Echinicola Pacifica Gen. Nov., Sp. Nov., a Novel Flexibacterium Isolated from the Sea Urchin Strongylocentrotus Intermedius

Total Page:16

File Type:pdf, Size:1020Kb

Echinicola Pacifica Gen. Nov., Sp. Nov., a Novel Flexibacterium Isolated from the Sea Urchin Strongylocentrotus Intermedius International Journal of Systematic and Evolutionary Microbiology (2006), 56, 953–958 DOI 10.1099/ijs.0.64156-0 Echinicola pacifica gen. nov., sp. nov., a novel flexibacterium isolated from the sea urchin Strongylocentrotus intermedius Olga I. Nedashkovskaya,1 Seung Bum Kim,2 Marc Vancanneyt,3 Anatoly M. Lysenko,4 Dong Sung Shin,2 Myung Soo Park,5 Kang Hyun Lee,6 Won Jin Jung,6 Natalia I. Kalinovskaya,1 Valery V. Mikhailov,1 Kyung Sook Bae6 and Jean Swings3,7 Correspondence 1Pacific Institute of Bioorganic Chemistry of the Far-Eastern Branch of the Russian Academy Olga I. Nedashkovskaya of Sciences, Pr. 100 Let Vladivostoku 159, 690022, Vladivostok, Russia [email protected] 2,5Department of Microbiology2 and Department of Applied Microbiology, College of Agriculture or and Life Sciences5, Chungnam National University, 220 Gung-dong, Yusong, [email protected] Daejon 305-764, Republic of Korea 3,7BCCM/LMG Bacteria Collection3 and Laboratory of Microbiology7, Ghent University, Ledeganckstraat 35, B-9000 Ghent, Belgium 4Institute of Microbiology of the Russian Academy of Sciences, Pr. 60 let October 7/2, Moscow, 117811, Russia 6Korea Institute of Bioscience and Biotechnology, 52 Oun-dong, Yusong, Daejon 305-333, Republic of Korea The taxonomic position of three novel marine, heterotrophic, pigmented and agarolytic bacteria with gliding motility, isolated from the sea urchin Strongylocentrotus intermedius, was investigated. 16S rRNA gene sequence analysis revealed that strains KMM 6166, KMM 6172T and KMM 6173 are members of the phylum Bacteroidetes; their nearest neighbours were Belliella baltica and Hongiella marincola (similarities of 94?5 and 93?6 %, respectively). The DNA G+C content of the strains was 44–45 mol%. The predominant fatty acids were C15 : 0 iso, C16 : 1v5c,C17 : 1 iso v9c,C17 : 0 iso 3-OH and summed feature 3 (C16 : 1v7c and/or C15 : 0 iso 2-OH). The major respiratory quinone was MK-7. Results of molecular experiments supported by phenotypic and chemotaxonomic data enabled the isolates to be classified as representatives of a novel species in a new genus, for which the name Echinicola pacifica gen. nov., sp. nov. is proposed. Echinicola pacifica is the type species of the genus Echinicola, and its type strain is KMM 6172T (=KCTC 12368T=LMG 23350T). A phylogenetic survey on the culturable bacteria associated the basis of their significant molecular divergence from with the sea urchin Strongylocentrotus intermedius revealed described taxa. Results of genotypic, chemotaxonomic and rich species diversity. Previously undescribed bacteria phenotypic analyses confirmed that the strains had a distinct belonging to the Proteobacteria, low- and high-G+C- taxonomic position in a new genus. content Gram-positive bacteria and Bacteroidetes were T found. Up to now, only some of the novel species have Strains KMM 6166, KMM 6172 and KMM 6173 were been assigned validly published names (Nedashkovskaya isolated from the sea urchin Strongylocentrotus intermedius et al., 2005a, b, c, d). collected in Troitsa Bay, Gulf of Peter the Great, East Sea (also known as the Sea of Japan), during September 2002. In the present paper, the heterotrophic, Gram-negative, After primary isolation and purification on marine agar pink-coloured, gliding agarolytic strains KMM 6166, KMM 2216 (Difco), the strains were cultivated on the same T 6172 and KMM 6173 were selected for further study on medium at 25 uC for 48 h and stored at 280 uC in marine broth (Difco) supplemented with 20 % (v/v) glycerol. The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene sequences of Echinicola pacifica KMM 6172T, KMM 6166 and Genomic DNA extraction, PCR and 16S rRNA gene KMM 6173 are DQ185611, DQ186987 and DQ186988, respectively. sequencing were carried out as described previously (Kim Downloaded from www.microbiologyresearch.org by 64156 G 2006 IUMS Printed in Great Britain 953 IP: 193.191.134.1 On: Fri, 21 Oct 2016 07:15:24 O. I. Nedashkovskaya and others et al., 1998). Sequence data obtained were aligned with those Identification System (Microbial ID). The predominant of representative members of the phylum Bacteroidetes cellular fatty acids of strains KMM 6166 and KMM 6172T using PHYDIT version 3.2 (http://plaza.snu.ac.kr/~jchun/ were C15 : 0 iso (17?3–18?0 %), C16 : 1v5c (6?7–7?8 %), C17 : 1 phydit/). Phylogenetic trees were inferred using suitable iso v9c (6?3–6?9 %), C17 : 1v6c (4?3–4?8 %), C15 : 0 iso 3-OH programs of the PHYLIP package (Felsenstein, 1993). (3?4–5?0 %), C17 : 0 iso 3-OH (9?4–10?0 %) and summed Phylogenetic distances were calculated using the Kimura feature 3 (30?7–30?8 %), comprising C16 : 1v7c and/or C15 : 0 two-parameter model (Kimura, 1980) and trees were iso 2-OH (Table 1). Isoprenoid quinones were extracted constructed on the basis of the neighbour-joining (Saitou from lyophilized cells and analysed as described previously & Nei, 1987), maximum-parsimony (Kluge & Farris, 1969) (Nedashkovskaya et al., 2004b). The main isoprenoid and maximum-likelihood (Felsenstein, 1993) algorithms. quinone of the novel isolates was MK-7. Bootstrap analysis was performed with 1000 resampled The absorption spectrum of pigments extracted using 7 : 2 datasets using the SEQBOOT and CONSENSE programs of the (v/v) acetone/methanol was determined between 300 and PHYLIP package. 700 nm with UV spectrophotometer CECIL, CE 7250, Phylogenetic analysis of the almost-complete 16S rRNA 7000 series. Cells produced pink-coloured carotenoid pig- gene sequences revealed that the three sea-urchin isolates ments with maximum absorption at 472?8 nm. occupied a distinct lineage within the phylum Bacteroidetes Physiological and biochemical properties of strains KMM (Fig. 1). The nearest neighbours of the strains studied were T 6166, KMM 6172 and KMM 6173 were examined as des- Belliella baltica BA134T, Hongiella marincola SW-2T and T cribed by Nedashkovskaya et al. (2004a, b). Physiological Cyclobacterium marinum LMG 13164 , with similarity and biochemical properties of KMM 6172T were also deter- values of 94?5, 93?6 and 93?1 %, respectively. mined using the API 20E, API 20NE, API ZYM and API DNA was isolated according to the method of Marmur 50CH galleries (bioMe´rieux) and the Biolog GN2 Micro- (1961) and its G+C content was determined using the plate system according to the manufacturers’ instruc- thermal denaturation method (Marmur & Doty, 1962). The tions. Susceptibility to antibiotics was tested as described G+C content of the DNA of the strains under study was previously (Nedashkovskaya et al., 2004a) using additional discs containing chloramphenicol (30 mg), doxycycline 44?2–44?6 mol%. DNA–DNA hybridization experiments (10 mg) and erythromycin (15 mg). The ability to grow were performed using the method of De Ley et al. (1970). under anaerobic conditions was observed using the Oxoid DNA–DNA hybridization values between strains KMM Anaerobic System. Gliding motility was determined as 6166, KMM 6172T and KMM 6173 were 93–98 %. There- described by Bowman (2000). fore, the strains can be placed in the same species according to criteria defined by Wayne et al. (1987). Strains isolated in this study were Gram-negative, chemo- organotrophic, pink-coloured and motile by gliding. The Analysis of fatty acid methyl esters was carried out accord- main physiological and biochemical characteristics are given ing to the standard protocol of the Sherlock Microbial in Tables 2 and 3 and the species description. The strains tested differed from their nearest neighbour, B. baltica,by their ability to move by gliding, to grow with 12 % NaCl and to produce hydrogen sulfide. Other distinctive features between these taxa included hydrolysis of agar and gela- tin, acid production from D-fructose, D-melibiose and L- rhamnose, enzyme activities and utilization of a number of organic compounds (Table 2). The differential features of the strains studied and other related members of the phylum Bacteroidetes are shown in Table 3. It should be noted that the sea-urchin isolates can be clearly distinguished from all close relatives by their moving by means of gliding and their ability to ferment D-glucose. The latter characteristic of the strains, together with the absence of growth under strictly anaerobic conditions, indicates that the strains may grow in a wide range of oxygen concentrations. Phenotypic divergence between the strains studied and their relatives is supported by significant distinctiveness in the cellular fatty Fig. 1. Phylogenetic tree based on the 16S rRNA gene acid profiles (Table 2). For example, the presence of a sequences of KMM strains and representative members of the substantial amount of C15 : 0 3-OH, the absence of C17 : 1 family ‘Flexibacteraceae’. Asterisks indicate branches that were anteiso and very low levels of C15 : 1 iso G fatty acids were T also recovered using maximum-likelihood and maximum-parsimony noted in extracts of KMM 6166 and KMM 6172 , in contrast algorithms. Numbers at nodes indicate bootstrap values (%). Bar, with their nearest neighbour, B. baltica. Consequently, the 0?1 substitutions per nucleotide position. combination of all data obtained allows the strains to be Downloaded from www.microbiologyresearch.org by 954 International Journal of Systematic and Evolutionary Microbiology 56 IP: 193.191.134.1 On: Fri, 21 Oct 2016 07:15:24 Echinicola pacifica gen. nov., sp. nov. Table 1. Cellular fatty acid composition (%) of Echinicola pacifica gen. nov., sp. nov. and related taxa of the phylum Bacteroidetes Taxa: 1, Echinicola pacifica gen. nov., sp. nov.; 2, Algoriphagus;3,Aquiflexum;4,Belliella;5,Cyclobacterium;6,Hongiella. Data from Brettar et al. (2004a, b); Nedashkovskaya et al. (2004b, 2005e) and this study. Values of less than 1 % for all strains are not shown. Predominant fatty acids are shown in bold. Summed features consist of one or more fatty acids that could not be separated by the Microbial Identification System.
Recommended publications
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Flavobacterium Gliding Motility: from Protein Secretion to Cell Surface Adhesin Movements
    University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations August 2019 Flavobacterium Gliding Motility: From Protein Secretion to Cell Surface Adhesin Movements Joseph Johnston University of Wisconsin-Milwaukee Follow this and additional works at: https://dc.uwm.edu/etd Part of the Biology Commons, Microbiology Commons, and the Molecular Biology Commons Recommended Citation Johnston, Joseph, "Flavobacterium Gliding Motility: From Protein Secretion to Cell Surface Adhesin Movements" (2019). Theses and Dissertations. 2202. https://dc.uwm.edu/etd/2202 This Dissertation is brought to you for free and open access by UWM Digital Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UWM Digital Commons. For more information, please contact [email protected]. FLAVOBACTERIUM GLIDING MOTILITY: FROM PROTEIN SECRETION TO CELL SURFACE ADHESIN MOVEMENTS by Joseph J. Johnston A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Biological Sciences at The University of Wisconsin-Milwaukee August 2019 ABSTRACT FLAVOBACTERIUM GLIDING MOTILITY: FROM PROTEIN SECRETION TO CELL SURFACE ADHESIN MOVEMENTS by Joseph J. Johnston The University of Wisconsin-Milwaukee, 2019 Under the Supervision of Dr. Mark J. McBride Flavobacterium johnsoniae exhibits rapid gliding motility over surfaces. At least twenty genes are involved in this process. Seven of these, gldK, gldL, gldM, gldN, sprA, sprE, and sprT encode proteins of the type IX protein secretion system (T9SS). The T9SS is required for surface localization of the motility adhesins SprB and RemA, and for secretion of the soluble chitinase ChiA. This thesis demonstrates that the gliding motility proteins GldA, GldB, GldD, GldF, GldH, GldI and GldJ are also essential for secretion.
    [Show full text]
  • Novel Quorum Sensing Activity in East Antarctic Soil Bacteria
    bioRxiv preprint doi: https://doi.org/10.1101/749861; this version posted August 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Novel Quorum Sensing Activity in East Antarctic Soil Bacteria 2 3 Sin Yin Wong1, James C. Charlesworth1,2, Nicole Benaud1, Brendan P. Burns1,2 4 and Belinda C. Ferrari1* 5 6 1School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 7 2052, Australia. 8 2Australian Centre for Astrobiology, University of New South Wales, Sydney, 2052, Australia. 9 10 Author contributions: B.C.F, B.P.B, J.C.C and S.Y.W designed the study. N.B performed genome 11 sequence analyses. S.Y.W performed the experiments, analysed the data and drafted the 12 manuscript. All authors edited the final manuscript. 13 14 Running title: Quorum Sensing in Antarctic Soil Bacteria 15 16 *To whom correspondence should be addressed: [email protected] 17 18 Keywords 19 Antarctica | Bacterial communication | Quorum sensing | Homoserine lactone | Biosensor | Survival 20 mechanism | Soil bacteria | 21 1 bioRxiv preprint doi: https://doi.org/10.1101/749861; this version posted August 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Abstract Tracing Hydrocarbon
    ABSTRACT TRACING HYDROCARBON CONTAMINATION THROUGH HYPERALKALINE ENVIRONMENTS IN THE CALUMET REGION OF SOUTHEASTERN CHICAGO Kathryn Quesnell, MS Department of Geology and Environmental Geosciences Northern Illinois University, 2016 Melissa Lenczewski, Director The Calumet region of Southeastern Chicago was once known for industrialization, which left pollution as its legacy. Disposal of slag and other industrial wastes occurred in nearby wetlands in attempt to create areas suitable for future development. The waste creates an unpredictable, heterogeneous geology and a unique hyperalkaline environment. Upgradient to the field site is a former coking facility, where coke, creosote, and coal weather openly on the ground. Hydrocarbons weather into characteristic polycyclic aromatic hydrocarbons (PAHs), which can be used to create a fingerprint and correlate them to their original parent compound. This investigation identified PAHs present in the nearby surface and groundwaters through use of gas chromatography/mass spectrometry (GC/MS), as well as investigated the relationship between the alkaline environment and the organic contamination. PAH ratio analysis suggests that the organic contamination is not mobile in the groundwater, and instead originated from the air. 16S rDNA profiling suggests that some microbial communities are influenced more by pH, and some are influenced more by the hydrocarbon pollution. BIOLOG Ecoplates revealed that most communities have the ability to metabolize ring structures similar to the shape of PAHs. Analysis with bioinformatics using PICRUSt demonstrates that each community has microbes thought to be capable of hydrocarbon utilization. The field site, as well as nearby areas, are targets for habitat remediation and recreational development. In order for these remediation efforts to be successful, it is vital to understand the geochemistry, weathering, microbiology, and distribution of known contaminants.
    [Show full text]
  • Salinity and Time Can Alter Epibacterial Communities of an Invasive Seaweed
    fmicb-10-02870 January 6, 2020 Time: 15:52 # 1 ORIGINAL RESEARCH published: 15 January 2020 doi: 10.3389/fmicb.2019.02870 Salinity and Time Can Alter Epibacterial Communities of an Invasive Seaweed Mahasweta Saha1,2,3*, Robert M. W. Ferguson2, Shawn Dove4,5, Sven Künzel6, Rafael Meichssner7,8, Sven C. Neulinger9, Finn Ole Petersen10 and Florian Weinberger1 1 Benthic Ecology, GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany, 2 The School of Life Sciences, University of Essex, Colchester, United Kingdom, 3 Marine Ecology and Biodiversity, Plymouth Marine Laboratory, Plymouth, United Kingdom, 4 Centre for Biodiversity and Environment Research, University College London, London, United Kingdom, 5 Institute of Zoology, Zoological Society of London, London, United Kingdom, 6 Max Planck Institute for Evolutionary Biology, Plön, Germany, 7 Department of Biology, Botanical Institute, Christian-Albrechts-University, Kiel, Germany, 8 Coastal Research & Management, Kiel, Germany, 9 omics2view.consulting GbR, Kiel, Germany, 10 Department of Biology, Institute for General Microbiology, Christian-Albrechts-University, Kiel, Germany The establishment of epibacterial communities is fundamental to seaweed health and Edited by: fitness, in modulating ecological interactions and may also facilitate adaptation to Olga Lage, University of Porto, Portugal new environments. Abiotic factors like salinity can determine bacterial abundance, Reviewed by: growth and community composition. However, influence of salinity as a driver of Hanzhi Lin, epibacterial community composition (until species level) has not been investigated for University of Maryland Center for Environmental Science (UMCES), seaweeds and especially under long time scales. We also do not know how abiotic United States stressors may influence the ‘core’ bacterial species of seaweeds.
    [Show full text]
  • Microbiology of Lonar Lake and Other Soda Lakes
    The ISME Journal (2013) 7, 468–476 & 2013 International Society for Microbial Ecology All rights reserved 1751-7362/13 www.nature.com/ismej MINI REVIEW Microbiology of Lonar Lake and other soda lakes Chakkiath Paul Antony1, Deepak Kumaresan2, Sindy Hunger3, Harold L Drake3, J Colin Murrell4 and Yogesh S Shouche1 1Microbial Culture Collection, National Centre for Cell Science, Pune, India; 2CSIRO Marine and Atmospheric Research, Hobart, TAS, Australia; 3Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany and 4School of Environmental Sciences, University of East Anglia, Norwich, UK Soda lakes are saline and alkaline ecosystems that are believed to have existed throughout the geological record of Earth. They are widely distributed across the globe, but are highly abundant in terrestrial biomes such as deserts and steppes and in geologically interesting regions such as the East African Rift valley. The unusual geochemistry of these lakes supports the growth of an impressive array of microorganisms that are of ecological and economic importance. Haloalk- aliphilic Bacteria and Archaea belonging to all major trophic groups have been described from many soda lakes, including lakes with exceptionally high levels of heavy metals. Lonar Lake is a soda lake that is centered at an unusual meteorite impact structure in the Deccan basalts in India and its key physicochemical and microbiological characteristics are highlighted in this article. The occurrence of diverse functional groups of microbes, such as methanogens, methanotrophs, phototrophs, denitrifiers, sulfur oxidizers, sulfate reducers and syntrophs in soda lakes, suggests that these habitats harbor complex microbial food webs that (a) interconnect various biological cycles via redox coupling and (b) impact on the production and consumption of greenhouse gases.
    [Show full text]
  • This Is a Pre- Or Post-Print of an Article Published in Akhwale, JK, Göker, M
    Belliella kenyensis sp. nov., isolated from an alkaline lake. Item Type Article Authors Akhwale, Juliah Khayeli; Göker, Markus; Rohde, Manfred; Schumann, Peter; Klenk, Hans-Peter; Boga, Hamadi Iddi Citation Belliella kenyensis sp. nov., isolated from an alkaline lake. 2015, 65 (Pt 2):457-62 Int. J. Syst. Evol. Microbiol. DOI 10.1099/ijs.0.066951-0 Journal International journal of systematic and evolutionary microbiology Download date 27/09/2021 06:24:46 Link to Item http://hdl.handle.net/10033/346451 This is a pre- or post-print of an article published in Akhwale, J.K., Göker, M., Rohde, M., Schumann, P., Klenk, H.-P., Boga, H.I. Belliella kenyensis sp. Nov., isolated from an alkaline lake (2015) International Journal of Systematic and Evolutionary Microbiology, 65 (2), pp. 457-462. 1 Belliella kenyensis sp. nov., isolated from the alkaline Lake Elmenteita in the 2 African Rift Valley 3 Juliah Khayeli Akhwale, Markus Göker, Manfred Rohde, Peter Schumann, Hans-Peter Klenk, Hamadi 4 Iddi Boga 5 M. Göker, P. Schumann, H.-P. Klenk 6 Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 7 38124 Braunschweig, Germany 8 E-mail: [email protected] 9 J.K. Akhwale, Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and 10 Technology, Nairobi, Kenya. 11 Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, 12 Germany 13 14 H.I. Boga, Taita Taveta University College, P.O Box 635-80300 Voi, Kenya. 15 E-mail: [email protected] 16 17 M. Rohde 18 HZI – Helmholtz Centre for Infection Research Inhoffenstraße 7, 38124 Braunschweig, Germany 19 20 Running title: Belliella kenyensis sp.
    [Show full text]
  • Genome-Based Taxonomic Classification Of
    ORIGINAL RESEARCH published: 20 December 2016 doi: 10.3389/fmicb.2016.02003 Genome-Based Taxonomic Classification of Bacteroidetes Richard L. Hahnke 1 †, Jan P. Meier-Kolthoff 1 †, Marina García-López 1, Supratim Mukherjee 2, Marcel Huntemann 2, Natalia N. Ivanova 2, Tanja Woyke 2, Nikos C. Kyrpides 2, 3, Hans-Peter Klenk 4 and Markus Göker 1* 1 Department of Microorganisms, Leibniz Institute DSMZ–German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany, 2 Department of Energy Joint Genome Institute (DOE JGI), Walnut Creek, CA, USA, 3 Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia, 4 School of Biology, Newcastle University, Newcastle upon Tyne, UK The bacterial phylum Bacteroidetes, characterized by a distinct gliding motility, occurs in a broad variety of ecosystems, habitats, life styles, and physiologies. Accordingly, taxonomic classification of the phylum, based on a limited number of features, proved difficult and controversial in the past, for example, when decisions were based on unresolved phylogenetic trees of the 16S rRNA gene sequence. Here we use a large collection of type-strain genomes from Bacteroidetes and closely related phyla for Edited by: assessing their taxonomy based on the principles of phylogenetic classification and Martin G. Klotz, Queens College, City University of trees inferred from genome-scale data. No significant conflict between 16S rRNA gene New York, USA and whole-genome phylogenetic analysis is found, whereas many but not all of the Reviewed by: involved taxa are supported as monophyletic groups, particularly in the genome-scale Eddie Cytryn, trees. Phenotypic and phylogenomic features support the separation of Balneolaceae Agricultural Research Organization, Israel as new phylum Balneolaeota from Rhodothermaeota and of Saprospiraceae as new John Phillip Bowman, class Saprospiria from Chitinophagia.
    [Show full text]
  • Systematic Bacteriology Second Edition
    BERGEY’S MANUAL® OF Systematic Bacteriology Second Edition Volume Four The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes BERGEY’S MANUAL® OF Systematic Bacteriology Second Edition Volume Four The Bacteroidetes, Spirochaetes, Tenericutes (Mollicutes), Acidobacteria, Fibrobacteres, Fusobacteria, Dictyoglomi, Gemmatimonadetes, Lentisphaerae, Verrucomicrobia, Chlamydiae, and Planctomycetes Noel R. Krieg, James T. Staley, Daniel R. Brown, Brian P. Hedlund, Bruce J. Paster, Naomi L. Ward, Wolfgang Ludwig and William B. Whitman EDITORS, VOLUME FOUR William B. Whitman DIRECTOR OF THE EDITORIAL OFFICE Aidan C. Parte MANAGING EDITOR EDITORIAL BOARD Michael Goodfellow, Chairman, Peter Kämpfer, Vice Chairman, Jongsik Chun, Paul De Vos, Fred A. Rainey and William B. Whitman WITH CONTRIBUTIONS FROM 129 COLLEAGUES William B. Whitman Bergey’s Manual Trust Department of Microbiology 527 Biological Sciences Building University of Georgia Athens, GA 30602-2605 USA ISBN: 978-0-387-95042-6 e-ISBN: 978-0-387-68572-4 DOI: 10.1007/978-0-387-68572-4 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2010936277 © 2010, 1984–1989 Bergey’s Manual Trust Bergey’s Manual is a registered trademark of Bergey’s Manual Trust. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
    [Show full text]
  • Taxogenomics of the Genus Cyclobacterium: Cyclobacterium Xiamenense and Cyclobacterium Halophilum As Synonyms and Description of Cyclobacterium Plantarum Sp
    microorganisms Article Taxogenomics of the Genus Cyclobacterium: Cyclobacterium xiamenense and Cyclobacterium halophilum as Synonyms and Description of Cyclobacterium plantarum sp. nov. Azadeh Shahinpei 1, Mohammad Ali Amoozegar 1 , Leila Mirfeizi 1, Mahdi Moshtaghi Nikou 2, Antonio Ventosa 3,* and Cristina Sánchez-Porro 3 1 Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 1417414418 Tehran, Iran; [email protected] (A.S.); [email protected] (M.A.A.); [email protected] (L.M.) 2 Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR, 1551916111 Tehran, Iran; [email protected] 3 Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-954-556-765 Received: 5 April 2020; Accepted: 20 April 2020; Published: 23 April 2020 Abstract: The genus Cyclobacterium belongs to the phylum Bacteroidetes and includes eight species. Our study, based on the genomic parameters in silico DNA–DNA hybridization (GGDC), average nucleotide identity (OrthoANI), and average amino acid identity (AAI), confirmed that all current species of Cyclobacterium belong to this genus and constitute a coherent phylogenomic group, but with species forming two separate branches. In addition, the genome-based analyses revealed that Cyclobacterium xiamenense and Cyclobacterium halophilum are members of the same species. Besides, we carried out a taxonomic characterization of the new strain GBPx2T, isolated from the halophytic plant Salicornia sp. Analysis of its 16S rRNA gene sequence showed the highest sequence similarity (97.5%) to Cyclobacterium lianum HY9T.
    [Show full text]
  • Bacterial Endosymbiont Cardinium Csfur Genome Sequence Provides
    Zeng et al. BMC Genomics (2018) 19:688 https://doi.org/10.1186/s12864-018-5078-y RESEARCHARTICLE Open Access Bacterial endosymbiont Cardinium cSfur genome sequence provides insights for understanding the symbiotic relationship in Sogatella furcifera host Zhen Zeng1, Yating Fu1, Dongyang Guo1, Yuxuan Wu3, Olugbenga Emmanuel Ajayi1 and Qingfa Wu1,2* Abstract Background: Sogatella furcifera is a migratory pest that damages rice plants and causes severe economic losses. Due to its ability to annually migrate long distances, S. furcifera has emerged as a major pest of rice in several Asian countries. Symbiotic relationships of inherited bacteria with terrestrial arthropods have significant implications. The genus Cardinium is present in many types of arthropods, where it influences some host characteristics. We present a report of a newly identified strain of the bacterial endosymbiont Cardinium cSfur in S. furcifera. Result: From the whole genome of S. furcifera previously sequenced by our laboratory, we assembled the whole genome sequence of Cardinium cSfur. The sequence comprised 1,103,593 bp with a GC content of 39.2%. The phylogenetic tree of the Bacteroides phylum to which Cardinium cSfur belongs suggests that Cardinium cSfur is closely related to the other strains (Cardinium cBtQ1 and cEper1) that are members of the Amoebophilaceae family. Genome comparison between the host-dependent endosymbiont including Cardinium cSfur and free- living bacteria revealed that the endosymbiont has a smaller genome size and lower GC content, and has lost some genes related to metabolism because of its special environment, which is similar to the genome pattern observed in other insect symbionts. Cardinium cSfur has limited metabolic capability, which makes it less contributive to metabolic and biosynthetic processes in its host.
    [Show full text]
  • Heterotrophic Bacteria from Brackish Water of the Southern Baltic Sea
    Heterotrophic bacteria OCEANOLOGIA, 48 (4), 2006. pp. 525–543. from brackish water of C 2006, by Institute of the southern Baltic Oceanology PAS. Sea: biochemical and KEYWORDS molecular identification Heterotrophic bacteria and characterisation* Polyphasic study Brackish water Agnieszka Cabaj1,∗ Katarzyna Palińska2 Alicja Kosakowska1 Julianna Kurlenda3 1 Institute of Oceanology, Polish Academy of Sciences, Powstańców Warszawy 55, PL–81–712 Sopot, Poland; e-mail: [email protected] ∗corresponding author 2 Institute for Chemistry and Biology of the Marine Environment, AG Geomicrobiology, Carl von Ossietzky University, PO Box 2503, D–26111 Oldenburg, Germany 3 Department of Clinical Bacteriology, Provincial Technical Hospital, Nowe Ogrody 1–6, PL–80–803 Gdańsk, Poland Received 28 June 2006, revised 8 November 2006, accepted 13 November 2006. Abstract Six bacterial strains isolated from the surface water of the southern Baltic Sea were described on the basis of their morphological, physiological and biochemical features, and were classified on the basis of 16S rDNA sequence analysis. Comparative analyses of the 16S rDNA sequences of five of the six bacterial strains * The study was partially supported by the Centre of Excellence for Shelf Seas Sciences, Institute of Oceanology PAS, FP5 programme, contract No EFK3-CT 2002-80004, as a part of the statutory activities of the Institute of Oceanology PAS (grant No II.3) and by the Polish State Committee for Scientific Research (grant No 2 PO4E 026 30, 2006–2008). The complete text of the paper is available at http://www.iopan.gda.pl/oceanologia/ 526 A. Cabaj, K. Palińska, A. Kosakowska, J. Kurlenda examined displayed a ≥ 98% similarity to the sequences available in the NCBI GenBank.
    [Show full text]