Eutrophication: Causes, Consequences and Control Abid A

Total Page:16

File Type:pdf, Size:1020Kb

Eutrophication: Causes, Consequences and Control Abid A Eutrophication: Causes, Consequences and Control Abid A. Ansari · Sarvajeet Singh Gill · Guy R. Lanza · Walter Rast Editors Eutrophication: Causes, Consequences and Control 123 Editors Abid A. Ansari Sarvajeet Singh Gill Aligarh Muslim University International Centre for Genetic Department of Botany Engineering & Biotechnology 202002 Aligarh Plant Molecular Biology Group India Aruna Asaf Ali Marg 110 067 New Delhi Guy R. Lanza India University of Massachusetts [email protected] Department of Natural Resources Conserva and 326 Holdworth Hall Centre for Biotechnology 01003-9285 Amherst MD University USA Rohtak [email protected] Walter Rast Texas State University Department of Biology University Drive 601 78666 San Marcos Texas USA ISBN 978-90-481-9624-1 e-ISBN 978-90-481-9625-8 DOI 10.1007/978-90-481-9625-8 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2010937026 © Springer Science+Business Media B.V. 2011 No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Cover image: The cover photo is: “The Mekong River near Ban Dan Thailand” Photo by Guy R. Lanza, University of Massachusetts, Amherst. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) Foreword The book “Eutrophication: Causes, Consequences and Control” is an ambitious and laudable attempt to summarize different aspects of eutrophication, highlighting both the extent and severity of the phenomenon in different parts of the world as well as efforts to control or mitigate its biological effects. The 19 chapters of the book also underscore fundamental differences in the way that different aquatic ecosystems respond to over-enrichment and stoichiometric imbalances of nutrients, an observa- tion that has been amply reinforced in documented studies of Lake Washington in the USA, the classic experimental lake program studies in Canada, and studies of the Chesapeake and Delaware bays in the USA. Different chapters are built upon different objectives and offer a variety of spa- tial and temporal scales; some of them offer inter-disciplinary approaches, newer methods to study the problem, and linkages/interactions with other stressors, such as climate change, drought or arid climates, dam projects, waterborne disease vectors, and heavy metal contaminants. Still the primary messages from the book chapters may be summarized as follows: • Environmental concerns associated with nutrient-enhanced eutrophication are quite varied and potentially severe; they include low or nearly non-existent dis- solved oxygen in the water column, changes in aquatic food webs, biomass and diversity, alteration of sediment geochemistry, contributions to smog and greenhouse effects, and loss of amenities and ecosystem services. • Economic factors have played a big role as both a cause and a consequence of nutrient over-enrichment and consequent eutrophication in aquatic ecosystems; however, economic analyses have not factored into many eutrophication-related analyses. In well-studied eutrophic waterbodies, it has been possible to estimate maximum allowable amounts of nutrients to attain water quality objectives, such as concentra- tions of nutrients close to natural levels, clean and clearer waters, natural levels of algal blooms and dissolved oxygen, and natural distributions and abundance of plants and animals. For example, a recently adopted Baltic Sea Action Plan (2007) calls for limiting the total input of nitrogen to 600,000 t of nitrogen and 21,000 t of phos- phorus. These values represent substantial reductions when compared with long-term average input of nitrogen (737,000 t) and phosphorus (36,000 t) into the sea. The signatories to the plan will be expected to develop measures and implement activi- ties that would attain their designated targets, including management of agricultural runoff, improved sewage treatment, and reduction of phosphorus in detergents. v vi Foreword In summary, the book offers a glimpse of eutrophication research and management approaches in the developed and developing countries and recognition of its impacts on renewable resources and amenities. There is clearly a need to sponsor and sup- port research on eutrophication and related factors that take into consideration the hydrology, atmospheric flows, and climate conditions typical of the study regions, preferably within an integrative framework and explicitly linking the study outputs to the desired management outcomes. National Oceanic and Atmospheric Administration Jawed Hameedi Silver Spring, MD, USA Preface Adopt the pace of nature: her secret is patience. Ralph Waldo Emerson 1803–1882 Degradation of water quality, loss of biodiversity, increased waterborne disease trans- mission, excess sedimentation, and major trophic cascades from altered biological food webs are of major concern at a time when global water supply is facing rapidly increasing demand. A recent report indicates that an enormous amount of our global water supply, approximately 10,800 km3, has been impounded in the world’s artificial reservoirs alone. Many of the new reservoirs have resulted from hydroelectric dam projects. Much of the total water impounded is located in sub-tropical and tropical regions with a very high probability for accelerated eutrophication and water quality degradation. Eutrophication is the natural process driving the ecological succession of fresh- water, estuarine, and marine ecosystems. Although eutrophication involves the integration of complex biological and geological processes that are often studied as individual entities, many useful studies have involved larger scale studies of the land use changes, aquatic biota, and biogeochemical cycles that regulate the structure, function, and gross productivity of human-impacted aquatic ecosystems. The natural eutrophication process is extremely variable and subject to major site- specific characteristics such as nutrient stoichiometry, biodiversity, climate-related factors, and geomorphology. Human or cultural influences have profound ecolog- ical effects on the natural functions and rates of many of the major processes in the aquatic processes influencing eutrophication and often result in accelerated rates of eutrophication that produce significant changes in the structure and function of aquatic ecosystems. The result of human activities that have increased the rate of eutrophication in different aquatic ecosystems around the world is the main topic of this book. We hope it will be useful to aquatic ecologists, engineers, and water quality scientists and managers faced with both the traditional challenges of accelerated eutrophica- tion and new challenges catalysed by global climate change. This book provides case histories of eutrophication events in sub-tropical, tropical, and temperate zone fresh- water, estuarine and marine ecosytems along with studies on the biomanipulation, phytoremediation, restoration, and control of impacted ecosystems. The editors and contributing authors hope that the results of publishing this book will include a practical update on our knowledge of eutrophication on a global vii viii Preface scale and lead to new discussions and efforts to deal with the threat of accelerated eutrophication during the process of global climate change. Aligarh, Uttar Pradesh Abid A. Ansari ICGEB, New Delhi Sarvajeet S. Gill Amherst, MA Guy R. Lanza San Marcos, TX Walter Rast Contents Foreword .................................... v Preface ..................................... vii 1 Eutrophication and Climate Change: Present Situation and Future Scenarios .......................... 1 Martin T. Dokulil and Katrin Teubner 2 Controlling Eutrophication in the Baltic Sea and the Kattegat ... 17 Lars Håkanson and Andreas C. Bryhn 3 Eutrophication Processes in Arid Climates .............. 69 Elias Salameh and Sura Harahsheh 4 Eutrophication and Restoration of Shallow Lakes from a Cold Temperate to a Warm Mediterranean and a (Sub)Tropical Climate ...................... 91 Meryem Beklioglu, Mariana Meerfhoff, Martin Søndergaard, and Erik Jeppesen 5 Trophic State and Water Quality in the Danube Floodplain Lake (Kopackiˇ Rit Nature Park, Croatia) in Relation to Hydrological Connectivity ...................... 109 Vesna Peršic,´ Dubravka Cerba,ˇ Irella Bogut, and Janja Horvatic´ 6 Mediterranean Climate and Eutrophication of Reservoirs: Limnological Skills to Improve Management ............. 131 Luigi Naselli-Flores 7 Eutrophication: Threat to Aquatic Ecosystems ............ 143 Abid A. Ansari, Sarvajeet S. Gill, and Fareed A. Khan 8 Eutrophication Problem in Egypt ................... 171 Mohamed M. Dorgham 9 Freshwater Wetland Eutrophication .................. 195 S. Sánchez-Carrillo, D.G. Angeler, M. Álvarez-Cobelas, and R. Sánchez-Andrés 10 Effects of Contamination by Heavy Metals and Eutrophication on Zooplankton, and Their Possible Effects on the Trophic Webs of Freshwater Aquatic Ecosystems ...... 211 Ana María Gagneten ix x Contents 11 Impact of Eutrophication on the Seagrass Assemblages of the Mondego Estuary (Portugal) .................. 225 Marina Dolbeth, Patrícia Cardoso and Miguel Ângelo Pardal 12 Aquatic Plant Diversity in Eutrophic
Recommended publications
  • Effects of Eutrophication on Stream Ecosystems
    EFFECTS OF EUTROPHICATION ON STREAM ECOSYSTEMS Lei Zheng, PhD and Michael J. Paul, PhD Tetra Tech, Inc. Abstract This paper describes the effects of nutrient enrichment on the structure and function of stream ecosystems. It starts with the currently well documented direct effects of nutrient enrichment on algal biomass and the resulting impacts on stream chemistry. The paper continues with an explanation of the less well documented indirect ecological effects of nutrient enrichment on stream structure and function, including effects of excess growth on physical habitat, and alterations to aquatic life community structure from the microbial assemblage to fish and mammals. The paper also dicusses effects on the ecosystem level including changes to productivity, respiration, decomposition, carbon and other geochemical cycles. The paper ends by discussing the significance of these direct and indirect effects of nutrient enrichment on designated uses - especially recreational, aquatic life, and drinking water. 2 1. Introduction 1.1 Stream processes Streams are all flowing natural waters, regardless of size. To understand the processes that influence the pattern and character of streams and reduce natural variation of different streams, several stream classification systems (including ecoregional, fluvial geomorphological, and stream order classification) have been adopted by state and national programs. Ecoregional classification is based on geology, soils, geomorphology, dominant land uses, and natural vegetation (Omernik 1987). Fluvial geomorphological classification explains stream and slope processes through the application of physical principles. Rosgen (1994) classified stream channels in the United States into seven major stream types based on morphological characteristics, including entrenchment, gradient, width/depth ratio, and sinuosity in various land forms.
    [Show full text]
  • Continental and Marine Hydrobiology Environmental Impact and Ecological Status Assessment
    Continental and marine hydrobiology Environmental impact and ecological status assessment EUROFINS Hydrobiologie France is your unique partner to evaluate and monitor aquatic environments. • Evaluate the effectiveness of your installations or the impact of your discharges aquatic ecosystems • Characterize the waterbodies states according to the Water Framework Directive (WFD) requirements Our analytical offer On continental ecosystems On marine ecosystems Benthic and pelagic microalgae Microalgae • Biological Diatom Index (IBD, NF T90-354) • Marine phytoplankton: quantitative and qualitative analyzes, • Phytoplankton in waterbodies and streams (NF EN 15204, IPLAC) detection of potentially toxic species (NF EN 15204 and NF EN 15972) • Cyanobacteria (NF EN 15204) Marine phanerogams • Conservation status of marine phanerogam meadows (Posidonia sp, Macrophytes Zostera ssp., Cymodocea sp., etc) • Macrophytic Biological Index in Rivers (IBMR, NF T90-395) • Average Index of Coverage • Macrophytic Biological Index in Lakes (IBML, XP T90-328) • Search for protected species by professional diving Invertebrates (macro and micro) Invertebrates (macro and micro) • Standardized Global Biological Index (IBGN, NF T90-350) • Zooplankton study • WFD protocols: MPCE and I2M2 (NF T90-333 and XP T90-388) • Soft bottom macrofauna communities (WFD, REBENT, NF ISO 16665, etc.) • Large streams: Adapted Global Biological Index (IBGA) • Protected species: European/international protection • Bioindication Oligochaeta Index in Sediment (IOBS)/ Bioindication • Evaluation
    [Show full text]
  • Selected Papers on “Avian Diversity and Hydrobiology”
    Selected Papers on “Avian Diversity and Hydrobiology” Dr. M. Y. Kulkarni Head Dept. of Zoology N.S.B. College, ACS Nanded – 431 602 (Ms.) Dr. R. D. Barde Head Dept. of Zoology SGB College, Purna Dist.Parbhani ________________________________________________ Siddhi Publications, Nanded Maharashtra (India) Selected Papers on Avian Diversity and Hydrobiology I 1 ISBN No. 978-81-940206-5-3 © Authors All Rights Reserved No part of this publication may be reproduced, in retrieved system or transmitted in any form by any means without prior written permission. Published By SIDDHI PUBLICATION HOUSE Srinagar, Nanded 431605. Mob. 9623979067 Email: [email protected] Typesetting Rajesh Umbarkar Printers Anupam Printers, Nanded. Price: 100/- First Edition : 05 Feb. 2020 Selected Papers on Avian Diversity and Hydrobiology I 2 INDEX Sr. Name of Page Title of Papers No. Authors No. 1. SYNURBIZATION - R. S. Sonwane ADAPTATION OF BIRD WILD and A. B. Harkal 4 LIFE TO NANDED URBAN DEVELOPMENT 2. CONSERVATION OF AVIAN V.S. Jadhav, DIVERSITY AT SITAKHANDI V.S. Kanwate 12 FOREST IN BHOKAR TAHSHIL and A.B. Harkal OF NANDED DISTRICT [M.S.] 3. DIVERSITY AND POPULATION P. V. Darekar OF AVIFAUNA OF SANGVIKATI A.C.Kumbhar PERCOLATION TANK, TAL. 20 TULJAPUR DIST.OSMANABAD (M.S.) 4. DEEP SEA FISHERY BIO V.S.N Raghava RESOURCES - BIODIVERSITY Rao 30 AND STOCK ASSESSMENT 5. ASSESSMENT OF GROUND M. Maqdoom WATER QUALITY IN GOKUNDA TALUKA KINWAT OF NANDED 35 DISTRICT, MAHARASHTRA (INDIA). 6 LIFE BECOMES MEASURABLE J.U. Deshmukh DUE TO EXCESS FLUORIDE IN GROUND WATER NEARBY 43 NANDED CITY DISTRICT NANDED 7 STUDIES OF DISSOLVED V.K.
    [Show full text]
  • A Fast-Response Methodological Approach to Assessing and Managing
    Ecological Engineering 85 (2015) 47–55 Contents lists available at ScienceDirect Ecological Engineering jo urnal homepage: www.elsevier.com/locate/ecoleng A fast-response methodological approach to assessing and managing nutrient loads in eutrophic Mediterranean reservoirs a,∗ a a Bachisio Mario Padedda , Nicola Sechi , Giuseppina Grazia Lai , a b a a Maria Antonietta Mariani , Silvia Pulina , Cecilia Teodora Satta , Anna Maria Bazzoni , c c a Tomasa Virdis , Paola Buscarinu , Antonella Lugliè a University of Sassari, Department of Architecture, Design and Urban Planning, Via Piandanna 4, 07100 Sassari, Italy b University of Cagliari, Department of Life and Environmental Sciences, via T. Fiorelli 1, 09126 Cagliari, Italy c EN.A.S. Ente Acque della Sardegna, Settore della limnologia degli invasi, Viale Elmas 116, 09122 Cagliari, Italy a r a t i b s c l e i n f o t r a c t Article history: With many lakes and other inland water bodies worldwide being increasingly affected by eutrophication Received 13 July 2015 resulting from excess nutrient input, there is an urgent need for improved monitoring and prediction Received in revised form 8 September 2015 methods of nutrient load effects in such ecosystems. In this study, we adopted a catchment-based Accepted 19 September 2015 approach to identify and estimate the direct effect of external nutrient loads originating in the drainage basin on the trophic state of a Mediterranean reservoir. We also evaluated the trophic state variations Keywords: related to the theoretical manipulation of nutrient inputs. The study was conducted on Lake Cedrino, a Eutrophication typical warm monomictic reservoir, between 2010 and 2011.
    [Show full text]
  • 27April12acquatic Plants
    International Plant Protection Convention Protecting the world’s plant resources from pests 01 2012 ENG Aquatic plants their uses and risks Implementation Review and Support System Support and Review Implementation A review of the global status of aquatic plants Aquatic plants their uses and risks A review of the global status of aquatic plants Ryan M. Wersal, Ph.D. & John D. Madsen, Ph.D. i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of speciic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Ofice of Knowledge Exchange,
    [Show full text]
  • Environmental Significance of Riparian Agroecosystems with Special Reference to Influence on Wetland Livelihood
    [ VOLUME 6 I ISSUE 2 I APRIL– JUNE 2019] E ISSN 2348 –1269, PRINT ISSN 2349-5138 Environmental Significance of Riparian Agroecosystems with special reference to Influence on Wetland Livelihood Dr. Reshma J.K.1 & Dr. Allan Thomas2 1Asst. Professor and Head, PG Department of Environmental Sciences All Saints’ College, Thiruvananthapuram, Kerala. 2Asst. Professor and Head, Department of Extension College of Agriculture, Vellayani, Kerala. Received: February 12, 2019 Accepted: March 24, 2019 INTRODUCTION Riparian Agroecosystem (Agriculture + Ecosystem = Agroecosystem) is construed as a spatially and functionally coherent unit of agricultural activity along river banks, subsuming both biotic & abiotic components, their respective interaction as well. An agroecosystem appends the region that is stuffed in by agricultural activity, prodigally by changes to the complexity ofspecies assemblagesandenergy flows, as well as to the net nutrient balance. Traditionally an agroecosystem, particularly one managed intensively, is epitomized as having a simpler species composition and simpler energy and nutrient flows which makes it unique from other "natural" ecosystems. Moreover, agroecosystems are often confederated with elevated nutrient input, as in the case of forest gardens, probably the world's oldest and most resilient agroecosystemswhich is balanced byeutrophication of consociated ecosystems not directly engaged in agriculture. Substaintial components of Agroecosystem derive all its energy requirements from solar input along with atmospheric and human inputs that come from outside the system, which are referred to as “consumption and markets. Some of the unparagoned features of agroecosystems are monoculture, use of genetically modified organisms and artificially selected crops, row crops, increased soil aeration, simplification of biodiversity and maintenance at an early succession state.
    [Show full text]
  • Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah
    Utah State University DigitalCommons@USU All Graduate Theses and Dissertations Graduate Studies 8-2020 Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah Tiffany K. Woods Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/etd Part of the Environmental Design Commons, and the Landscape Architecture Commons Recommended Citation Woods, Tiffany K., "Cultural Ecosystem Services of Agroecosystems Along the Wasatch Front, Utah" (2020). All Graduate Theses and Dissertations. 7904. https://digitalcommons.usu.edu/etd/7904 This Thesis is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Theses and Dissertations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. CULTURAL ECOSYSTEM SERVICES OF AGROECOSYSTEMS ALONG THE WASATCH FRONT, UTAH by Tiffany K. Woods A thesis submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Bioregional Planning Approved: __________________________ __________________________ Brent Chamberlain, Ph.D. Arthur J. Caplan, Ph.D. Major Professor Committee Member __________________________ __________________________ Sarah C. Klain, Ph.D. Janis L. Boettinger, Ph.D. Committee Member Acting Vice Provost of Graduate Studies UTAH STATE UNIVERSITY Logan, Utah 2020 ii Copyright Tiffany K. Woods 2020 All Rights Reserved iii ABSTRACT Cultural ecosystem services of agroecosystems along the Wasatch Front, Utah by Tiffany K. Woods, Master of Science Utah State University, 2020 Major Professor: Brent Chamberlain, Ph.D. Department: Landscape Architecture and Environmental Planning Agroecosystems, including peri-urban systems, are important providers of a range of services. However, management of these systems has generally been based on the market value of crops, neglecting to capture the broader public goods that ecosystem services provide to stakeholders.
    [Show full text]
  • "On the Structure, the Occurrence in Lancashire, and the Source Of
    QK306 ne" Un,ver8,lyL,b QK 306.B« ranr "^'•je structure, the < (V 0j^p(J(sdo^s ~C?hu^ S^~\ o 1( With the Author's compliments. " On the Structure, the Occurrence in Lancashire, and the Source of Origin of Naias graminea, Del., var. Delilei, Magnus." I AUS CHARLES BAILEY, F.L.S. a eesume of Communications made to THE LEEUWENHOEK MICROSCOPICAL CLUB, THE MANCHESTER LITERARY AND PHILOSOPHICAL SOCIETY. Reprinted feom the 'JOURNAL OF BOTANY,' Nos. 262 and 26B, Vol. XXII., for October and November 1884. The original of this book is in the Cornell University Library. There are no known copyright restrictions in the United States on the use of the text. http://www.archive.org/details/cu31924001674393 Tab. 249. Journal of Botany. A/a/as graminea, Del., var. Delilei, Magnus, from Reddish, near Manchester. JO ILLUSTRATE f»APER BY JVIr. pHARLES J3A1LEY. Tab, 250. Journal of Botany. Naias graminea, Delile, from Lower Egypt. Jn ILLUSTRATE JPaPER BY JWr. fHARLES J3AILEY. " On the Structure, the Occurrence in Lancashire, and the Source of Origin of Naias graminea, Del., var. Delilei, Magnus." BY CHAELES BAILEY, F.L.S. A RiSUlil OF COMMUNICATIONS MADE TO THE LEEUWENHOEK MICROSCOPICAL CLUB, . ^AVi : >,, , ;/,\V ..... AND TO O ... / THE MANCHESTER LITERARY AND PHILOSOPHICAL SOCIETY. \ ? mv K " Bephinted from the ' JOURNAL OF BOTANY,' Nos. 262 ahd 263, Vol. XXII., foe OOTOBEE AND NOVEMBER 1884. Bib <2. Ff^'^ti' I DEDICATE THESE PAGES TO THE MEMOBY OF AN OLD AND VALUED FRIEND — THE LATE JOHN HARDY, of 118 Embden Street, Hulme, Manchester; who died, suddenly, 15th septembek, 1884.
    [Show full text]
  • Monocotyledonous Plant Diversity of Wetlands in Kurkheda Taluka, District Gadchiroli, Maharashtra
    International Journal of Academic Research and Development International Journal of Academic Research and Development ISSN: 2455-4197; Impact Factor: RJIF 5.22 Received: 01-11-2019; Accepted: 02-12-2019 www.academicjournal.in Volume 5; Issue 1; January 2020; Page No. 01-05 Monocotyledonous plant diversity of wetlands in kurkheda taluka, District Gadchiroli, Maharashtra PA Dani1*, MB Wadekar2, SD Narkhede3 1 Head Department of Botany, SGM College Kurkheda, Gondwana University Gadchiroli, Maharashtra, India 2 Head Department of Botany, NH College, Bramhapuri, Gondwana University Gadchiroli, Maharashtra, India 3 Head Department of Botany, Government Science College, Nagpur, RTM Nagpur University, Nagpur, Maharashtra, India Abstract The wetlands serve as transitional zone in between aquatic and terrestrial ecosystem. Wetlands cover 6% area of total earth surface but they support vast variety of floral and faunal diversity. It also serves as source of economy to native peoples by providing natural resources. Wetland bodies in study site locally known as Boli, Tala or Talav. The aquatic monocotyledons flora of 16 selected perennial lakes in Kurkheda Tehsil were studied for a period of 3 years. Altogether 56 plant spa. belonging to 39 genera and 14 families were recorded from the study site. Further macrophytes are divided into five growth forms. Out of which free floating hydrophytes (FFH) represent 04 species, suspended hydrophytes (SH) represent 02 species, attached submerged hydrophytes (ASH) represent 06 species, attached hydrophytes with floating leaves (AHF) represent 09 species and wetland hydrophytes (WH) which are most dominant growth form represent 35 species. Keywords: wetlands, macrphytes, growth forms monocotyledones, kurkheda 1. Introduction 1. Free floating hydrophytes (FFH): These are plants Wetlands constitute a subject of prime global importance.
    [Show full text]
  • Networking Agroecology: Integrating the Diversity of Agroecosystem Interactions
    Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the book Advances In Ecological Research, Vol. 49 published by Elsevier, and the attached copy is provided by Elsevier for the author's benefit and for the benefit of the author's institution, for non-commercial research and educational use including without limitation use in instruction at your institution, sending it to specific colleagues who know you, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier's permissions site at: http://www.elsevier.com/locate/permissionusematerial From David A. Bohan, Alan Raybould, Christian Mulder, Guy Woodward, Alireza Tamaddoni-Nezhad, Nico Bluthgen, Michael J.O. Pocock, Stephen Muggleton, Darren M. Evans, Julia Astegiano, François Massol, Nicolas Loeuille, Sandrine Petit, Sarina Macfadyen, Networking Agroecology: Integrating the Diversity of Agroecosystem Interactions. In Guy Woodward and David A. Bohan, editors: Advances In Ecological Research, Vol. 49, Amsterdam, The Netherlands: Academic Press, 2013, pp. 1-67. ISBN: 978-0-12-420002-9 © Copyright 2013 Elsevier Ltd Elsevier Author's personal copy CHAPTER ONE Networking Agroecology:
    [Show full text]
  • The Nature of Cumulative Impacts on Biotic Diversity of Wetland Vertebrates
    The Nature of Cumulative Impacts on Biotic Diversity of Wetland Vertebrates I.ARRu D. HARRIS about--makes using food chain support as a variable for Department of Wildlife and Range Sciences predicting environmental impacts very questionable. School of Forest Resources and Conservation Historical instances illustrate the effects of the accumula- University of Florida tion of impacts on vertebrates. At present it is nearly impos- Gainesville, Florida 32611, USA sible to predict the result of three or more different kinds of perturbations, although long-range effects can be observed. One case in point is waterfowl; while their ingestion of lead ABSTRACT/There is no longer any doubt that cumulative shot, harvesting by hunters during migration, and loss of impacts have important effects on wetland vertebrates. Inter- habitat have caused waterfowl populations to decline, the actions of species diversity and community structure produce proportional responsibility of these factors has not been de- a complex pattern in which environmental impacts can play termined. a highly significant role. Various examples show how wet- Further examples show muttiplicative effects of similar ac- lands maintain the biotic diversity within and among verte- tions, effects with long time lags, diffuse processes in the brate populations, and some of the ways that environmental landscape that may have concentrated effects on a compo- perturbations can interact to reduce this diversity. nent subsystem, and a variety of other interactions of in- The trophic and habitat pyramids are useful organizing creasing complexity. Not only is more information needed at concepts. Habitat fragmentation can have severe effects at all levels; impacts must be assessed on a landscape or re- all levels, reducing the usable range of the larger habitat gional scale to produce informed management decisions.
    [Show full text]
  • Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun
    OCEANOGRAPHY – Vol.II - Biological Oceanography - Legendre, Louis and Rassoulzadegan, Fereidoun BIOLOGICAL OCEANOGRAPHY Legendre, Louis and Rassoulzadegan, Fereidoun Laboratoire d'Océanographie de Villefranche, France. Keywords: Algae, allochthonous nutrient, aphotic zone, autochthonous nutrient, Auxotrophs, bacteria, bacterioplankton, benthos, carbon dioxide, carnivory, chelator, chemoautotrophs, ciliates, coastal eutrophication, coccolithophores, convection, crustaceans, cyanobacteria, detritus, diatoms, dinoflagellates, disphotic zone, dissolved organic carbon (DOC), dissolved organic matter (DOM), ecosystem, eukaryotes, euphotic zone, eutrophic, excretion, exoenzymes, exudation, fecal pellet, femtoplankton, fish, fish lavae, flagellates, food web, foraminifers, fungi, harmful algal blooms (HABs), herbivorous food web, herbivory, heterotrophs, holoplankton, ichthyoplankton, irradiance, labile, large planktonic microphages, lysis, macroplankton, marine snow, megaplankton, meroplankton, mesoplankton, metazoan, metazooplankton, microbial food web, microbial loop, microheterotrophs, microplankton, mixotrophs, mollusks, multivorous food web, mutualism, mycoplankton, nanoplankton, nekton, net community production (NCP), neuston, new production, nutrient limitation, nutrient (macro-, micro-, inorganic, organic), oligotrophic, omnivory, osmotrophs, particulate organic carbon (POC), particulate organic matter (POM), pelagic, phagocytosis, phagotrophs, photoautotorphs, photosynthesis, phytoplankton, phytoplankton bloom, picoplankton, plankton,
    [Show full text]