You Can Build Your Next Project with Lumber That Will Never Decay, Crack, Warp, Or Need fi Nishing
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Types of Plastic and Their Recycle Codes | Quality Logo Products®
7/24/2018 Types of Plastic and Their Recycle Codes | Quality Logo Products® Product Search Your privacy will be protected by redirecting your search to Search Encrypt. Learn More X ALL ABOUT MATERIALS Types of Plastic and Their Recycle Codes Other Lessons in This Course Types of Plastic Plastic is an essential component of many items, including water bottles, combs, and beverage containers. Knowing the difference, as well as the SPI codes, will help you make more informed decisions about recycling. The seven types of plastic include: Polyethylene Terephthalate (PETE or PET) High-Density Polyethylene (HDPE) Polyvinyl Chloride (PVC) Miscellaneous plastics (includes: polycarbonate, polylactide, acrylic, acrylonitrile butadiene, styrene, fiberglass, and nylon) When it comes to promotional giveaways, and even items we use around the house, there is no material more important than plastic. The same can be said for the items we use at the office. Most of our supplies contain at least a little bit of this material. In fact, humans have thus far produced 9.1 billion tons of plastic! For the sake of the environment, it’s important to know the different types of plastic and their uses, as well as the resin identification codes found on each for the sake of recycling. Recycling Codes for Plastic Understanding the different types of plastic can help consumers like you make more informed decisions related to your health and the environment. It’s important to become familiar with an item’s SPI (Society of the Plastics Industry) code, which is also known as a resin identification number and is used to classify the different types of plastic. -
Carpenters of Japanese Ancestry in Hawaii Hisao Goto Kazuko
Craft History and the Merging of Tool Traditions: Carpenters of Japanese Ancestry in Hawaii Hisao Goto Kazuko Sinoto Alexander Spoehr For centuries the Japanese have made extensive use of wood as the main raw material in the construction of houses and their furnishings, temples, shrines, and fishing boats. As a wood-worker, the carpenter is one of the most ancient of Japanese specialists. He developed a complex set of skills, a formidable body of technical knowledge, and a strong tradition of craftsmanship to be seen and appreciated in the historic wood structures of contemporary Japan.1 The first objective of this study of carpenters of Japanese ancestry in Hawaii is to throw light on how the ancient Japanese craft of carpentry was transplanted from Japan to a new social, cultural, and economic environment in Hawaii through the immigration of Japanese craftsmen and the subsequent training of their successors born in Hawaii. Despite its importance for the understanding of economic growth and develop- ment, the craft history of Hawaii has not received the attention it deserves. The second objective of the study is more anthropological in nature and is an attempt to analyze how two distinct manual tool traditions, Japanese and Western, met and merged in Hawaii to form a new composite tool tradition. This aspect of the study falls in a larger field dealing with the history of technology and of tool traditions in general. Carpentry today, both in Japan and in the United States, relies heavily on power rather than hand tools. Also, carpenters tend to be specialized, and construction is to a major degree a matter of assembling prefabricated parts. -
Environmental Impact of Materials in Parks
Material Choices in Public Playground Development Great Lakes Park Training Institute Tim Madeley, Presenter February 21, 2007 Playground Material Choices Overview •CCA Treated Wood •Recycled Plastic Lumber •Polyvinyl Chloride (PVC) Green Playgrounds CCA wood treatment CCA Treated Wood Green Playgrounds CCA wood treatment CCA = Chromated Copper Arsenate •Chromium 66% •Copper 18% •Arsenate 16% •Applied with pressure treatment process Green Playgrounds CCA wood treatment • CCA wood treatment has been in use since the 1930’s • Majority of treated wood since 1970’s contained CCA • CCA is a registered chemical pesticide Green Playgrounds CCA wood treatment • Growing concern about the possibilit y of arseni c exposure • AiArsenic exposure over time can lead to lung or bladder cancer • In addition to treated wood, CCA exposure occurs naturally in food, air and soil around us all Green Playgrounds CCA wood treatment Actual impact to children is based on several factors: • numbfdthlber of days they play on the CCA treated playgrounds each year • number of years they play on the CCA treated playground • amount of arsenic picked up on their hands while they play • amount of arsenic they ingest from their hands during play Green Playgrounds CCA wood treatment • In June 2001, the Consumer Product Safety Commission (CPSC) was petitioned to ban CCA from use on playground equipment • CCA ppyroducers reached a voluntary agreement with the EPA to end the manufacture of CCA for non- industrial uses by December 31, 2003 Green Playgrounds CCA wood treatment -
Sustainable Trail Bridge Design
U.S. Department of Transportation United States Department of Agriculture Federal Highway Administration Sustainable Trail Bridge Design Forest National Technology & 2023–2805P–NTDP March 2020 Service Development Program 2300–Recreation Sustainable Trail Bridge Design Notice Ordering Information This document was produced in cooperation with You can order a copy of this document using the the Recreational Trails Program of the U.S. Depart- order form on FHWA’s Recreational Trails Program ment of Transportation’s Federal Highway Adminis- website <http://www.fhwa.dot.gov/environment/rec- tration in the interest of information exchange. The reational_trails/publications/trailpub.cfm> U.S. Government assumes no liability for the use of Fill out the order form and submit it electronically. information contained in this document. Or you may email your request to: [email protected] The U.S. Government does not endorse products or manufacturers. Trademarks or manufacturers’ names Or you may mail your request to: appear in this report only because they are consid- Szanca Solutions/FHWA PDC ered essential to the objective of this document. 700 North 3rd Avenue The contents of this report reflect the views of the Altoona, PA 16601 authors, who are responsible for the facts and Fax: 814–239–2156 accuracy of the data presented herein. The con- tents do not necessarily reflect the official policy of Produced by the U.S. Department of Transportation. This report USDA Forest Service does not constitute a standard, specification, or National Technology and Development Program regulation. 5785 Hwy. 10 West Missoula, MT 59808–9361 Phone: 406–329–3978 Fax: 406–329–3719 Email: [email protected] U.S. -
Guide to Plastic Lumber Brenda Platt, Tom Lent and Bill Walsh
hhealbthy bnuilding network JUNE 2005 The Healthy Building Network’s Guide to Plastic Lumber Brenda Platt, Tom Lent and Bill Walsh A report by The Healthy Building Network. A project of the Institute for Local Self-Reliance 927 15th Street, NW, 4th Fl. — Washington, DC 20005 — www.healthybuilding.net About the Institute for Local Self-Reliance Since 1974, the Institute for Local Self-Reliance (ILSR) has advised citizens, activists, policymakers, and entrepreneurs on how to design and implement state-of-the-art recycling technologies, policies, and programs with a view to strengthening local economies. ILSR’s mission is to provide the conceptual framework, strategies, and information to aid the creation of ecologically sound and economically equitable communities. About the Healthy Building Network A project of ILSR since 2000, the Healthy Building Network (HBN) is a network of national and grassroots organizations dedicated to achieving environmental health and justice goals by transforming the building materials market in order to decrease health impacts to occupants in the built environment – home, school and workplace – while achieving global environmental preservation. HBN’s mission is to shift strategic markets in the building and construction industry away from what we call worst in class building materials, and towards healthier, commercially available alternatives that are competitively priced and equal or superior in performance. Healthy Building Network Institute for Local Self-Reliance 927 15th Street, NW, 4th Floor Washington, DC 20005 phone (202) 898-1610 fax (202) 898-1612 general inquiries, e-mail: [email protected] plastic lumber inquiries, e-mail: [email protected] www.healthybuilding.net Copyright © June 2005 by the Healthy Building Network. -
North American Recycled Plastic Processing Capacity Increases Published January 17, 2020
NERC‐NEWMOA REGIONAL RECYCLING MARKETS COMMITTEE North American Recycled Plastic Processing Capacity Increases Published January 17, 2020 INTRODUCTION The following is a list of increases in North American capacity to process recyclable plastics into products such as plastic lumber, pellets or resins for end‐markets. These increases were announced or completed in 2017 or later. The list covers facilities that have been publicly identified in either the trade or local press. Details of these new plastic processing facilities tend to have less information than similar announcements of expanded recycled end‐market capacity in the paper industry. For instance, announcements of projected opening dates have not, in many cases, been accompanied by press releases or news stories confirming the opening. In addition, few of the facilities are taking mixed plastics. Instead, they are relying on MRFs or other processors to do the initial resin sorting. Each facility listing includes: Name and whether new or expanded facility location projected processing capacity (input) and/or production capacity (output) in tons per year (TPY) 1 product projected opening date This list will be updated as new capacity is announced or new information received. If you have information about capacity expansions not listed here or corrections to the information on this list, please contact Chaz Miller, Chair, NERC‐NEWMOA Regional Recycling Markets Committee, [email protected], 301‐346‐6507. List of acronyms ABS = acrylonitrile butadiene styrene PET = polyethylene terephthalate EPS = expanded polystyrene PP = polypropylene HDPE = high density polyethylene PVC = poly vinyl chloride LDPE = low density polyethylene RPET = recycled PET LLDPE = linear low‐density polyethylene TPM = tons per month PC = polycarbonate TPY = tons per year 1 Some facilities reported in metric tonnes per year. -
Timber Planking, Puncheon and Boardwalk Structures
California State Parks Trails Handbook Chapter 15. Timber Planking, Puncheons, and Boardwalks ................................. 15-1 15.1. Best Management Practices ....................................................................... 15-2 15.2. Timber Planking .......................................................................................... 15-2 15.2.1. Applications ............................................................................................ 15-2 15.2.2. Construction ........................................................................................... 15-3 15.3. Puncheons ................................................................................................... 15-4 15.3.1. Applications ............................................................................................ 15-4 15.3.2. Construction ........................................................................................... 15-9 15.3.3. Curved Puncheons ............................................................................... 15-26 15.3.3.1. Parallel Mudsills ........................................................................... 15-31 15.3.3.2. Flared Mudsills ............................................................................. 15-31 15.3.4. Equestrian Puncheons.......................................................................... 15-32 15.4. Boardwalks ................................................................................................ 15-35 15.4.1. Applications ......................................................................................... -