Mooreia Alkaloidigena Gen. Nov., Sp. Nov. and Catalinimonas Alkaloidigena Gen

Total Page:16

File Type:pdf, Size:1020Kb

Mooreia Alkaloidigena Gen. Nov., Sp. Nov. and Catalinimonas Alkaloidigena Gen International Journal of Systematic and Evolutionary Microbiology (2013), 63, 1219–1228 DOI 10.1099/ijs.0.043752-0 Mooreia alkaloidigena gen. nov., sp. nov. and Catalinimonas alkaloidigena gen. nov., sp. nov., alkaloid-producing marine bacteria in the proposed families Mooreiaceae fam. nov. and Catalimonadaceae fam. nov. in the phylum Bacteroidetes Eun Ju Choi, Deanna S. Beatty, Lauren A. Paul, William Fenical and Paul R. Jensen Correspondence Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University Paul R. Jensen of California San Diego, La Jolla, CA 92093-0204, USA [email protected] Bacterial strains CNX-216T and CNU-914T were isolated from marine sediment samples collected from Palmyra Atoll and off Catalina Island, respectively. Both strains were Gram- negative and aerobic and produce deep-orange to pink colonies and alkaloid secondary metabolites. Cells of strain CNX-216T were short, non-motile rods, whereas cells of strain CNU- 914T were short, curved rods with gliding motility. The DNA G+C contents of CNX-216T and CNU-914T were respectively 57.7 and 44.4 mol%. Strains CNX-216T and CNU-914T contained MK-7 as the predominant menaquinone and iso-C15 : 0 and C16 : 1v5c as the major fatty acids. Phylogenetic analyses revealed that both strains belong to the order Cytophagales in the phylum Bacteroidetes. Strain CNX-216T exhibited low 16S rRNA gene sequence identity (87.1 %) to the nearest type strain, Cesiribacter roseus 311T, and formed a well-supported lineage that is outside all currently described families in the order Cytophagales. Strain CNU-914T shared 97.6 % 16S rRNA gene sequence identity with ‘Porifericola rhodea’ N5EA6-3A2B and, together with ‘Tunicatimonas pelagia’ N5DB8-4 and four uncharacterized marine bacteria isolated as part of this study, formed a lineage that is clearly distinguished from other families in the order Cytophagales. Based on our polyphasic taxonomic characterization, we propose that strains CNX-216T and CNU-914T represent novel genera and species, for which we propose the names Mooreia alkaloidigena gen. nov., sp. nov. (type strain CNX-216T 5DSM 25187T 5KCCM 90102T) and Catalinimonas alkaloidigena gen. nov., sp. nov. (type strain CNU-914T 5DSM 25186T 5KCCM 90101T) within the new families Mooreiaceae fam. nov. and Catalimonadaceae fam. nov. Marine environments harbour remarkable levels of bacterial (Go´mez-Pereira et al., 2012) and have been reported to diversity (Giovannoni et al., 1990), much of which appears play a major role in the degradation of organic matter in to be uniquely marine. The vast majority of this diversity has marine ecosystems (Kirchman, 2002). While the phylum yet to be cultured (Rappe´ & Giovannoni, 2003), creating a Bacteroidetes has been the subject of considerable taxonomic major void between that which is known to exist and that revision (Gupta, 2004), it is currently comprised of four which has been subjected to systematic evaluation. Among large classes (Bacteroidia, Cytophagia, Flavobacteria and the bacteria frequently observed in marine samples are Sphingobacteriia) and corresponding orders (Bacteroidales, members of the phylum Bacteroidetes (formerly the Cytophagales, Flavobacteriales and Sphingobacteriales) (Ludwig Cytophaga–Flavobacteria–Bacteroidetes group). Members of et al., 2010). this phylum are known to colonize marine particles Within the phylum Bacteroidetes, the order Cytophagales The GenBank/EMBL/DDBJ accession numbers for the 16S rRNA gene includes a morphologically diverse assemblage of unicel- sequences of strains CNX-216T and CNU-914T are JN368460 and lular Gram-negative bacteria, many of which display JN368461. gliding motility (Reichenbach, 2006). Defining character- Two supplementary figures are available with the online version of this paper. istics of the order Cytophagales include the production of 043752 G 2013 IUMS Printed in Great Britain 1219 E. J. Choi and others flexirubin-type pigments, starch hydrolysis and the posses- using API 50CH test strips (bioMe´rieux) according to the sion of menaquinone 7 (MK-7) (Reichenbach, 2006). As manufacturer’s recommendations. In addition, API 20E, with other members of the phylum Bacteroidetes,manyofthe API 20NE and API ZYM kits (bioMe´rieux) were used to species in the order Cytophagales occur in marine or saline determine additional biochemical properties. environments. At the time of writing, there are four Fatty acid methyl esters were analysed according to the recognized families within this order (Cyclobacteriaceae, MIDI/Hewlett Packard Microbial Identification System Cytophagaceae, Flammeovirgaceae and Rhodothermaceae) T protocols from biomass generated from strains CNX-216 and 58 genera (http://www.bacterio.cict.fr/classifphyla.html). T and CNU-914 grown on MA plates for 72 h at 25 uC. We cultured two alkaloid-producing strains of Gram- DNA G+C content was determined by HPLC analysis as negative bacteria from marine sediment samples collected described previously (Martin et al., 1997). Isoprenoid from the remote Pacific island atoll of Palmyra (strain quinones were extracted and separated by HPLC as CNX-216T) and off the Channel Islands, California (strain described previously (Bligh & Dyer, 1959; Collins & CNU-914T). Based on a polyphasic taxonomic analysis, we Jones, 1981). Cell motility and morphology were observed propose that these two strains represent two novel genera using phase-contrast microscopy and scanning electron and species within the proposed families Mooreiaceae fam. microscopy. For electron microscopy, samples were pre- nov. and Catalimonadaceae fam. nov. within the order pared according to standard protocols (Collins et al., Cytophagales. 1993). T Marine sediment samples were collected in sterile Whirl- Chromosomal DNA from strains CNX-216 and CNU- T pac bags by divers and dried overnight in a laminar flow 914 was isolated using the QIAamp DNA Mini kit hood. Dried sediments were stamped onto P1 agar plates (Qiagen). 16S rRNA genes were amplified by PCR using (18.0 g agar, 1 l filtered seawater) using sterile foam plugs the universal primers 27f and 1492r, purified using the as described previously (Jensen et al., 2005) and incubated MinElute PCR purification kit (Qiagen) according to the at room temperature (approx. 25 uC) for 2 months. The manufacturer’s instructions and sequenced on a Perkin- amount of sediment added to each plate varied depending Elmer capillary sequencer (model ABI 3730XL; Applied on how well it adhered to the foam plug, but was estimated Biosystems) using the same primers. The sequences were in most cases to be ,100 mg. Both strains were analysed using the BLAST algorithm (Altschul et al., 1990) subsequently obtained in pure culture by repeated streak- and a multiple sequence alignment of representative ing onto medium A1 (10.0 g starch, 4.0 g yeast extract, sequences was created using CLUSTAL W version 1.8 2.0 g peptone, 18.0 g agar, 1 l filtered seawater). Each (Thompson et al., 1994). Neighbour-joining and max- strain was then cultured in liquid A1 medium for 7 days imum-likelihood trees were generated using MEGA5 while shaking at 230 r.p.m. (25 uC) and cryopreserved at (Tamura et al., 2011). 280 uC in 20 % (v/v) glycerol. Strain CNX-216T was isolated from a marine sediment Both strains were inoculated onto A1 agar, marine agar sample collected at a depth of 7 m from Penguin Spit, 2216 (MA; Difco), nutrient agar (Difco), R2A agar (Difco), inside the fringing reef at Palmyra Atoll in the Northern Czapek–Dox (CD) agar (Difco) and tryptic soy agar (TSA; Line Islands. This atoll is more than 1600 km from Hawaii u and represents one of the most remote shallow-water Mediatech) and incubated at 25 C for 7 days for T morphological studies. The temperature range for growth marine ecosystems on Earth. CNX-216 is a Gram- of strains CNX-216T and CNU-914T was examined from 4 negative, aerobic, non-motile, rod-shaped bacterium. It to 45 uC (in 5 uC intervals) on these same media. NaCl forms dark-orange, rounded colonies on A1 agar and MA requirements were examined on A1 medium (using at 25 uC and produces umbonate colonies with lobate distilled water instead of filtered seawater) containing margins on nutrient agar and R2A agar. It grows well NaCl at concentrations from 0 to 15 % (w/v) (in 1 % between 20 and 40 uC, with an optimal temperature of intervals). Growth at pH 1–11 (in 1 pH unit intervals) was 30 uC. The strain did not grow at 4–15 or 45 uC on any tested in marine broth. Gram staining was performed media and only grew on nutrient agar and medium R2A at according to established protocols (Gerhardt, 1981). 20–30 uC. No growth was observed on CD agar or TSA at any temperature. Moreover, colonies were detected on Anaerobic growth was tested for 7 days at 25 uConA1 medium prepared with 0–8 % NaCl but not at higher NaCl agar and MA in an anaerobic jar. Flexirubin-type pigment T production and CM-cellulose hydrolysis were determined concentrations. Growth of strain CNX-216 was observed at pH 5–8 but not at pH 1–4 or 9–11. as described previously (Bernardet et al., 2002). Casein, agar and starch hydrolysis was determined according to The 16S rRNA gene sequence of strain CNX-216T (1424 bp) T established methods (Smibert & Krieg, 1994), as was chitin was analysed using the BLAST algorithm. CNX-216 shares the hydrolysis (Høvik Hansen & Sørheim, 1991). Catalase closest sequence identity with Cesiribacter roseus 311T (87.1 %) activity was determined by assessing bubble production in (Liu et al., 2012), C. andamanensis AMV16T (86.8 %) (Srinivas T 3 % (v/v) H2O2 and oxidase activity was determined using et al., 2011), Adhaeribacter aerolatus 6515J-31 (86.6 %), A. a 1 % (w/v) solution of tetramethyl-p-phenylenediamine aerophilus 6424S-25T (85.8 %) (Weon et al., 2010) and (Kova´cs, 1956). Carbohydrate metabolism was investigated Litoribacter ruber YIM CH208T (85.7 %) (Tian et al., 2010).
Recommended publications
  • Runella Slithyformis Type Strain (LSU 4(T))
    Lawrence Berkeley National Laboratory Recent Work Title Complete genome sequence of the aquatic bacterium Runella slithyformis type strain (LSU 4(T)). Permalink https://escholarship.org/uc/item/52p6k8qb Journal Standards in genomic sciences, 6(2) ISSN 1944-3277 Authors Copeland, Alex Zhang, Xiaojing Misra, Monica et al. Publication Date 2012-05-04 DOI 10.4056/sigs.2475579 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Standards in Genomic Sciences (2012) 6:145-154 DOI:10.4056/sigs.2485911 Complete genome sequence of the aquatic bacterium T Runella slithyformis type strain (LSU 4 ) Alex Copeland1, Xiaojing Zhang1,2, Monica Misra1,2, Alla Lapidus1, Matt Nolan1, Susan Lucas1, Shweta Deshpande1, Jan-Fang Cheng1, Roxanne Tapia1,2, Lynne A. Goodwin1,2, Sam Pitluck1, Konstantinos Liolios1, Ioanna Pagani1, Natalia Ivanova1, Natalia Mikhailova1, Amrita Pati1, Amy Chen3, Krishna Palaniappan3, Miriam Land1,4, Loren Hauser1,4, Chongle Pan1,4, Cynthia D. Jeffries1,4, John C. Detter1, Evelyne-Marie Brambilla5, Manfred Rohde6, Olivier D. Ngatchou Djao6, Markus Göker5, Johannes Sikorski5, Brian J. Tindall5, Tanja Woyke1, James Bristow1, Jonathan A. Eisen1,7, Victor Markowitz3, Philip Hugenholtz1,8, Nikos C. Kyrpides1, Hans-Peter Klenk5*, and Konstantinos Mavromatis1 1 DOE Joint Genome Institute, Walnut Creek, California, USA 2 Los Alamos National Laboratory, Bioscience Division, Los Alamos, New Mexico, USA 3 Biological Data Management and Technology Center, Lawrence Berkeley National Laboratory, Berkeley,
    [Show full text]
  • Isolation and Characterization of Achromobacter Sp. CX2 From
    Ann Microbiol (2015) 65:1699–1707 DOI 10.1007/s13213-014-1009-6 ORIGINAL ARTICLE Isolation and characterization of Achromobacter sp. CX2 from symbiotic Cytophagales, a non-cellulolytic bacterium showing synergism with cellulolytic microbes by producing β-glucosidase Xiaoyi Chen & Ying Wang & Fan Yang & Yinbo Qu & Xianzhen Li Received: 27 August 2014 /Accepted: 24 November 2014 /Published online: 10 December 2014 # Springer-Verlag Berlin Heidelberg and the University of Milan 2014 Abstract A Gram-negative, obligately aerobic, non- degradation by cellulase (Carpita and Gibeaut 1993). There- cellulolytic bacterium was isolated from the cellulolytic asso- fore, efficient degradation is the result of multiple activities ciation of Cytophagales. It exhibits biochemical properties working synergistically to efficiently solubilize crystalline cel- that are consistent with its classification in the genus lulose (Sánchez et al. 2004;Lietal.2009). Most known Achromobacter. Phylogenetic analysis together with the phe- cellulolytic organisms produce multiple cellulases that act syn- notypic characteristics suggest that the isolate could be a novel ergistically on native cellulose (Wilson 2008)aswellaspro- species of the genus Achromobacter and designated as CX2 (= duce some other proteins that enhance cellulose hydrolysis CGMCC 1.12675=CICC 23807). The strain CX2 is the sym- (Wang et al. 2011a, b). Synergistic cooperation of different biotic microbe of Cytophagales and produces β-glucosidase. enzymes is a prerequisite for the efficient degradation of cellu- The results showed that the non-cellulolytic Achromobacter lose (Jalak et al. 2012). Both Trichoderma reesi and Aspergillus sp. CX2 has synergistic activity with cellulolytic microbes by niger were co-cultured to increase the levels of different enzy- producing β-glucosidase.
    [Show full text]
  • Identification of Active Methylotroph Populations in an Acidic Forest Soil
    Microbiology (2002), 148, 2331–2342 Printed in Great Britain Identification of active methylotroph populations in an acidic forest soil by stable- isotope probing Stefan Radajewski,1 Gordon Webster,2† David S. Reay,3‡ Samantha A. Morris,1 Philip Ineson,4 David B. Nedwell,3 James I. Prosser2 and J. Colin Murrell1 Author for correspondence: J. Colin Murrell. Tel: j44 24 7652 2553. Fax: j44 24 7652 3568. e-mail: cmurrell!bio.warwick.ac.uk 1 Department of Biological Stable-isotope probing (SIP) is a culture-independent technique that enables Sciences, University of the isolation of DNA from micro-organisms that are actively involved in a Warwick, Coventry CV4 7AL, UK specific metabolic process. In this study, SIP was used to characterize the active methylotroph populations in forest soil (pH 35) microcosms that were exposed 2 Department of Molecular 13 13 13 13 and Cell Biology, to CH3OH or CH4. Distinct C-labelled DNA ( C-DNA) fractions were resolved University of Aberdeen, from total community DNA by CsCl density-gradient centrifugation. Analysis of Institute of Medical 16S rDNA sequences amplified from the 13C-DNA revealed that bacteria related Sciences, Foresterhill, Aberdeen AB25 2ZD, UK to the genera Methylocella, Methylocapsa, Methylocystis and Rhodoblastus had assimilated the 13C-labelled substrates, which suggested that moderately 3 Department of Biological Sciences, University of acidophilic methylotroph populations were active in the microcosms. Essex, Wivenhoe Park, Enrichments targeted towards the active proteobacterial CH3OH utilizers were Colchester, Essex CO4 3SQ, successful, although none of these bacteria were isolated into pure culture. A UK parallel analysis of genes encoding the key enzymes methanol dehydrogenase 4 Department of Biology, and particulate methane monooxygenase reflected the 16S rDNA analysis, but University of York, PO Box 373, YO10 5YW, UK unexpectedly revealed sequences related to the ammonia monooxygenase of ammonia-oxidizing bacteria (AOB) from the β-subclass of the Proteobacteria.
    [Show full text]
  • Eelgrass Sediment Microbiome As a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan
    Microbes Environ. Vol. 34, No. 1, 13-22, 2019 https://www.jstage.jst.go.jp/browse/jsme2 doi:10.1264/jsme2.ME18103 Eelgrass Sediment Microbiome as a Nitrous Oxide Sink in Brackish Lake Akkeshi, Japan TATSUNORI NAKAGAWA1*, YUKI TSUCHIYA1, SHINGO UEDA1, MANABU FUKUI2, and REIJI TAKAHASHI1 1College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252–0880, Japan; and 2Institute of Low Temperature Science, Hokkaido University, Kita-19, Nishi-8, Kita-ku, Sapporo, 060–0819, Japan (Received July 16, 2018—Accepted October 22, 2018—Published online December 1, 2018) Nitrous oxide (N2O) is a powerful greenhouse gas; however, limited information is currently available on the microbiomes involved in its sink and source in seagrass meadow sediments. Using laboratory incubations, a quantitative PCR (qPCR) analysis of N2O reductase (nosZ) and ammonia monooxygenase subunit A (amoA) genes, and a metagenome analysis based on the nosZ gene, we investigated the abundance of N2O-reducing microorganisms and ammonia-oxidizing prokaryotes as well as the community compositions of N2O-reducing microorganisms in in situ and cultivated sediments in the non-eelgrass and eelgrass zones of Lake Akkeshi, Japan. Laboratory incubations showed that N2O was reduced by eelgrass sediments and emitted by non-eelgrass sediments. qPCR analyses revealed that the abundance of nosZ gene clade II in both sediments before and after the incubation as higher in the eelgrass zone than in the non-eelgrass zone. In contrast, the abundance of ammonia-oxidizing archaeal amoA genes increased after incubations in the non-eelgrass zone only. Metagenome analyses of nosZ genes revealed that the lineages Dechloromonas-Magnetospirillum-Thiocapsa and Bacteroidetes (Flavobacteriia) within nosZ gene clade II were the main populations in the N2O-reducing microbiome in the in situ sediments of eelgrass zones.
    [Show full text]
  • The Sunlit Microoxic Niche of the Archaeal Eukaryotic Ancestor Comes 2 to Light
    bioRxiv preprint doi: https://doi.org/10.1101/385732; this version posted August 20, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 The sunlit microoxic niche of the archaeal eukaryotic ancestor comes 2 to light 3 4 Paul-Adrian Bulzu1#, Adrian-Ştefan Andrei2#, Michaela M. Salcher3, Maliheh Mehrshad2, 5 Keiichi Inoue5, Hideki Kandori6, Oded Beja4, Rohit Ghai2*, Horia L. Banciu1,7 6 1Department of Molecular Biology and Biotechnology, Faculty of Biology and Geology, Babeş-Bolyai 7 University, Cluj-Napoca, Romania 8 2Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Academy 9 of Sciences of the Czech Republic, České Budějovice, Czech Republic. 10 3Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 11 CH-8802 Kilchberg, Switzerland. 12 4Faculty of Biology, Technion Israel Institute of Technology, Haifa, Israel. 13 5The Institute for Solid State Physics, The University of Tokyo, Kashiwa, Japan 14 6Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan. 15 7Molecular Biology Center, Institute for Interdisciplinary Research in Bio-Nano-Sciences, Babeş- 16 Bolyai University, Cluj-Napoca, Romania 17 18 19 20 21 # These authors contributed equally to this work 22 *Corresponding author: Rohit Ghai 23 Institute of Hydrobiology, Department of Aquatic Microbial Ecology, Biology Centre of the Academy 24 of Sciences of the Czech Republic, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
    [Show full text]
  • Taxonomy JN869023
    Species that differentiate periods of high vs. low species richness in unattached communities Species Taxonomy JN869023 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 JN674641 Bacteria; Bacteroidetes; [Saprospirae]; [Saprospirales]; Chitinophagaceae; Sediminibacterium JN869030 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales; ACK-M1 U51104 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae; Limnohabitans JN868812 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae JN391888 Bacteria; Planctomycetes; Planctomycetia; Planctomycetales; Planctomycetaceae; Planctomyces HM856408 Bacteria; Planctomycetes; Phycisphaerae; Phycisphaerales GQ347385 Bacteria; Verrucomicrobia; [Methylacidiphilae]; Methylacidiphilales; LD19 GU305856 Bacteria; Proteobacteria; Alphaproteobacteria; Rickettsiales; Pelagibacteraceae GQ340302 Bacteria; Actinobacteria; Actinobacteria; Actinomycetales JN869125 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae New.ReferenceOTU470 Bacteria; Cyanobacteria; ML635J-21 JN679119 Bacteria; Proteobacteria; Betaproteobacteria; Burkholderiales; Comamonadaceae HM141858 Bacteria; Acidobacteria; Holophagae; Holophagales; Holophagaceae; Geothrix FQ659340 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; auto67_4W AY133074 Bacteria; Elusimicrobia; Elusimicrobia; Elusimicrobiales FJ800541 Bacteria; Verrucomicrobia; [Pedosphaerae]; [Pedosphaerales]; R4-41B JQ346769 Bacteria; Acidobacteria; [Chloracidobacteria]; RB41; Ellin6075
    [Show full text]
  • Table S5. the Information of the Bacteria Annotated in the Soil Community at Species Level
    Table S5. The information of the bacteria annotated in the soil community at species level No. Phylum Class Order Family Genus Species The number of contigs Abundance(%) 1 Firmicutes Bacilli Bacillales Bacillaceae Bacillus Bacillus cereus 1749 5.145782459 2 Bacteroidetes Cytophagia Cytophagales Hymenobacteraceae Hymenobacter Hymenobacter sedentarius 1538 4.52499338 3 Gemmatimonadetes Gemmatimonadetes Gemmatimonadales Gemmatimonadaceae Gemmatirosa Gemmatirosa kalamazoonesis 1020 3.000970902 4 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas indica 797 2.344876284 5 Firmicutes Bacilli Lactobacillales Streptococcaceae Lactococcus Lactococcus piscium 542 1.594633558 6 Actinobacteria Thermoleophilia Solirubrobacterales Conexibacteraceae Conexibacter Conexibacter woesei 471 1.385742446 7 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas taxi 430 1.265115184 8 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas wittichii 388 1.141545794 9 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas sp. FARSPH 298 0.876754244 10 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sorangium cellulosum 260 0.764953367 11 Proteobacteria Deltaproteobacteria Myxococcales Polyangiaceae Sorangium Sphingomonas sp. Cra20 260 0.764953367 12 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas Sphingomonas panacis 252 0.741416341
    [Show full text]
  • Ice-Nucleating Particles Impact the Severity of Precipitations in West Texas
    Ice-nucleating particles impact the severity of precipitations in West Texas Hemanth S. K. Vepuri1,*, Cheyanne A. Rodriguez1, Dimitri G. Georgakopoulos4, Dustin Hume2, James Webb2, Greg D. Mayer3, and Naruki Hiranuma1,* 5 1Department of Life, Earth and Environmental Sciences, West Texas A&M University, Canyon, TX, USA 2Office of Information Technology, West Texas A&M University, Canyon, TX, USA 3Department of Environmental Toxicology, Texas Tech University, Lubbock, TX, USA 4Department of Crop Science, Agricultural University of Athens, Athens, Greece 10 *Corresponding authors: [email protected] and [email protected] Supplemental Information 15 S1. Precipitation and Particulate Matter Properties S1.1 Precipitation Categorization In this study, we have segregated our precipitation samples into four different categories, such as (1) snows, (2) hails/thunderstorms, (3) long-lasted rains, and (4) weak rains. For this categorization, we have considered both our observation-based as well as the disdrometer-assigned National Weather Service (NWS) 20 code. Initially, the precipitation samples had been assigned one of the four categories based on our manual observation. In the next step, we have used each NWS code and its occurrence in each precipitation sample to finalize the precipitation category. During this step, a precipitation sample was categorized into snow, only when we identified a snow type NWS code (Snow: S-, S, S+ and/or Snow Grains: SG). Likewise, a precipitation sample was categorized into hail/thunderstorm, only when the cumulative sum of NWS codes for hail was 25 counted more than five times (i.e., A + SP ≥ 5; where A and SP are the codes for soft hail and hail, respectively).
    [Show full text]
  • Diversity of Free-Living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Theses and Dissertations 2016 Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota Bibha Dahal South Dakota State University Follow this and additional works at: http://openprairie.sdstate.edu/etd Part of the Bacteriology Commons, and the Environmental Microbiology and Microbial Ecology Commons Recommended Citation Dahal, Bibha, "Diversity of Free-living Nitrogen Fixing Bacteria in the Badlands of South Dakota" (2016). Theses and Dissertations. 688. http://openprairie.sdstate.edu/etd/688 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. DIVERSITY OF FREE-LIVING NITROGEN FIXING BACTERIA IN THE BADLANDS OF SOUTH DAKOTA BY BIBHA DAHAL A thesis submitted in partial fulfillment of the requirements for the Master of Science Major in Biological Sciences Specialization in Microbiology South Dakota State University 2016 iii ACKNOWLEDGEMENTS “Always aim for the moon, even if you miss, you’ll land among the stars”.- W. Clement Stone I would like to express my profuse gratitude and heartfelt appreciation to my advisor Dr. Volker Brӧzel for providing me a rewarding place to foster my career as a scientist. I am thankful for his implicit encouragement, guidance, and support throughout my research. This research would not be successful without his guidance and inspiration.
    [Show full text]
  • Taxon-Specific Aerosolization of Bacteria and Viruses in An
    ARTICLE DOI: 10.1038/s41467-018-04409-z OPEN Taxon-specific aerosolization of bacteria and viruses in an experimental ocean-atmosphere mesocosm Jennifer M. Michaud1, Luke R. Thompson 2,3,4, Drishti Kaul5, Josh L. Espinoza5, R. Alexander Richter5, Zhenjiang Zech Xu2, Christopher Lee1, Kevin M. Pham1, Charlotte M. Beall6, Francesca Malfatti6,7, Farooq Azam6, Rob Knight 2,8,9, Michael D. Burkart 1, Christopher L. Dupont5 & Kimberly A. Prather1,6 1234567890():,; Ocean-derived, airborne microbes play important roles in Earth’s climate system and human health, yet little is known about factors controlling their transfer from the ocean to the atmosphere. Here, we study microbiomes of isolated sea spray aerosol (SSA) collected in a unique ocean–atmosphere facility and demonstrate taxon-specific aerosolization of bacteria and viruses. These trends are conserved within taxonomic orders and classes, and temporal variation in aerosolization is similarly shared by related taxa. We observe enhanced transfer into SSA of Actinobacteria, certain Gammaproteobacteria, and lipid-enveloped viruses; conversely, Flavobacteriia, some Alphaproteobacteria, and Caudovirales are generally under- represented in SSA. Viruses do not transfer to SSA as efficiently as bacteria. The enrichment of mycolic acid-coated Corynebacteriales and lipid-enveloped viruses (inferred from genomic comparisons) suggests that hydrophobic properties increase transport to the sea surface and SSA. Our results identify taxa relevant to atmospheric processes and a framework to further elucidate aerosolization mechanisms influencing microbial and viral transport pathways. 1 Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA 92093, USA. 2 Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA.
    [Show full text]
  • A Report of Nine Unrecorded Bacterial Species in the Phylum Bacteroidetes Collected from Freshwater Environments in Korea
    Journal of Species Research 7(3):187-192, 2018 A report of nine unrecorded bacterial species in the phylum Bacteroidetes collected from freshwater environments in Korea Sanghwa Park, Kiwoon Beak, Ji-Hye Han, Yoon-Jong Nam and Mi-Hwa Lee* Bacterial Resources Research Division, Freshwater Bioresources Research Bureau, Nakdonggang National Institute of Biological Resources (NNIBR), Sangju, Gyengsangbuk-do 37242, Republic of Korea *Correspondent: [email protected] During a comprehensive study of indigenous prokaryotic species in South Korea, nine bacterial species in the phylum Bacteroidetes were isolated from freshwater environmental samples that were collected from three major rivers in the Republic of Korea. High 16S rRNA gene sequence similarity (≥98.7%) and robust phylogenetic clades with the closely related species suggest that each strain was correctly assigned to an independent and predefined bacterial species. There were no previous reports of these nine species in Korea. Within the phylum Bacteroidetes, four species were assigned to the genus Flavobacterium, order Flavobac- teriales, and five species to three genera of two families in the order Cytophagales. Gram reaction, colony and cell morphology, basic biochemical characteristics, isolation source, and strain IDs are described in the species description section. Keywords: ‌16S rRNA gene, Bacteroidetes, Flavobacteriales, Cytophagales, unrecorded species Ⓒ 2018 National Institute of Biological Resources DOI:10.12651/JSR.2018.7.3.187 INTRODUCTION MATERIALS AND METHODS The phylum Bacteroidetes (Ludwig and Klenk, 2001), Samples of freshwater, brackish water, and sediment also known as the Bacteroides-Cytophaga-Flexibacter were collected from the Han River, Nakdong River, and group, are widely distributed over a diverse range of eco- Seomjin River.
    [Show full text]
  • Distinct Microbial Assemblages Associated with Genetic Selection for High- and Low- Muscle Yield in Rainbow Trout
    Distinct microbial assemblages associated with genetic selection for high- and low- muscle yield in rainbow trout Pratima Chapagain Middle Tennessee State University Donald Walker Middle Tennessee State University Tim Leeds USDA-ARS National Center for Cool and Cold Water Aquaculture Beth M Cleveland USDA-ARS National Center for Cool and Cold Water Aquaculture Mohamed Salem ( [email protected] ) Department of Animal and Avian Sciences, University of Maryland, college park https://orcid.org/0000- 0003-2142-6716 Research article Keywords: Aquaculture, Gut microbe function, Microbiota, Selective Breeding, Muscle yield, llet, ARS-FY- H, ARS-FY-L Posted Date: November 10th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-26816/v3 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Version of Record: A version of this preprint was published on November 23rd, 2020. See the published version at https://doi.org/10.1186/s12864-020-07204-7. Page 1/22 Abstract Background Fish gut microbial assemblages play a crucial role in the growth rate, metabolism, and immunity of the host. We hypothesized that the gut microbiota of rainbow trout was correlated with breeding program based genetic selection for muscle yield. To test this hypothesis, fecal samples from 19 sh representing an F2 high-muscle genetic line (ARS-FY-H) and 20 sh representing an F1 low-muscle yield genetic line (ARS-FY-L) were chosen for microbiota proling using the 16S rRNA gene. Signicant differences in microbial population between these two genetic lines might represent the effect of host genetic selection in structuring the gut microbiota of the host.
    [Show full text]