Conifers the World of Conifers Is Vast

Total Page:16

File Type:pdf, Size:1020Kb

Conifers the World of Conifers Is Vast 33 El Pueblo Road, Scotts Valley, CA 95066 (831) 438-4106 www.ScarboroughGardens.com Conifers The world of conifers is vast. Though it includes such familiar favorites as the juniper and Redwood tree, there are also many unusual selections that we love to stock. Collectors, Train Garden Enthusiast and Bonsai Specialist will all hopefully find varieties suitable for their hobby. If you’ve never been a “juniper” fan, don’t disregard this category. Our selections have characteristics that include blue, yellow, lime green, or deep green foliage color. Textures are often soft and billowy. Growth forms range from globes, mounds, pyramids, narrow columns, and flat groundcovers to tall stately trees. Visit our nursery to see the possibilities. However, our stock changes rapidly so call ahead if you need a specific variety. Abies cephalonica ‘Meyer’s Dwarf’ Chamaecyparis lawsoniana ‘Barry’s Silver’ Abies lasiocarpa Chamaecyparis lawsoniana ‘Elwoodii’ Abies pinsapo ‘Aurea’ Chamaecyparis lawsoniana ‘Golden King’ Abies pinsapo ‘Hortsmann Nana’ Chamaecyparis lawsoniana ‘Golden Showers’ Chamaecyparis lawsoniana ‘Ivonne’ Athrotaxis cupressiodes Chamaecyparis lawsoniana ‘Minima’ Chamaecyparis lawsoniana ‘Rimpelaar’ Calocedrus decurrens Chamaecyparis lawsoniana ‘Silberster’ Calocedrus decurrens ‘Aureovariegata’ Chamaecyparis lawsoniana ‘Snow White’ Calocedrus ‘Maupin Glow’ Chamaecyparis lawsoniana ‘Treasure Island’ Chamaecypairs lawsoniana ‘Van Pelt Blue’ Cedrus atlantica ‘Glauca Fastigata’ Chamaecyparis meroke Cedrus atlantica glauca ‘Pendula’ Chamaecyparis nootkatensis ‘Nana’ Cedrus deodora Chamaecyparis obtusa ‘Kosteri’ Cedrus deodora ‘Blue Ball’ Chamaecyparis obtusa Cedrus deodora ‘Cream Puff’ Chamaecyparis obtusa ‘Alaska’ Cedrus deodora ‘Divinely Blue’ Chamaecyparis obtusa ‘Aurea Spiralis’ Cedrus deodora ‘Feeling Blue’ Chamaecyparis obtusa ‘Blue Feathers’ Cedrus deodora ‘Gold Cone’ Chamaecyparis obtusa ‘Fern Spray Gold’ Cedrus deodora ‘Hollandia’ Chamaecyparis obtusa ‘Flambelliformis’ Cedrus deodora ‘Pygmae’ Chamaecyparis obtusa ‘Gold Fern’ Cedrus deodora ‘Silver Mist’ Chamaecyparis obtusa ‘Gold Sprite’ Cedrus libani ‘Compute de Dijon’ Chamaecyparis obtusa ‘Gracilis’ Cedrus libani ‘Green Knight’ Chamaecyparis obtusa ‘Lemon Twist’ Chamaecyparis obtusa ‘Little Annie’ Cephalotaxus harrintonia ‘Drupacea’ Chamaecyparis obtusa ‘Maresii’ Cephalotaxus harrintonia ‘Fastigata’ Chamaecyparis obtusa ‘Nana’ Cephalotaxus harrintonia ‘Korean Gold’ Chamaecyparis obtusa ‘Nana Gracilis’ Chamaecyparis obtusa ‘Nana Lutea’ Chamaecyparis obtusa ‘Rainbow’ Conifers 080309 1 Chamaecyparis obtuse ‘Saffron Spray’ Cupressus arizonica Chamaecyparis obtusa ‘Spiralis’ Cupressus arizonica ‘Gold Pyramid’ Chamaecyparis obtusa ‘Split Rock’ Cupressus cashmeriana Chamaecyparis obtusa ‘Tsatsumi’ Cupressus glabra ‘Raywoods Weeper’ Chamaecyparis obtusa ‘Verdoni’ Cupressus macrocarpa ‘Citrododes’ Chamaecyparis obtuse ‘Verkades Golden’ Cupressus macrophylla Chamaecyparis obtusa ‘Yellow Tip’ Cupressus macrophylla ‘Fine Gold’ Chamaecyparis pisifera ‘Baby Blue’ Cupressus macro.‘Greenstead Magnificent’ Chamaecyparis pisifera ‘Bonce’ Cupressus sempervirens ‘Glauca’ Chamaecyparis pisifera ‘Bright Gold’ Chamaecypairs pisifera ‘Cumulus’ Diselma archerii Chamaecyparis pisifera ‘Cyano-viridis’ Chamaecyparis pisifera ‘Filifera Aureova’ Fokienia hodginsii Chamaecyparis pisifera ‘Golden Charm’ Chamaecyparis pisifera ‘Golden Sands’ Juniperus chinensis ‘Old Gold’ Chamaecyparis pisifera ‘Gold Pin Cushion’ Juniperus chinensis ‘Shimpaku’ Chamaecyparis pisifera ‘Mops’ Juniperus communis ‘Effusa’ Chamaecyparis pisifera ‘Snow’ Juniperus communis ‘Little Pyramid’ Chamaecyparis pisifera ‘Sungold’ Juniperus communis ‘Miniature’ Chamaecyparis pisifera ‘Tea Garden’ Juniperus conferta ‘Blue Pacific’ Chamaecyparis pisifera ‘True Blue’ Juniperus horiz. ‘Lime Glow’ Chamaecyparis pisifera ‘Tsukumo’ Juniperus horiz. ‘Mother Load’ Chamaecyparis pisifera ‘White Beauty’ Juniperus X media ‘Daub’s Frost’ Chamaecyparis pisifera ‘White Pygmy’ Juniperus procumbens ‘Nana’ Chamaecyparis thyoides ‘Heatherbun’ Juniperus scopulorum ‘Tolleson’s ‘Blue Weeping’ Chamaecyparis thyoides ‘Red Star’ Juniperus torulosa Chamaecyparis thyoides ‘Top Point’ Juniperus ‘Gold Lace’ Cryptomeria ‘Sekka Gaku’ Larix decidua ‘Newport Blue’ Cryptomeria elegens ‘Nana’ Larix gmeli ‘Romberg Park’ Cryptomeria jap. ‘Birodo’ Larix kaempferi ‘Blue Rabbit’ Cryptomeria jap. ‘Black Dragon’ Larix kaempferi ‘Diana’ Cryptomeria jap. ‘Knaptonensis’ Cryptomeria jap. ‘Koshi’ Metasequoia glyptostroioides Cryptomeria jap. ‘Little Diamond’ Cryptomeria jap. ‘Mushroom’ Picea abies ‘Lanham’s Beehive’ Cryptomeria jap. ‘Nana’ Picea abies ‘Rubra Spicata’ Cryptomeria jap. ‘Pygmea’ Picea brewiani’ Cryptomeria jap. ‘Sekkan Sugi’ Picea brewiania ‘Wustemeyer’ Cryptomeria jap. ‘Spiraliter Falcata’ Picea engelmannii ‘Bush’s Lace’ Cryptomeria jap. ‘Tansu’ Picea glauca ‘Blue Select’ Cryptomeria jap. ‘Tenson’ Picea glauca ‘Conica’ Cryptomeria jap. ‘Vilmoriana’ Picea glauca ‘Densata’ Cryptomeria jap. ‘Yellow Twigs’ Picea glauca ‘Echiniformis’ Picea glauca ‘Globosa’ Cunninghamia konishii ‘Coolwyn Comp’ Picea glauca ‘Hobbit’ Conifers 080309 2 Picea glauca ‘Jean’s Dilly’ Pinus sylvestris ‘Saxatilis’ Picea glauca ‘Rainbow’s End’ Pinus sylvestris ‘Sentinel’ Picea glauca ‘Sander’s Blue’ Pinus wallichiana ‘Densa’ Picea glauca ‘Yukon’s Blue’ Pinus wallichiana ‘Zebrina’ Picea pungens ‘Fat Albert’ Pinus yunnamensis Picea pungens glauca Picea pungens ‘Glauca Procumbens’ Podocarpos alpinus ‘Red Tip’ Picea pungens ‘Hoopsi’ Podocarpos lawrencii ‘Purple King’ Picea pungens ‘Mrs. Cesarini’ Picea pungens ‘Sester Dwarf’ Pseudotsuga men. ‘Hornecker’ Piccea pungens ‘St. Mary’s Broom’ Picea sitchensis ‘Renken’ Sciadopitys verticillata Pinus cembra Sequoia sempervirens ‘Aptos Blue’ Pinus cembra ‘Chalet’ Sequoia sempervirens ‘Fioli’ Pinus cembra ‘Glauca Compacta’ Sequoia sempervirens ‘Kelly’s Prostrate’ Pinus cembra ‘Klein’ Sequoia sempervirens ‘Loma Prieta Spire’ Pinus conto. ‘Taylor’s Sunburst’ Sequoia sempervirens ‘Santa Cruz’ Pinus densiflora ‘Jane Kluis’ Sequoia sempervirens ‘Simpson Silver’ Pinus densiflora ‘Low Glow’ Sequoia sempervirens ‘Soquel’ Pinus densiflora ‘Oculus Draconis’ Pinus densiflora ‘Pendula’ Sequoiadendron gigatean Pinus flexis ‘Extra Blue’ Sequoiadendron gigantean ‘Glauca’ Pinus flexis ‘Vanderwolf Pyramid’ Sequoiadendron gigantean ‘Powder Blue’ Pinus leucodermis ‘Compact Gem’ Pinus leucodermis ‘Mint Truffle’ Taxus baccata ‘Watnog Gold’ Pinus mugo ‘Mugo’ Pinus mugo. ‘Donna’s Mini’ Thuja occidentalis ‘Danica’ Pinus mugo ‘Paul’s Dwarf’ Thuja occidentalis ‘Emerald Smaargad’ Pinus mugo ‘Pumilo’ Thuja occidentalis ‘Golden Globe’ Pinus mugo ‘Sherwood Compact’ Thuja occidentalis ‘Golden Tuffet’ Pinus nIgra Thuja occidentalis ‘Hetz’s Midget’ Pinus nIgra ‘Carsten Wintergold’ Thuja occidentalis ‘Rheingold’ Pinus nIgra ‘Comet’ Thuja occidentalis ‘Smaragd’ Pinus nigra ‘Sychrov’ Thuja occidentalis ‘Yellow Ribbon’ Pinus parvifolia ‘Adcocks Dwarf’ Thuja plicata ‘Cuprea’ Pinus parvifolia ‘Gimborn’s Ideal’ Thuja plicata ‘Whipcord’ Pinus parvifolia ‘Goldilocks’ Thuja plicata ‘Zabrina’ Pinus parvifolia ‘Ko Raku’ Pinus strobus Thujopsis dolobrata ‘Nana’ Pinus strobus ‘Beran’ Thujopsis dolobrata ‘Varigata’ Pinus strobus ‘Blue Shag’ Pinus strobus ‘Contorta’ Pinus strobus ‘Horsford’ Pinus strobus ‘Pendula’ Pinus strobus ‘Sea Urchin’ Conifers 080309 3.
Recommended publications
  • Department of Planning and Zoning
    Department of Planning and Zoning Subject: Howard County Landscape Manual Updates: Recommended Street Tree List (Appendix B) and Recommended Plant List (Appendix C) - Effective July 1, 2010 To: DLD Review Staff Homebuilders Committee From: Kent Sheubrooks, Acting Chief Division of Land Development Date: July 1, 2010 Purpose: The purpose of this policy memorandum is to update the Recommended Plant Lists presently contained in the Landscape Manual. The plant lists were created for the first edition of the Manual in 1993 before information was available about invasive qualities of certain recommended plants contained in those lists (Norway Maple, Bradford Pear, etc.). Additionally, diseases and pests have made some other plants undesirable (Ash, Austrian Pine, etc.). The Howard County General Plan 2000 and subsequent environmental and community planning publications such as the Route 1 and Route 40 Manuals and the Green Neighborhood Design Guidelines have promoted the desirability of using native plants in landscape plantings. Therefore, this policy seeks to update the Recommended Plant Lists by identifying invasive plant species and disease or pest ridden plants for their removal and prohibition from further planting in Howard County and to add other available native plants which have desirable characteristics for street tree or general landscape use for inclusion on the Recommended Plant Lists. Please note that a comprehensive review of the street tree and landscape tree lists were conducted for the purpose of this update, however, only
    [Show full text]
  • Distribution of Living Cupressaceae Reflects the Breakup of Pangea
    Distribution of living Cupressaceae reflects the breakup of Pangea Kangshan Maoa,b,c,1, Richard I. Milnea,b,c,1, Libing Zhangd,e, Yanling Penga, Jianquan Liua,2, Philip Thomasc, Robert R. Millc, and Susanne S. Rennerf aState Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, People’s Republic of China; bInstitute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JH, United Kingdom; cRoyal Botanic Garden Edinburgh, Edinburgh EH3 5LR, Scotland, United Kingdom; dChengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, People’s Republic of China; eMissouri Botanical Garden, St. Louis, MO 63166; fSystematic Botany and Mycology, Department of Biology, University of Munich, 80638 Munich, Germany Edited by Charles C. Davis, Harvard University, Cambridge, MA, and accepted by the Editorial Board March 21, 2012 (received for review September 2, 2011) Most extant genus-level radiations in gymnosperms are of Oligocene occur on all continents except Antarctica and comprise 162 species age or younger, reflecting widespread extinction during climate in 32 genera (see Table S2 for subfamilies, genera, and species cooling at the Oligocene/Miocene boundary [∼23 million years ago numbers). The family has a well-studied fossil record going back (Ma)]. Recent biogeographic studies have revealed many instances of to the Jurassic (32–36). Using ancient fossils to calibrate genetic long-distance dispersal in gymnospermsaswellasinangiosperms. distances in molecular phylogenies can be problematic, because the Acting together, extinction and long-distance dispersal are likely to older a fossil is, the more likely it is to represent an extinct lineage erase historical biogeographic signals.
    [Show full text]
  • Spatial Distribution and Historical Dynamics of Threatened Conifers of the Dalat Plateau, Vietnam
    SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM A thesis Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Master of Arts By TRANG THI THU TRAN Dr. C. Mark Cowell, Thesis Supervisor MAY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled SPATIAL DISTRIBUTION AND HISTORICAL DYNAMICS OF THREATENED CONIFERS OF THE DALAT PLATEAU, VIETNAM Presented by Trang Thi Thu Tran A candidate for the degree of Master of Arts of Geography And hereby certify that, in their opinion, it is worthy of acceptance. Professor C. Mark Cowell Professor Cuizhen (Susan) Wang Professor Mark Morgan ACKNOWLEDGEMENTS This research project would not have been possible without the support of many people. The author wishes to express gratitude to her supervisor, Prof. Dr. Mark Cowell who was abundantly helpful and offered invaluable assistance, support, and guidance. My heartfelt thanks also go to the members of supervisory committees, Assoc. Prof. Dr. Cuizhen (Susan) Wang and Prof. Mark Morgan without their knowledge and assistance this study would not have been successful. I also wish to thank the staff of the Vietnam Initiatives Group, particularly to Prof. Joseph Hobbs, Prof. Jerry Nelson, and Sang S. Kim for their encouragement and support through the duration of my studies. I also extend thanks to the Conservation Leadership Programme (aka BP Conservation Programme) and Rufford Small Grands for their financial support for the field work. Deepest gratitude is also due to Sub-Institute of Ecology Resources and Environmental Studies (SIERES) of the Institute of Tropical Biology (ITB) Vietnam, particularly to Prof.
    [Show full text]
  • Growth and Colonization of Western Redcedar by Vesicular-Arbuscular Mycorrhizae in Fumigated and Nonfumigated Nursery Beds
    Tree Planter's Notes, Volume 42, No. 4 (1991) Growth and Colonization of Western Redcedar by Vesicular-Arbuscular Mycorrhizae in Fumigated and Nonfumigated Nursery Beds S. M. Berch, E. Deom, and T. Willingdon Assistant professor and research assistant, Department of Soil Science, University of British Columbia, Vancouver, BC, and manager, Surrey Nursery, British Columbia Ministry of Forests, Surrey, BC Western redcedar (Thuja plicata Donn ex D. Don) VAM. Positive growth responses of up to 20 times the seedlings were grown in a bareroot nursery bed that had nonmycorrhizal controls occurred under conditions of limited been fumigated with methyl bromide. Seedlings grown in soil phosphorus. Incense-cedar, redwood, and giant sequoia fumigated beds were stunted and had purple foliage. seedlings in northern California nursery beds are routinely Microscopic examination showed that roots from these inoculated with Glomus sp. (Adams et al. 1990), as seedlings were poorly colonized by mycorrhizae, and only by experience has shown that the absence of VAM after soil fine vesicular-arbuscular mycorrhizae. In contrast, roots from fumigation leads to phosphorus deficiency and poor growth. seedlings grown in non-fumigated beds had larger shoots and When western redcedars in fumigated transplant beds at green foliage and were highly colonized by both fine and the British Columbia Ministry of Forest's Surrey Nursery coarse vesicular-arbuscular mycorrhizae. Tree Planters' began to show signs of phosphorus deficiency, a deficiency Notes 42(4):14-16; 1991. of mycorrhizal colonization was suspected. Many studies have demonstrated improved P status of VAM-inoculated Species of cypress (Cupressaceae) and yew plants (see Harley and Smith 1983).
    [Show full text]
  • Chamaecyparis Lawsoniana: Lawson Falsecypress1 Edward F
    ENH313 Chamaecyparis lawsoniana: Lawson Falsecypress1 Edward F. Gilman and Dennis G. Watson2 Introduction General Information Often seen at 40 to 60 feet tall by 15 feet wide in its culti- Scientific name: Chamaecyparis lawsoniana vated form, this North American native can soar to heights Pronunciation: kam-eh-SIP-uh-riss law-so-nee-AY-nuh of 100 to 150 feet in the wild. The massive, thick trunk and Common name(s): Lawson falsecypress, Port Orford cedar formal, upright, conical silhouette is softened by the gently Family: Cupressaceae weeping tips of the short, upright branches. The flattened, USDA hardiness zones: 5B through 7B (Fig. 2) dark blue-green branchlets have a delicate, almost fern-like Origin: native to North America appearance, and are nicely complemented by the rough, Invasive potential: little invasive potential deeply furrowed, reddish-brown bark. Available in a wide Uses: specimen; screen; bonsai variety of forms and bluish foliage colors, Lawson falsecy- Availability: not native to North America press still remains today an important timber trees from the Pacific Northwest. But it is rare in the nursery trade and probably not well adapted to most landscapes. Figure 2. Range Description Height: 40 to 60 feet Spread: 15 to 25 feet Crown uniformity: symmetrical Figure 1. Mature Chamaecyparis lawsoniana: Lawson Falsecypress 1. This document is ENH313, one of a series of the Environmental Horticulture, UF/IFAS Extension. Original publication date November 1993. Reviewed May 2014. Visit the EDIS website at http://edis.ifas.ufl.edu. 2. Edward F. Gilman, professor, Environmental Horticulture Department; Dennis G. Watson, former associate professor, Agricultural Engineering Department, UF/IFAS Extension, Gainesville FL 32611.
    [Show full text]
  • Contributions to the Life-History of Tetraclinis Articu- Lata, Masters, with Some Notes on the Phylogeny of the Cupressoideae and Callitroideae
    Contributions to the Life-history of Tetraclinis articu- lata, Masters, with some Notes on the Phylogeny of the Cupressoideae and Callitroideae. BY W. T. SAXTON, M.A., F.L.S., Professor of Botany at the Ahmedabad Institute of Science, India. With Plates XLIV-XLVI and nine Figures in the Text. INTRODUCTION. HE Gum Sandarach tree of Morocco and Algeria has been well known T to botanists from very early times. Some account of it is given by Hooker and Ball (20), who speak of the beauty and durability of the wood, and state that they consider the tree to be probably correctly identified with the Bvlov of the Odyssey (v. 60),1 and with the Ovlov and Ovia of Theo- phrastus (' Hist. PI.' v. 3, 7)/ as well as, undoubtedly, with the Citrus wood of the Romans. The largest trees met with by them, growing in an un- cultivated state, were about 30 feet high. The resin, known as sandarach, is stated to be collected by the Moors and exported to Europe, where it is used as a varnish. They quote Shaw (49 a and b) as having described and figured the tree under the name of Thuja articulata, in his ' Travels in Barbary'; this statement, however, is not accurate. In both editions of the work cited the plant is figured and described as ' Cupressus fructu quadri- valvi, foliis Equiseti instar articulatis '. Some interesting particulars of the use of the timber are given by Hansen (19), who also implies that the embryo has from three to six cotyledons. Both Hooker and Ball, and Hansen, followed by almost all others who have studied the plant, speak of it as Callitris qtiadrivalvis.
    [Show full text]
  • Extinction, Transoceanic Dispersal, Adaptation and Rediversification
    Turnover of southern cypresses in the post-Gondwanan world: Title extinction, transoceanic dispersal, adaptation and rediversification Crisp, Michael D.; Cook, Lyn G.; Bowman, David M. J. S.; Author(s) Cosgrove, Meredith; Isagi, Yuji; Sakaguchi, Shota Citation The New phytologist (2019), 221(4): 2308-2319 Issue Date 2019-03 URL http://hdl.handle.net/2433/244041 © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust; This is an open access article under the terms Right of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. Type Journal Article Textversion publisher Kyoto University Research Turnover of southern cypresses in the post-Gondwanan world: extinction, transoceanic dispersal, adaptation and rediversification Michael D. Crisp1 , Lyn G. Cook2 , David M. J. S. Bowman3 , Meredith Cosgrove1, Yuji Isagi4 and Shota Sakaguchi5 1Research School of Biology, The Australian National University, RN Robertson Building, 46 Sullivans Creek Road, Acton (Canberra), ACT 2601, Australia; 2School of Biological Sciences, The University of Queensland, Brisbane, Qld 4072, Australia; 3School of Natural Sciences, The University of Tasmania, Private Bag 55, Hobart, Tas 7001, Australia; 4Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan; 5Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan Summary Author for correspondence: Cupressaceae subfamily Callitroideae has been an important exemplar for vicariance bio- Michael D. Crisp geography, but its history is more than just disjunctions resulting from continental drift. We Tel: +61 2 6125 2882 combine fossil and molecular data to better assess its extinction and, sometimes, rediversifica- Email: [email protected] tion after past global change.
    [Show full text]
  • Seiridium Canker of Cypress Trees in Arizona Jeff Schalau
    ARIZONA COOPERATIVE E TENSION AZ1557 January 2012 Seiridium Canker of Cypress Trees in Arizona Jeff Schalau Introduction Leyland cypress (x Cupressocyparis leylandii) is a fast- growing evergreen that has been widely planted as a landscape specimen and along boundaries to create windbreaks or privacy screening in Arizona. The presence of Seiridium canker was confirmed in Prescott, Arizona in July 2011 and it is suspected that the disease occurs in other areas of the state. Seiridium canker was first identified in California’s San Joaquin Valley in 1928. Today, it can be found in Europe, Asia, New Zealand, Australia, South America and Africa on plants in the cypress family (Cupressaceae). Leyland cypress, Monterey cypress, (Cupressus macrocarpa) and Italian cypress (C. sempervirens) are highly susceptible and can be severely impacted by this disease. Since Leyland and Italian cypress have been widely planted in Arizona, it is imperative that Seiridium canker management strategies be applied and suitable resistant tree species be recommended for planting in the future. The Pathogen Seiridium canker is known to be caused by three different fungal species: Seiridium cardinale, S. cupressi and S. unicorne. S. cardinale is the most damaging of the three species and is SCHALAU found in California. S. unicorne and S. cupressi are found in the southeastern United States where the primary host is JEFF Leyland cypress. All three species produce asexual fruiting Figure 1. Leyland cypress tree with dead branch (upper left) and main leader bodies (acervuli) in cankers. The acervuli produce spores caused by Seiridium canker. (conidia) which spread by water, human activity (pruning and transport of infected plant material), and potentially insects, birds and animals to neighboring trees where new Symptoms and Signs infections can occur.
    [Show full text]
  • Metasequoia Dawn Redwood a Truly Beautiful Tree
    Metasequoia Dawn Redwood A Truly Beautiful Tree Metasequoia glyptostroboides is considered to be a living fossil as it is the only remaining species of a genus that was widespread in the geological past. In 1941 it was discovered in Hubei, China. In 1948 the Arnold Arboretum of Harvard University sent an expedition to collect seed, which was distributed to universities and botanical gardens worldwide for growth trials. Seedlings were raised in New Zealand and trees can be seen in Christchurch Botanical Gardens, Eastwoodhill and Queens Gardens, Nelson. A number of natural Metasequoia populations exist in the wetlands and valleys of Lichuan County, Hubei, mostly as small groups. The largest contains 5400 trees. It is an excellent tall growing deciduous tree to complement evergreens in wetlands, stream edge plantings to control slips, and to prevent erosion in damp valley bottoms where other forestry trees fail to grow. Spring growth is a fresh bright green and in autumn the foliage turns a A fast growing deciduous conifer, red coppery brown making a great display. with a straight trunk, numerous It is also a most attractive winter branch silhouette. While the foliage is a similiar colour in autumn to that of swamp cypress (Taxodium), it is a branches and a tall conical crown, much taller erect growing tree, though both species thrive in moist soil growing to 45 metres in height and conditions. We import our seed from China and the uniformity of the seedling one metre in diameter. crop is most impressive. The timber has been used in boat building. Abies vejari 20 years old on left 14 years old on right Abies Silver Firs These dramatic conical shaped conifers make a great statement in the landscape, long-lived and withstanding the elements.
    [Show full text]
  • Chamaecyparis Thyoides)
    Disease Resistance and Aesthetic Evaluation of Atlantic White Cedar (Chamaecyparis thyoides) David R. Sandrock, Michael A. Dirr and Jean Williams-Woodward Horticulture and Plant Pathology - Athens, UGA Since the original cross in 1888, Leyland cypress (xCupressocyparis leylandii) has been planted worldwide. Its rapid upright growth and evergreen foliage make it a popular choice among consumers for windbreaks, hedges, screens, specimens and Christmas trees. However, Leyland cypress is susceptible to at least two fungal pathogens, Seiridium and Botryosphaeria. These pathogens cause canker development which leads to the death of branches and eventually kills the plant. This it is necessary to search for an alternative needle evergreen with similar aesthetic characteristics but greater disease resistance. A possible plant for this role is Atlantic white cedar (Chamaecyparis thyoides). My research consists of two objectives. The first is to screen Atlantic white cedar clones for resistance to Seiridium and Botryosphaeria. The second objective is to select superior taxa of Atlantic white cedar for production based on disease resistance, aesthetic characteristics, growth habits and performance in both field and nursery conditions. The disease screening experiment was initialed in the Fall of 1998. Seiridium, Botryodiplodia and Fusicoccum were isolated from infected branches of Leyland cypress and grown in pure culture. Plants for testing were vegetatively propagated during Fall, 1997. The disease resistance screening experiment consisted of 4 completely randomized blocks of 60 one- gallon plants. Each block contained 10 single-plant replications of 5 clones of Atlantic white cedar and one Leyland cypress. Plants were wounded with a wood rasp at a point on the stem measuring approximately 1 cm in diameter.
    [Show full text]
  • Cupressaceae Calocedrus Decurrens Incense Cedar
    Cupressaceae Calocedrus decurrens incense cedar Sight ID characteristics • scale leaves lustrous, decurrent, much longer than wide • laterals nearly enclosing facials • seed cone with 3 pairs of scale/bract and one central 11 NOTES AND SKETCHES 12 Cupressaceae Chamaecyparis lawsoniana Port Orford cedar Sight ID characteristics • scale leaves with glaucous bloom • tips of laterals on older stems diverging from branch (not always too obvious) • prominent white “x” pattern on underside of branchlets • globose seed cones with 6-8 peltate cone scales – no boss on apophysis 13 NOTES AND SKETCHES 14 Cupressaceae Chamaecyparis thyoides Atlantic white cedar Sight ID characteristics • branchlets slender, irregularly arranged (not in flattened sprays). • scale leaves blue-green with white margins, glandular on back • laterals with pointed, spreading tips, facials closely appressed • bark fibrous, ash-gray • globose seed cones 1/4, 4-5 scales, apophysis armed with central boss, blue/purple and glaucous when young, maturing in fall to red-brown 15 NOTES AND SKETCHES 16 Cupressaceae Callitropsis nootkatensis Alaska yellow cedar Sight ID characteristics • branchlets very droopy • scale leaves more or less glabrous – little glaucescence • globose seed cones with 6-8 peltate cone scales – prominent boss on apophysis • tips of laterals tightly appressed to stem (mostly) – even on older foliage (not always the best character!) 15 NOTES AND SKETCHES 16 Cupressaceae Taxodium distichum bald cypress Sight ID characteristics • buttressed trunks and knees • leaves
    [Show full text]
  • Guideline 410 Prohibited Plant List
    VENTURA COUNTY FIRE PROTECTION DISTRICT FIRE PREVENTION BUREAU 165 DURLEY AVENUE CAMARILLO, CA 93010 www.vcfd.org Office: 805-389-9738 Fax: 805-388-4356 GUIDELINE 410 PROHIBITED PLANT LIST This list was first published by the VCFD in 2014. It has been updated as of April 2019. It is intended to provide a list of plants and trees that are not allowed within a new required defensible space (DS) or fuel modification zone (FMZ). It is highly recommended that these plants and trees be thinned and or removed from existing DS and FMZs. In certain instances, the Fire Department may require the thinning and or removal. This list was prepared by Hunt Research Corporation and Dudek & Associates, and reviewed by Scott Franklin Consulting Co, VCFD has added some plants and has removed plants only listed due to freezing hazard. Please see notes after the list of plants. For questions regarding this list, please contact the Fire Hazard reduction Program (FHRP) Unit at 085-389-9759 or [email protected] Prohibited plant list:Botanical Name Common Name Comment* Trees Abies species Fir F Acacia species (numerous) Acacia F, I Agonis juniperina Juniper Myrtle F Araucaria species (A. heterophylla, A. Araucaria (Norfolk Island Pine, Monkey F araucana, A. bidwillii) Puzzle Tree, Bunya Bunya) Callistemon species (C. citrinus, C. rosea, C. Bottlebrush (Lemon, Rose, Weeping) F viminalis) Calocedrus decurrens Incense Cedar F Casuarina cunninghamiana River She-Oak F Cedrus species (C. atlantica, C. deodara) Cedar (Atlas, Deodar) F Chamaecyparis species (numerous) False Cypress F Cinnamomum camphora Camphor F Cryptomeria japonica Japanese Cryptomeria F Cupressocyparis leylandii Leyland Cypress F Cupressus species (C.
    [Show full text]