You Can Build Your Next Project with Lumber That Will Never Decay, Crack, Warp, Or Need fi Nishing

Total Page:16

File Type:pdf, Size:1020Kb

You Can Build Your Next Project with Lumber That Will Never Decay, Crack, Warp, Or Need fi Nishing How GOOD is Plastic WOOD? You can build your next project with lumber that will never decay, crack, warp, or need fi nishing. By Asa Christiana hree years ago I resurfaced my deck signs of damage from moisture, mold, material from a local supplier. But if you Twith composite boards made from sunlight, and insects. And there’s more want small orders or shorter material recycled plastic and wood dust. Although good news too: You can build almost shipped to you, it can be challenging to I live in the rainy Northwest, a giant Petri anything with plastic lumber, using the nd a supplier. See the Buyer’s Guide dish for moss and mold, the deck still same power and hand tools you already on p. 70 for some recommendations. looks as good as the day I installed it. And own. But there are important consid- the only maintenance I’ve done is a yearly erations you’ll need to make when scrub with soap and water. switching from real wood to plastic. I’ll fastFACTS at got me thinking about using go over some useful tips about cutting, • All plastic lumber except for PVC is synthetic lumber for other outdoor shaping, and joining the material. made with 95% recycled material. projects. It took a while, but I tried out Even though plastic lumber is made • Most plastic lumber is the main types of plastic lumber shown almost entirely from bottles, bags, and warrantied against weather here—everything from decking boards other products rescued from the waste damage for 20+ years. skinned with faux wood grain to light- stream, it’s expensive to manufacture. • PVC boards can be glued weight PVC trim boards and bright- ose costs are passed on to end-users, with special adhesive, but colored solid plastic stock. All of these as you can see in the prices listed here. glues won’t work on other varieties o er the advantage of excellent It’s also important to note that plastic types of plastic lumber. durability under tough outdoor condi- boards are typically sold in long lengths. • Changes in temperature tions. Plastic lumber will continue to is can be an advantage if you’re cause plastic lumber to look great while real wood will show building a deck, and picking up your expand and contract. Polyvinyl Chloride (PVC) $3.75 - $5.63/bd. ft. ($30 - $45 for 1" × 6" × 16') 3 • Sold in sheets and as ⁄4"-thick trim boards. PVC fencing, railing, and decking are also available. • Trim and sheet stock are available in white only, but these materials can be painted. • Can be glued using special PVC adhesive. • More fl exible than other types of plastic lumber. • Available at lumber yards and home centers. BEST USE: weatherproof trim and cladding 32 Photos: Asa Christiana Plastic-capped decking boards $5.00 - $8.75/bd. ft. ($40 - $70 for 1" × 6" × 16') • Composite core (recycled plastic and wood dust), with wood-grain cap that protects core from wear, weathering, and mildew. 1 • Most common dimension is 1 × 5 ⁄2". • Many boards come with grooved edges for use with hidden deck fasteners. • Many wood tones available. Premium decking looks like real wood. • Available at home centers and building supply stores, and by special order. BEST USE: decking and projects that don’t require exposed ends or cut edges Uncapped composite decking $6.25 - $8.12/bd. ft. ($50 - $65 for 1" × 6" × 16') • Made from a blend of recycled high-density polyethylene (HDPE) and wood dust/fi bers. • Most boards have a textured surface to simulate wood grain. • Boards are available in common dimension lumber sizes, and in different wood tones. • Surface will show slight weathering with age. • Has the same composition through and through. • Slightly stiffer than HDPE plastic lumber. • Available by special order from home centers and building supply stores. BEST USE: decking, outdoor railings, and outdoor furniture High-Density Polyethylene (HDPE) lumber $6.88 - $8.12/bd. ft. ($55 - $65 for 1" × 6" × 16') • Sold mostly for commercial use in outdoor furniture, docks, and boardwalks. • Available in many colors (with UV blockers added to minimize fading). • Has the same composition and color through and through. • Lighter than wood-plastic composites. • More slippery than other plastic lumber. • Available by special order BEST USE: outdoor furniture June/July 2019 | woodcraftmagazine.com 33 Tips for tackling plastic lumber projects All types of plastic lumber can be so edge-shaping should be done you’ll need to join parts with screws worked with most of the same tools with a mill le, plane, or router. or through-bolted connections. you use for woodworking, including PVC boards can be joined together Plastic lumber expands and contracts (surprisingly) hand and power with special adhesive, but all other in reaction to temperature changes. planes. Sandpaper will clog quickly, plastic lumber can’t be glued. So Movement and strength issues should Cutting and Routing Smooth and safe. Cut plastic lumber with the same blades you use for wood. It’s dense like MDF, but easier on cutting edges. Joining with Screws and Hardware Clamp carefully. Pocket hole joinery works well in plastic lumber, but slick surfaces can easily slip out of alignment. For accurate connections, make sure your parts are secured with clamps before driving screws. Cabinet screws for solid connections. A low-profi le head with an integral washer makes these screws ideal for basic Dowel center joinery, like butt joints. To avoid splitting, keep screws at 3 least ⁄4" from a board’s edge, and drill clearance holes in the top board. Pilot holes in the base board aren’t necessary with these screws, because they have self-drilling tips. 34 Plugging Holes factor into the design of a plastic wood project (see Design Tips below). e cutting, shaping, and joinery details shown here will come in handy if you’re building with plastic lumber. I Cutting and Routing Rout it like real wood. Since plastic lumber lacks grain structure, you can rout without worrying about tearout. Plastic plugs. Make short plastic dowels with a plug-cutting To complete more bit, then cut them free. Use the dowels in cross-barrel joints detailed profi les, creep (facing page), or to hide counterbored or pocket screws. up on the fi nal shape in a series of progressively Hide holes with a heat gun. deeper cuts, as you Press plugs into place after heating would with a medium- the plug and the hole with a dense wood like oak. heat gun. No glue is necessary; just make sure both parts have Heat gun been softened slightly before pressing a plug into place. Once the surface has cooled, trim the plugs slightly proud with a sharp Joining with Screws and Hardware knife, and then plane them fl ush. Design Tips • Plan to join parts together with bolts or screws. • Test your design for fl ex. Plastic decking is designed for joists spaced on 16" or 24" centers. But for furniture like benches and tables, it’s smart to mock up supports and make sure your stock won’t defl ect excessively Plastic dowel under anticipated loads. • Exploit the fl exibility of Take advantage of special hardware. plastic lumber. You can For post-rail connections, cross-barrel design projects with curved fi ttings can be combined with plastic parts. Heating will increase dowels to make strong, attractive plastic lumber’s fl exibility. joints. Use steel dowel centers as • For boards with trapped 1 shown at left to mark plastic dowel ends, leave a ⁄16" gap locations as you close the joint. for every 4' of length. June/July 2019 | woodcraftmagazine.com 35 SUBSCRIBE! 2 YEARS for $29.99! go to woodcraftmagazine.com and click SUBSCRIBE -or- Complete the form below and mail in an envelope addressed to: WOODCRAFT MAGAZINE PO BOX 7020 PARKERSBURG WV 26102-9916 □ Payment Enclosed □ Bill Me Name Address City State Zip Country E-mail Best-ever DECORATIVE FINISHES Build Better Send in now to get LUMBER RACK Done Right with a CUT LIST Projects, Techniques and Products Build this 2 Years for $29.99! classic SPICE BOX And learn how to… Dovetail a case Divide a cabinet into compartments or go to woodcraftmagazine.com and click SUBSCRIBE Create a cornice By providing my e-mail address, I am indicating I’d like to receive information about my subscription and other offers from Woodcraft Magazine via e-mail. Outside of the U.S and Canada add $30 for postage. Plus… Foreign orders must be prepaid. Payment in U.S. Funds only. 4 more projects Famous furniture.
Recommended publications
  • Types of Plastic and Their Recycle Codes | Quality Logo Products®
    7/24/2018 Types of Plastic and Their Recycle Codes | Quality Logo Products® Product Search Your privacy will be protected by redirecting your search to Search Encrypt. Learn More X ALL ABOUT MATERIALS Types of Plastic and Their Recycle Codes Other Lessons in This Course Types of Plastic Plastic is an essential component of many items, including water bottles, combs, and beverage containers. Knowing the difference, as well as the SPI codes, will help you make more informed decisions about recycling. The seven types of plastic include: Polyethylene Terephthalate (PETE or PET) High-Density Polyethylene (HDPE) Polyvinyl Chloride (PVC) Miscellaneous plastics (includes: polycarbonate, polylactide, acrylic, acrylonitrile butadiene, styrene, fiberglass, and nylon) When it comes to promotional giveaways, and even items we use around the house, there is no material more important than plastic. The same can be said for the items we use at the office. Most of our supplies contain at least a little bit of this material. In fact, humans have thus far produced 9.1 billion tons of plastic! For the sake of the environment, it’s important to know the different types of plastic and their uses, as well as the resin identification codes found on each for the sake of recycling. Recycling Codes for Plastic Understanding the different types of plastic can help consumers like you make more informed decisions related to your health and the environment. It’s important to become familiar with an item’s SPI (Society of the Plastics Industry) code, which is also known as a resin identification number and is used to classify the different types of plastic.
    [Show full text]
  • Carpenters of Japanese Ancestry in Hawaii Hisao Goto Kazuko
    Craft History and the Merging of Tool Traditions: Carpenters of Japanese Ancestry in Hawaii Hisao Goto Kazuko Sinoto Alexander Spoehr For centuries the Japanese have made extensive use of wood as the main raw material in the construction of houses and their furnishings, temples, shrines, and fishing boats. As a wood-worker, the carpenter is one of the most ancient of Japanese specialists. He developed a complex set of skills, a formidable body of technical knowledge, and a strong tradition of craftsmanship to be seen and appreciated in the historic wood structures of contemporary Japan.1 The first objective of this study of carpenters of Japanese ancestry in Hawaii is to throw light on how the ancient Japanese craft of carpentry was transplanted from Japan to a new social, cultural, and economic environment in Hawaii through the immigration of Japanese craftsmen and the subsequent training of their successors born in Hawaii. Despite its importance for the understanding of economic growth and develop- ment, the craft history of Hawaii has not received the attention it deserves. The second objective of the study is more anthropological in nature and is an attempt to analyze how two distinct manual tool traditions, Japanese and Western, met and merged in Hawaii to form a new composite tool tradition. This aspect of the study falls in a larger field dealing with the history of technology and of tool traditions in general. Carpentry today, both in Japan and in the United States, relies heavily on power rather than hand tools. Also, carpenters tend to be specialized, and construction is to a major degree a matter of assembling prefabricated parts.
    [Show full text]
  • Environmental Impact of Materials in Parks
    Material Choices in Public Playground Development Great Lakes Park Training Institute Tim Madeley, Presenter February 21, 2007 Playground Material Choices Overview •CCA Treated Wood •Recycled Plastic Lumber •Polyvinyl Chloride (PVC) Green Playgrounds CCA wood treatment CCA Treated Wood Green Playgrounds CCA wood treatment CCA = Chromated Copper Arsenate •Chromium 66% •Copper 18% •Arsenate 16% •Applied with pressure treatment process Green Playgrounds CCA wood treatment • CCA wood treatment has been in use since the 1930’s • Majority of treated wood since 1970’s contained CCA • CCA is a registered chemical pesticide Green Playgrounds CCA wood treatment • Growing concern about the possibilit y of arseni c exposure • AiArsenic exposure over time can lead to lung or bladder cancer • In addition to treated wood, CCA exposure occurs naturally in food, air and soil around us all Green Playgrounds CCA wood treatment Actual impact to children is based on several factors: • numbfdthlber of days they play on the CCA treated playgrounds each year • number of years they play on the CCA treated playground • amount of arsenic picked up on their hands while they play • amount of arsenic they ingest from their hands during play Green Playgrounds CCA wood treatment • In June 2001, the Consumer Product Safety Commission (CPSC) was petitioned to ban CCA from use on playground equipment • CCA ppyroducers reached a voluntary agreement with the EPA to end the manufacture of CCA for non- industrial uses by December 31, 2003 Green Playgrounds CCA wood treatment
    [Show full text]
  • Sustainable Trail Bridge Design
    U.S. Department of Transportation United States Department of Agriculture Federal Highway Administration Sustainable Trail Bridge Design Forest National Technology & 2023–2805P–NTDP March 2020 Service Development Program 2300–Recreation Sustainable Trail Bridge Design Notice Ordering Information This document was produced in cooperation with You can order a copy of this document using the the Recreational Trails Program of the U.S. Depart- order form on FHWA’s Recreational Trails Program ment of Transportation’s Federal Highway Adminis- website <http://www.fhwa.dot.gov/environment/rec- tration in the interest of information exchange. The reational_trails/publications/trailpub.cfm> U.S. Government assumes no liability for the use of Fill out the order form and submit it electronically. information contained in this document. Or you may email your request to: [email protected] The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names Or you may mail your request to: appear in this report only because they are consid- Szanca Solutions/FHWA PDC ered essential to the objective of this document. 700 North 3rd Avenue The contents of this report reflect the views of the Altoona, PA 16601 authors, who are responsible for the facts and Fax: 814–239–2156 accuracy of the data presented herein. The con- tents do not necessarily reflect the official policy of Produced by the U.S. Department of Transportation. This report USDA Forest Service does not constitute a standard, specification, or National Technology and Development Program regulation. 5785 Hwy. 10 West Missoula, MT 59808–9361 Phone: 406–329–3978 Fax: 406–329–3719 Email: [email protected] U.S.
    [Show full text]
  • Guide to Plastic Lumber Brenda Platt, Tom Lent and Bill Walsh
    hhealbthy bnuilding network JUNE 2005 The Healthy Building Network’s Guide to Plastic Lumber Brenda Platt, Tom Lent and Bill Walsh A report by The Healthy Building Network. A project of the Institute for Local Self-Reliance 927 15th Street, NW, 4th Fl. — Washington, DC 20005 — www.healthybuilding.net About the Institute for Local Self-Reliance Since 1974, the Institute for Local Self-Reliance (ILSR) has advised citizens, activists, policymakers, and entrepreneurs on how to design and implement state-of-the-art recycling technologies, policies, and programs with a view to strengthening local economies. ILSR’s mission is to provide the conceptual framework, strategies, and information to aid the creation of ecologically sound and economically equitable communities. About the Healthy Building Network A project of ILSR since 2000, the Healthy Building Network (HBN) is a network of national and grassroots organizations dedicated to achieving environmental health and justice goals by transforming the building materials market in order to decrease health impacts to occupants in the built environment – home, school and workplace – while achieving global environmental preservation. HBN’s mission is to shift strategic markets in the building and construction industry away from what we call worst in class building materials, and towards healthier, commercially available alternatives that are competitively priced and equal or superior in performance. Healthy Building Network Institute for Local Self-Reliance 927 15th Street, NW, 4th Floor Washington, DC 20005 phone (202) 898-1610 fax (202) 898-1612 general inquiries, e-mail: [email protected] plastic lumber inquiries, e-mail: [email protected] www.healthybuilding.net Copyright © June 2005 by the Healthy Building Network.
    [Show full text]
  • North American Recycled Plastic Processing Capacity Increases Published January 17, 2020
    NERC‐NEWMOA REGIONAL RECYCLING MARKETS COMMITTEE North American Recycled Plastic Processing Capacity Increases Published January 17, 2020 INTRODUCTION The following is a list of increases in North American capacity to process recyclable plastics into products such as plastic lumber, pellets or resins for end‐markets. These increases were announced or completed in 2017 or later. The list covers facilities that have been publicly identified in either the trade or local press. Details of these new plastic processing facilities tend to have less information than similar announcements of expanded recycled end‐market capacity in the paper industry. For instance, announcements of projected opening dates have not, in many cases, been accompanied by press releases or news stories confirming the opening. In addition, few of the facilities are taking mixed plastics. Instead, they are relying on MRFs or other processors to do the initial resin sorting. Each facility listing includes: Name and whether new or expanded facility location projected processing capacity (input) and/or production capacity (output) in tons per year (TPY) 1 product projected opening date This list will be updated as new capacity is announced or new information received. If you have information about capacity expansions not listed here or corrections to the information on this list, please contact Chaz Miller, Chair, NERC‐NEWMOA Regional Recycling Markets Committee, [email protected], 301‐346‐6507. List of acronyms ABS = acrylonitrile butadiene styrene PET = polyethylene terephthalate EPS = expanded polystyrene PP = polypropylene HDPE = high density polyethylene PVC = poly vinyl chloride LDPE = low density polyethylene RPET = recycled PET LLDPE = linear low‐density polyethylene TPM = tons per month PC = polycarbonate TPY = tons per year 1 Some facilities reported in metric tonnes per year.
    [Show full text]
  • Timber Planking, Puncheon and Boardwalk Structures
    California State Parks Trails Handbook Chapter 15. Timber Planking, Puncheons, and Boardwalks ................................. 15-1 15.1. Best Management Practices ....................................................................... 15-2 15.2. Timber Planking .......................................................................................... 15-2 15.2.1. Applications ............................................................................................ 15-2 15.2.2. Construction ........................................................................................... 15-3 15.3. Puncheons ................................................................................................... 15-4 15.3.1. Applications ............................................................................................ 15-4 15.3.2. Construction ........................................................................................... 15-9 15.3.3. Curved Puncheons ............................................................................... 15-26 15.3.3.1. Parallel Mudsills ........................................................................... 15-31 15.3.3.2. Flared Mudsills ............................................................................. 15-31 15.3.4. Equestrian Puncheons.......................................................................... 15-32 15.4. Boardwalks ................................................................................................ 15-35 15.4.1. Applications .........................................................................................
    [Show full text]
  • Bows, Arrows, Vanes and Arrow Components • Finish: Realtree • Peak Drawweight: 50,60,70Lbs
    BOWS AVAILABLE BY PRO SHOP SHOWROOM SALES ONLY The following bows are available at our Pro Shop location. By Manufacturer’s Agreement, these bows are not available for mail order or wholesale distribution. Complete Lancaster Archery Compound Bow Accessory Packages Add to any Bow Purchase for $119 (A $179.59 Value!) Package Includes: • TruGlo 3 Pin Sight with Light • TruGlo 4-Arrow Loc Down Quiver • 5 Complete Stock Carbon Arrows (Includes Nocks, Points, and Fletching) • Trophy Ridge Quick Shot Whisker Biscuit Rest • CR Braided Bow Sling • Outer Limit Buzz Kill Stabilizer • Rubber String Silencers • Tru Glo Accessory Kit (Red) Silencers, D-loop Material, Peep, Kisser 2770010 2015 COMPOUND BOWS + Bear® Arena 30 + Bear® Color Kits + Bear® Bounty RTH Package + Bear® Cruzer RTH Package • Axle to Axle: 30 1/2” • Colors to Customize your Bear® Bow! • Axle to Axle: 29 3/4” • Axle to Axle: 32” • IBO Speed: 345 fps • Designed for: Motive, Empire, Agenda, Venue, • IBO Speed: 295 fps • IBO Speed: 310 fps • Brace Height: 6.5” Anarchy HC Rumor and Arena • Brace Height: 7” • Brace Height: 6.5” • Let Off: 75% • Kit Includes: Overmold Grip Panel Grips • Let Off: 80% • Let Off: 70% • Mass Weight: 3.8 lbs. (4) Arena Riser Inserts • Mass Weight: 3.2 lbs. • Mass Weight: 3.6 lbs. • Draw Length: 25 1/2-30” (2) Agenda and Venue Riser Inserts • Draw Length: 23 1/2-27” • Draw Length: 12-30” • Peak Draw Weight: 50, 60, 70 lbs. • Peak Draw Weight: 50 lbs. • Peak Draw Weight: 5-70 lbs. (2) String Dampeners Bows, Arrows, Vanes and Arrow Components Bows, Arrows, Vanes • Available RH and LH • Available Colors: Green Orange Red Yellow • Available RH and LH • Available RH and LH • Finish: Realtree Xtra® Green Camo • Finish: Realtree MAX-1® Camo • Finish: Realtree Xtra® Camo 1360213 $24.99 ea.
    [Show full text]
  • Recycled Plastic Lumber (RPL) Products Have Proven to Be Effective Alternatives for Many Applications, Offering High Durability and Requiring Little Maintenance
    Recycled Plastic Lumber A Strategic Assessment of its Production, Use and Future Prospects A study sponsored by: the Environment and Plastics Industry Council (EPIC) and Corporations Supporting Recycling (CSR) January 2003 This report was prepared by David Climenhage, under contract, for the Environment & Plastics Industry Council (EPIC) a council of the Canadian Plastics Industry Association (CPIA), and Corporations Supporting Recycling (CSR). The sponsors can be reached at Environment & Plastics Industry Council (EPIC) 5925 Airport Road, Suite 500, Mississauga, Ontario L4V 1W1 Telephone: 905-678-7748 Website: <www.plastics.ca/epic> Corporations Supporting Recycling (CSR) 26 Wellington Street East, Suite 501, Toronto, Ontario M5E 1S2 Telephone: 416-594-3456 Website: <www.csr.org> Although EPIC and CSR have endeavoured to provide accurate and reliable information to the best of their ability, the sponsors cannot be held liable for any loss or damage resulting from the interpretation or application of this information. This information is intended as a guide for use at your discretion and risk. EPIC or CSR cannot guarantee favourable results and assumes no liability in connection with its use. The contents of this publication, in whole or in part, may not be reproduced or transmitted in any form or by any means without the written permission of the publisher. ii Abstract During the 1990s, a number of technologies emerged to utilize recycled plastics in products designed to replace dimensional wood lumber. Since that time, recycled plastic lumber (RPL) products have proven to be effective alternatives for many applications, offering high durability and requiring little maintenance. Plastic lumber products are resilient, weather-resistant, and impervious to rot, mildew, and termites.
    [Show full text]
  • FOSS® Materials and Motion Module Vocabulary/Glossary Terms NGSS Edition © 2018
    FOSS® Materials and Motion Module Vocabulary/Glossary Terms NGSS Edition © 2018 Investigations Guide Vocabulary Investigation 1: Getting to Know Wood texture above tree absorb waterlogged basswood wood bead up woodworker below break Investigation 2: Getting to Know Paper cedar around change bend communicate blot compare bumpy different cardboard evaporate chipboard fewer construction paper float corner glue corrugated paper grain crease graph drop laminate dry layer facial tissue less fiber material flat mixture flip more flour observe fold particleboard half pine kraft paper plywood mold property newsprint raft over rough paper same paper towel sand papier-mâché sandpaper pulp sawdust recycling screen rolling senses slick shape stiff shavings strip sink submerge smooth tagboard soak tear spread thick strong thin test waxed paper FOSS Materials and Motion Module Vocabulary/Glossary Terms, NGSS Edition © 2018 1 of 3 wet motion wheat paste move pull Investigation 3: Getting to Know Fabric push burlap rocket cloth roll cold rolling conserve ramp corduroy slope denim slowly fabric speed fleece strength hot stop knit least magnet most natural resource nubby recycle reuse ripstop nylon rough satin scratchy seersucker shiny slippery smooth soak soft sparkle organza structure temperature terry cloth texture thread warp waterproof weft woven Investigation 4: Getting Things to Move cause collide collision direction distance effect fast gentle gravity FOSS Materials and Motion Module Vocabulary/Glossary Terms, NGSS Edition © 2018 2 of 3 Science Resources Vocabulary Investigation 1: Getting to Know Wood compare engineer forest observation tree wood Investigation 2: Getting to Know Paper paper pulp sawdust water Investigation 3: Getting to Know Fabric air fabric jute land oil recycle Investigation 4: Getting Things to Move collide direction gravity motion pull push rolling slope speed FOSS Materials and Motion Module Vocabulary/Glossary Terms, NGSS Edition © 2018 3 of 3 .
    [Show full text]
  • Development of Recycled Plastic Composites for Structural
    DEVELOPMENT OF RECYCLED PLASTIC COMPOSITES FOR STRUCTURAL APPLICATIONS FROM CEA PLASTICS by AGRIM BHALLA A thesis submitted to the Graduate School-New Brunswick Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Master of Science Graduate Program in Mechanical & Aerospace Engineering Written under the direction of Thomas Nosker & Mitsunori Denda And approved by _________________________________________________ _________________________________________________ ________________________________________________ New Brunswick, New Jersey October, 2015 ABSTRACT OF THESIS Development of Plastic Composites for Structural Application from CEA Plastics By AGRIM BHALLA Thesis Director: Thomas Nosker & Mitsunori Denda Plastic waste from consumer electronic appliances (CEAs) such as computer and printer parts including Polystyrene (PS), Acrylonitrile Butadiene Styrene (ABS), Polystyrene (PS) and PC/ABS were collected using handheld FTIR Spectrophotometer. The blends of these plastics with High Density Polyethylene (HDPE) are manufactured under special processing conditions in a single screw compounding injection molding machine. The blends are thermoplastics have high stiffness and strength, which may enhance the mechanical properties of HDPE like tensile modulus, ultimate tensile strength, tensile break and tensile yield. These composites have a potential to be used for the future application of recycled plastic lumber, thus replacing the traditional wood lumber. ii ACKNOWLEDGEMENTS I would also like to thank my thesis advisor Prof. Thomas Nosker, of the Material Science & Engineering Department at Rutgers, who introduced me to the project and encouraged me to devote my thesis to it. He has shown immense support, guidance and enthusiasm throughout the course of my thesis. I would first like to thank my thesis co- advisor, Prof. Mitsunori Denda, for giving me the opportunity to work with him.
    [Show full text]
  • AZEK Co Investor Presentation
    Investor Presentation September 2020 Disclaimer Important Notice Some statements made in this presentation may constitute “forward-looking statements” within the meaning of the federal securities laws. Forward-looking statements can be identified by the fact that they do not relate strictly to historical or current facts, but rather are based on current expectations, estimates, assumptions, forecasts or projections about the company’s industry and the company’s business and financial results. Forward-looking statements often include words such as “anticipates,” “estimates,” “expects,” “projects,” “forecasts”, “intends,” “plans,” “believes”, “suggest”, “estimate”, “target”, “should”, “could”, “would”, “may”, “might”, or “will” and words and terms of similar import. Forward-looking statements involve known and unknown risks, uncertainties and other factors, many of which are outside our control. Forward-looking statements include, but are not limited to, statements about our market opportunity and the potential growth of that market, the potential impact of the COVID-19 public health pandemic, our strategy, outcomes and growth prospects, trends in our industry and markets and the competitive environment in which we operate. Actual results, events, developments, performance or achievements may vary materially from those stated in, or implied by, any forward-looking statements, and the assumptions on which forward-looking statements are based may prove to be incorrect. Factors and uncertainties that might cause such differences in such forecasts
    [Show full text]