assess the mode of binding in the active site, which will aid in future inhibitor design strategies. NORTHERN ILLINOIS UNIVERSITY DE KALB, ILLINOIS AUGUST 2016 CHARACTERIZATION OF POTENTIAL ANTI-INFECTIVE AGENTS OF Burkholderia pseudomallei TARGETING IspF BY JOY MICHELLE BLAIN © 2016 Joy Michelle Blain A DISSERTATION SUBMITTED TO THE GRADUATE SCHOOL IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTMENT OF CHEMISTRY AND BIOCHEMISTRY Doctoral Director: James R. Horn, Co-Director Timothy J. Hagen, Co-Director ACKNOWLEDGEMENTS I would like to first thank my graduate co-advisor, Professor James Horn, for his continual support, guidance, and patience. He has constantly challenged me throughout the last five years and I have become a better scientist because of his encouragement. I would also like to thank my co-advisor, Professor Timothy Hagen, for his guidance and enthusiasm. It has been an honor to work with both Professors Horn and Hagen. It is with tremendous gratitude that I acknowledge Rick Walter and Gina Raneiri for their invaluable help at the Advanced Photon Source. They have not only helped me immeasurably with my research but have become more than just colleagues. I have enjoyed all of our conversations and appreciate all your encouragement over the last two years. I would also like to thank Matt Pokross for all the knowledge he has passed on to me to in determining the crystal structures. I am also thankful to my committee members Professor Gary Baker and Professor Oliver Hofstetter. They have continually supported and aided in my work through numerous valuable discussions. Many thanks to Dr. Heike Hofstetter for her help with the NMR assay and all our conversations. My family and friends have been an incredible support system throughout my graduate school career. Their support when I needed it the most has been amazing and this would not have been possible without you. To my parents, Leland and Soon Ik Blain thank you for continual love and support. You have always encouraged me in my academic interests. I would not be iii where I am now without your inspiration and willingness to help me. To my sisters, Jennifer and Jill, my best friends and always being there for me and supporting me. To my nephews and niece, Leonidas, Leandra, and Liev, you are the light in my life. Thanks to my paternal grandparents, Phillip and Nora Blain for your endless support. My maternal grandparents, Jin Darl Son and Do Hee Kim, have passed away, but the work ethic of my grandfather and kindness of my grandmother have guided me throughout my life. I wish to thank my aunt and uncle Eun Ik and Duk Yoon Song for their love and kindness and my cousins Eun Sun Song and Eun Hee Lee and her family, Young, Yu Jin, Yoori, and Yoo Hyun Lee for their love and support. I would also like to thank my aunt Connie Blain, and my uncle and aunt, Robert and Coleen Blain and their family, for their encouragement. I am also grateful to my maternal uncles and aunts living in Korea: Dea Ik Son, Dong Ik Son, Ik Soon Son, Kyong Ik Son, their spouses and all of my cousins. Although we live far apart and are not able to see each other you are always close in my thoughts. Several thanks go out to all members of the Horn and Hagen labs, past and present. You have provided valuable feedback throughout our conversations. The group members have become not only colleagues but also friends. I would like to acknowledge Northern Illinois University and the Department of Chemistry and Biochemistry for funding support. Additionally, I would like to thank the NIU Foundation, National Institute of Health (1R15AI113653-01), and National Science Foundation (MCB-0953323) for providing the funding and financial support I have received. DEDICATION To Leonidas “Leo” Lucien Blain Christen: March 23, 2010 – April 8, 2010 Always on my mind Forever in my heart TABLE OF CONTENTS Page LIST OF TABLES ........................................................................................................ x LIST OF FIGURES ...................................................................................................... xi LIST OF APPENDICES ................................................................................................ xv LIST OF ABBREVIATIONS ....................................................................................... xvi LIST OF SYMBOLS .................................................................................................... xx CHAPTER 1 INTRODUCTION Cellular Targets for Antibiotic Development................................................... 5 Inhibition of Cell Wall Biosynthesis...................................................... 7 Inhibition on DNA/RNA Synthesis ....................................................... 9 Inhibition of Protein Biosynthesis ......................................................... 11 Mechanisms of Antibiotic Resistance .............................................................. 13 Investigation of Novel Targets and Novel Classes of Antibiotics ................... 15 Known Targets of Antibiotics ................................................................ 15 Bacterial Genes which are Essential, Conserved ................................... 16 Biosynthesis of Isoprenoids as a Potential Anti-Infective Target .......... 17 Two Distinct Isoprenoid Biosynthetic Pathways Mevalonate and Non- mevalonate ....................................................................................................... 19 vi Mevalonate Isoprenoid Biosynthetic Pathway ................................................. 19 Discovery of the Non-mevalonate Isoprenoid Biosynthetic Pathway ... 21 Methylerythritol Phosphate (MEP) Pathway an Attractive Target for Developing Novel Antibiotics .......................................................................... 23 MEP pathway Regulation ...................................................................... 25 Known MEP Pathway Inhibitors ........................................................... 25 Targeting Cyclodiphosphate Synthase, IspF .................................................... 29 Active Site of Cyclodiphosphate synthase (IspF) .................................. 31 Cyclodiphosphate synthase (IspF) Hydrophobic Cavity ....................... 34 Targeting Burkholderia pseudomallei IspF ........................................... 34 2 DEVELOPMENT OF A HIGH-THROUGHPUT THERMAL-SHIFT ASSAY Introduction ...................................................................................................... 36 Methods ............................................................................................................ 39 Expression and Purification of Burkholderia pseudomallei IspF .......... 39 Circular Dichroism................................................................................. 40 Solvent Accessible Surface Area Calculations ...................................... 41 Computational Stability
Recommended publications
  • National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): a Cross-Sectional Study
    Tropical Medicine and Infectious Disease Article National Antibiotic Consumption for Human Use in Sierra Leone (2017–2019): A Cross-Sectional Study Joseph Sam Kanu 1,2,* , Mohammed Khogali 3, Katrina Hann 4 , Wenjing Tao 5, Shuwary Barlatt 6,7, James Komeh 6, Joy Johnson 6, Mohamed Sesay 6, Mohamed Alex Vandi 8, Hannock Tweya 9, Collins Timire 10, Onome Thomas Abiri 6,11 , Fawzi Thomas 6, Ahmed Sankoh-Hughes 12, Bailah Molleh 4, Anna Maruta 13 and Anthony D. Harries 10,14 1 National Disease Surveillance Programme, Sierra Leone National Public Health Emergency Operations Centre, Ministry of Health and Sanitation, Cockerill, Wilkinson Road, Freetown, Sierra Leone 2 Department of Community Health, Faculty of Clinical Sciences, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown, Sierra Leone 3 Special Programme for Research and Training in Tropical Diseases (TDR), World Health Organization, 1211 Geneva, Switzerland; [email protected] 4 Sustainable Health Systems, Freetown, Sierra Leone; [email protected] (K.H.); [email protected] (B.M.) 5 Unit for Antibiotics and Infection Control, Public Health Agency of Sweden, Folkhalsomyndigheten, SE-171 82 Stockholm, Sweden; [email protected] 6 Pharmacy Board of Sierra Leone, Central Medical Stores, New England Ville, Freetown, Sierra Leone; [email protected] (S.B.); [email protected] (J.K.); [email protected] (J.J.); [email protected] (M.S.); [email protected] (O.T.A.); [email protected] (F.T.) Citation: Kanu, J.S.; Khogali, M.; 7 Department of Pharmaceutics and Clinical Pharmacy & Therapeutics, Faculty of Pharmaceutical Sciences, Hann, K.; Tao, W.; Barlatt, S.; Komeh, College of Medicine and Allied Health Sciences, University of Sierra Leone, Freetown 0000, Sierra Leone 8 J.; Johnson, J.; Sesay, M.; Vandi, M.A.; Directorate of Health Security & Emergencies, Ministry of Health and Sanitation, Sierra Leone National Tweya, H.; et al.
    [Show full text]
  • Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
    International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1.
    [Show full text]
  • Identifying Drug Targets in Tissues and Whole Blood with Thermal-Shift Profiling
    LETTERS https://doi.org/10.1038/s41587-019-0388-4 Identifying drug targets in tissues and whole blood with thermal-shift profiling Jessica Perrin1,3, Thilo Werner1,3, Nils Kurzawa 2,3, Anna Rutkowska1, Dorothee D. Childs2, Mathias Kalxdorf1, Daniel Poeckel1, Eugenia Stonehouse1, Katrin Strohmer1, Bianca Heller1, Douglas W. Thomson1, Jana Krause1, Isabelle Becher 2, H. Christian Eberl1, Johanna Vappiani1, Daniel C. Sevin1, Christina E. Rau1, Holger Franken1, Wolfgang Huber2, Maria Faelth-Savitski1, Mikhail M. Savitski2*, Marcus Bantscheff 1* and Giovanna Bergamini 1* Monitoring drug–target interactions with methods such as and only after heating proteins are extracted with a mild deter- the cellular thermal-shift assay (CETSA) is well established gent (Supplementary Fig. 1), resulting in better solubilization of for simple cell systems but remains challenging in vivo. Here membrane-bound proteins. The percentage of membrane pro- we introduce tissue thermal proteome profiling (tissue-TPP), teins detected in crude cell extracts following this protocol was which measures binding of small-molecule drugs to proteins fourfold higher than in detergent-free extracts (PBS extracts) and in tissue samples from drug-treated animals by detecting almost comparable to that in intact cells (Supplementary Fig. 2a changes in protein thermal stability using quantitative mass and Supplementary Data 1). In line with previous reports, melt- spectrometry. We report organ-specific, proteome-wide ing temperatures (Tm) measured in HepG2 cells and HepG2 crude thermal stability maps and derive target profiles of the non- extracts showed a correlation of r = 0.58, an expected value owing covalent histone deacetylase inhibitor panobinostat in rat to differences in concentration of cellular co-factors and the altera- liver, lung, kidney and spleen and of the B-Raf inhibitor vemu- tion of protein–protein interactions (Supplementary Fig.
    [Show full text]
  • Modulation of Alpha-Synuclein Protein Folding by a Marine-Sourced
    MODULATION OF ALPHA-SYNUCLEIN PROTEIN FOLDING BY A MARINE-SOURCED EXTRACT by James Christopher Giffin Submitted in partial fulfilment of the requirements for the degree of Master of Science at Dalhousie University Halifax, Nova Scotia April 2016 © Copyright by James Christopher Giffin, 2016 TABLE OF CONTENTS List of Figures ................................................................................................................................. v Abstract .......................................................................................................................................... vi List of Abbreviations and Symbols Used ..................................................................................... vii Acknowledgements ...................................................................................................................... viii 1 CHAPTER 1 INTRODUCTION ............................................................................................. 1 1.1 Amyloid ............................................................................................................................ 1 1.1.1 Protein Folding and Misfolding ................................................................................ 1 1.1.2 Amyloid Formation and Human Disease .................................................................. 5 1.2 Parkinson’s Disease.......................................................................................................... 7 1.2.1 Alpha Synuclein .......................................................................................................
    [Show full text]
  • Farrukh Javaid Malik
    I Farrukh Javaid Malik THESIS PRESENTED TO OBTAIN THE GRADE OF DOCTOR OF THE UNIVERSITY OF BORDEAUX Doctoral School, SP2: Society, Politic, Public Health Specialization Pharmacoepidemiology and Pharmacovigilance By Farrukh Javaid Malik “Analysis of the medicines panorama in Pakistan – The case of antimicrobials: market offer width and consumption.” Under the direction of Prof. Dr. Albert FIGUERAS Defense Date: 28th November 2019 Members of Jury M. Francesco SALVO, Maître de conférences des universités – praticien hospitalier, President Université de Bordeaux M. Albert FIGUERAS, Professeur des universités – praticien hospitalier, Director Université Autonome de Barcelone Mme Antonia AGUSTI, Professeure, Vall dʹHebron University Hospital Referee Mme Montserrat BOSCH, Praticienne hospitalière, Vall dʹHebron University Hospital Referee II Abstract A country’s medicines market is an indicator of its healthcare system, the epidemiological profile, and the prevalent practices therein. It is not only the first logical step to study the characteristics of medicines authorized for marketing, but also a requisite to set up a pharmacovigilance system, thus promoting rational drug utilization. The three medicines market studies presented in the present document were conducted in Pakistan with the aim of describing the characteristics of the pharmaceutical products available in the country as well as their consumption at a national level, with a special focus on antimicrobials. The most important cause of antimicrobial resistance is the inappropriate consumption of antimicrobials. The results of the researches conducted in Pakistan showed some market deficiencies which could be addressed as part of the national antimicrobial stewardship programmes. III Résumé Le marché du médicament d’un pays est un indicateur de son système de santé, de son profil épidémiologique et des pratiques [de prescription] qui y règnent.
    [Show full text]
  • Approach to Managing Patients with Sulfa Allergy Use of Antibiotic and Nonantibiotic Sulfonamides
    CME Approach to managing patients with sulfa allergy Use of antibiotic and nonantibiotic sulfonamides David Ponka, MD, CCFP(EM) ABSTRACT OBJECTIVE To present an approach to use of sulfonamide-based (sulfa) medications for patients with sulfa allergy and to explore whether sulfa medications are contraindicated for patients who require them but are allergic to them. SOURCES OF INFORMATION A search of current pharmacology textbooks and of MEDLINE from 1966 to the present using the MeSH key words “sulfonamide” and “drug sensitivity” revealed review articles, case reports, one observational study (level II evidence), and reports of consensus opinion (level III evidence). MAIN MESSAGE Cross-reactivity between sulfa antibiotics and nonantibiotics is rare, but on occasion it can affect the pharmacologic and clinical management of patients with sulfa allergy. CONCLUSION How a physician approaches using sulfa medications for patients with sulfa allergy depends on the certainty and severity of the initial allergy, on whether alternatives are available, and on whether the contemplated agent belongs to the same category of sulfa medications (ie, antibiotic or nonantibiotic) as the initial offending agent. RÉSUMÉ OBJECTIF Proposer une façon d’utiliser les médicaments à base de sulfamides (sulfas) chez les patients allergiques aux sulfas et vérifier si ces médicaments sont contre-indiqués pour ces patients. SOURCES DE L’INFORMATION Une consultation des récents ouvrages de pharmacologie et de MEDLINE entre 1966 et aujourd’hui à l’aide des mots clés MeSH «sulfonamide» et «drug sensitivity» a permis de repérer plusieurs articles de revue et études de cas, une étude d’observation et des rapports d’opinion consensuelles (preuves de niveau III).
    [Show full text]
  • Sulfonamides and Sulfonamide Combinations*
    Sulfonamides and Sulfonamide Combinations* Overview Due to low cost and relative efficacy against many common bacterial infections, sulfonamides and sulfonamide combinations with diaminopyrimidines are some of the most common antibacterial agents utilized in veterinary medicine. The sulfonamides are derived from sulfanilamide. These chemicals are structural analogues of ρ-aminobenzoic acid (PABA). All sulfonamides are characterized by the same chemical nucleus. Functional groups are added to the amino group or substitutions made on the amino group to facilitate varying chemical, physical and pharmacologic properties and antibacterial spectra. Most sulfonamides are too alkaline for routine parenteral use. Therefore the drug is most commonly administered orally except in life threatening systemic infections. However, sulfonamide preparations can be administered orally, intramuscularly, intravenously, intraperitoneally, intrauterally and topically. Sulfonamides are effective against Gram-positive and Gram-negative bacteria. Some protozoa, such as coccidians, Toxoplasma species and plasmodia, are generally sensitive. Chlamydia, Nocardia and Actinomyces species are also sensitive. Veterinary diseases commonly treated by sulfonamides are actinobacillosis, coccidioidosis, mastitis, metritis, colibacillosis, pododermatitis, polyarthritis, respiratory infections and toxo- plasmosis. Strains of rickettsiae, Pseudomonas, Klebsiella, Proteus, Clostridium and Leptospira species are often highly resistant. Sulfonamides are bacteriostatic antimicrobials
    [Show full text]
  • Common Oral Antibiotics for Horses Antibiotics Are Commonly Used In
    Common Oral Antibiotics for Horses Antibiotics are commonly used in horses for a variety of conditions. In order to determine which antibiotic is appropriate for a specific condition, a culture of the affected area needs to be performed. The culture is sent to a lab where the bacteria are grown and identified. A sensitivity test is then performed to find out which antibiotics will be effective. Some of the more common oral antibiotics in horses include trimethoprim sulfa, metronidazole, enrofloxacin, and chloramphenicol. Trimethoprim sulfa (SMZ, TMS, sulfa tabs) is an antibiotic which has a broad spectrum of activity against a variety of bacteria. It is broken down by the liver and excreted in the urine. Side effects of this drug include diarrhea, allergic reactions, and effects on the blood, including decreased number of red blood cells (anemia), decreased number of platelets (thrombocytopenia), and decreased number of white blood cells (leucopenia). Trimethoprim sulfa commonly comes in 960mg tablets. The dose range for horses is 15-30 mg/kg. Generally, 10 tablets administered orally for a 1000lb horse is effective. This medication is given twice a day (every 12 hours) and is best absorbed if given without food. Trimethoprim sulfa may be prescribed by your veterinarian for simple wounds, such as those on the face or legs. Metronidazole is an antibiotic commonly used for anaerobic (bacteria which can grow in the absence of oxygen) infections. For example, deep puncture wounds, respiratory infections, peritonitis, soft tissue infections, and abscesses are infections that often involve anaerobic bacteria.. It is broken down by the liver and excreted in the urine and in the feces.
    [Show full text]
  • Protein-Ligand Interactions Investigated by Thermal Shift Assays
    research papers Acta Crystallographica Section D Biological Protein–ligand interactions investigated by Crystallography thermal shift assays (TSA) and dual polarization ISSN 1399-0047 interferometry (DPI) Morten K. Grøftehauge,a* Over the last decades, a wide range of biophysical techniques Received 12 February 2014 Nelly R. Hajizadeh,a Marcus J. investigating protein–ligand interactions have become indis- Accepted 17 July 2014 Swannb and Ehmke Pohlc* pensable tools to complement high-resolution crystal structure determinations. Current approaches in solution range from high-throughput-capable methods such as thermal shift assays a Chemistry Department, Durham University, (TSA) to highly accurate techniques including microscale South Road, Durham DH1 3LE, England, bFarfield, Biolin Scientific, 62 Wellington Road thermophoresis (MST) and isothermal titration calorimetry South, Stockport, Cheshire SK1 3SU, England, (ITC) that can provide a full thermodynamic description and cChemistry Department and School of of binding events. Surface-based methods such as surface Biological and Biomedical Sciences, Durham plasmon resonance (SPR) and dual polarization interfero- University, South Road, Durham DH1 3LE, metry (DPI) allow real-time measurements and can provide England kinetic parameters as well as binding constants. DPI provides additional spatial information about the binding event. Here, Correspondence e-mail: an account is presented of new developments and recent [email protected], applications of TSA and DPI connected to crystallography.
    [Show full text]
  • Integrated Biophysical Approach to Fragment Screening and Validation for Fragment-Based Lead Discovery
    Integrated biophysical approach to fragment screening and validation for fragment-based lead discovery Hernani Leonardo Silvestrea,1, Thomas L. Blundella, Chris Abellb, and Alessio Ciullib,1,2 aDepartment of Biochemistry, University of Cambridge, Cambridge CB2 1GA, United Kingdom; and bUniversity Chemical Laboratory, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom Edited by Dagmar Ringe, Brandeis University, Waltham, MA, and accepted by the Editorial Board June 13, 2013 (received for review March 5, 2013) In fragment-based drug discovery, the weak affinities exhibited by detection, and sensitivity capabilities (21). Although several fragments pose significant challenges for screening. Biophysical methods—for example, NMR, MS, and ITC—are conducted in techniques are used to address this challenge, but there is no clear solution, others require protein crystals (X-ray crystallography) consensus on which cascade of methods is best suited to identify or immobilization to a surface (SPR). Some of these methods fragment hits that ultimately translate into bound X-ray structures can be applied with significant automation and throughput. Be- and provide bona fide starting points for synthesis. We have cause of the broad differences among the techniques that are benchmarked an integrated biophysical approach for fragment used for fragment screening and their complementary advan- screening and validation against Mycobacterium tuberculosis pan- tages and disadvantages, there is a lack of consensus as to which tothenate
    [Show full text]
  • Supporting Information
    Supporting Information Chemical validation of Mycobacterium tuberculosis phosphopantetheine adenylyltransferase using fragment linking and CRISPR interference Jamal El Bakali1,†, Michal Blaszczyk2,†, Joanna C. Evans3, Jennifer A. Boland1, William J. McCarthy1, Marcio V. B. Dias2, Anthony G. Coyne1, Valerie Mizrahi3, Tom L. Blundell2, Chris Abell1,* and Christina Spry1,* 1Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (UK) 2Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA (UK) 3MRC/NHLS/UCT Molecular Mycobacteriology Research Unit, DST/NRF Centre of Excellence for Biomedical TB Research & Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine and Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925 (South Africa) †These authors contributed equally to this work *Correspondence: Chris Abell ([email protected]) or Christina Spry ([email protected]) Table of Contents Supplementary Figures……………………………………………………………………….2 Figure S1……………………………………………………………………………….2 Figure S2……………………………………………………………………………….3 Figure S3……………………………………………………………………………….4 Figure S4……………………………………………………………………………….5 Figure S5……………………………………………………………………………….6 Figure S6……………………………………………………………………………….7 Figure S7……………………………………………………………………………….8 Figure S8……………………………………………………………………………….9 Figure S9……………………………………………………………………………...10 Figure S10…………………………………………………………………………….11 Figure S11…………………………………………………………………………….12
    [Show full text]
  • Investigation of Hsp90 Structure-Activity Relationships in Epigallocatechin Gallate
    Montclair State University Montclair State University Digital Commons Theses, Dissertations and Culminating Projects 1-2017 Investigation of Hsp90 Structure-Activity Relationships in Epigallocatechin Gallate Arpita Patel Follow this and additional works at: https://digitalcommons.montclair.edu/etd Part of the Chemistry Commons Montclair State University I Investigation of Hsp90 structure-activity relationships in epigallocatechin gallate/ By Arpita Patel A Master’s Thesis Submitted to the Faculty of The College of Science and Mathematics Montclair State University In Partial Fulfillment of the Requirements For the Degree of Master of Science in Chemistry January 2017 College: College of Science and Mathematics Thesis Committee: Department: Chemistry and Biochemistry Thesis Sponsor: David P. Rotella Committee Member: David W. Konas Committee Member: John Siekierka Abstract: (-)-Epigallocatechin gallate (EGCG) is a polyphenolic natural product that inhibits the key chaperone protein Hsp90 by binding to the carboxy terminal portion of the protein. The natural product has modest activity as an Hsp90 inhibitor and there is little information in the literature on structure activity relationships for EGCG analogs. Previous studies from this laboratory provided initial data on the effect of a limited range of changes associated with functional groups, substituents and stereochemistry. The focus of this research is to explore these initial results in more detail with a focus on the synthesis of EGCG analogs with more drug like features. Investigation of Hsp90 structure-activity relationships in epigallocatechin gallate A Thesis Submitted in partial fulfillment of the requirement For the degree of Master of Science in Chemistry By Arpita Patel Montclair State University Montclair, NJ 2017 Table of Contents Section Page Introduction 3 Chemistry 11 Result and discussion 18 Experimental section 20 References 39 Spectral Analysis 42 Introduction Heat shock proteins (Hsps) are proteins that act as chaperones to help regulate the structure and function of other proteins.
    [Show full text]