THE BUTTERFLY CALLED ISMERIA by BOISDUVAL and Leconte
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogenetic Relationships of Phyciodes Butterfly Species (Lepidoptera: Nymphalidae): Complex Mtdna Variation and Species Delimitations
Systematic Entomology (2003) 28, 257±273 Phylogenetic relationships of Phyciodes butterfly species (Lepidoptera: Nymphalidae): complex mtDNA variation and species delimitations NIKLAS WAHLBERG*, RITA OLIVEIRA* andJAMES A. SCOTTy *Metapopulation Research Group, Department of Ecology and Systematics, University of Helsinki, Finland, and yLakewood, Colorado, U.S.A. Abstract. Mitochondrial DNA variation wasstudied in the butterfly genus Phyciodes (Lepidoptera: Nymphalidae) by sequencing 1450 bp of the COI gene from 140 individuals of all eleven currently recognized species. The study focused on four species in particular that have been taxonomically difficult for the past century, P. tharos, P. cocyta, P. batesii and P. pulchella. A cladistic analysis of ninety-eight unique haplotypesshowedthat Phyciodes formsa monophyletic group with P. graphica as the most basal species. Of the three informal species groupsdescribed for Phyciodes, only one (the mylitta-group) isunambiguously monophyletic. Within the tharos-group, seven well supported clades were found that correspond to three taxa, P. tharos, P. pulchella and a grade consisting of P. cocyta and P. batesii haplotypesinterdigitated with each other. None of the clades is formed exclusively by one species. The patterns of haplotype variation are the result of both retained ancient polymorphism and introgression. Introgression appearsto be mostcommon between P. cocyta and P. batesii; however, these two species occur sympatrically and are morphologically and ecologically distinct, suggesting that the level of current introgression does not seem to be enough to threaten their genetic integrity. The results indicate that mitochondrial DNA sequences must be used with great caution in delimiting species, especially when infraspecific samples are few, or introgression seems to be rampant. -
Phylogenetic Relationships and Historical Biogeography of Tribes and Genera in the Subfamily Nymphalinae (Lepidoptera: Nymphalidae)
Blackwell Science, LtdOxford, UKBIJBiological Journal of the Linnean Society 0024-4066The Linnean Society of London, 2005? 2005 862 227251 Original Article PHYLOGENY OF NYMPHALINAE N. WAHLBERG ET AL Biological Journal of the Linnean Society, 2005, 86, 227–251. With 5 figures . Phylogenetic relationships and historical biogeography of tribes and genera in the subfamily Nymphalinae (Lepidoptera: Nymphalidae) NIKLAS WAHLBERG1*, ANDREW V. Z. BROWER2 and SÖREN NYLIN1 1Department of Zoology, Stockholm University, S-106 91 Stockholm, Sweden 2Department of Zoology, Oregon State University, Corvallis, Oregon 97331–2907, USA Received 10 January 2004; accepted for publication 12 November 2004 We infer for the first time the phylogenetic relationships of genera and tribes in the ecologically and evolutionarily well-studied subfamily Nymphalinae using DNA sequence data from three genes: 1450 bp of cytochrome oxidase subunit I (COI) (in the mitochondrial genome), 1077 bp of elongation factor 1-alpha (EF1-a) and 400–403 bp of wing- less (both in the nuclear genome). We explore the influence of each gene region on the support given to each node of the most parsimonious tree derived from a combined analysis of all three genes using Partitioned Bremer Support. We also explore the influence of assuming equal weights for all characters in the combined analysis by investigating the stability of clades to different transition/transversion weighting schemes. We find many strongly supported and stable clades in the Nymphalinae. We are also able to identify ‘rogue’ -
INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a Synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a Historical Sketch
ZOOLOGÍA-TAXONOMÍA www.unal.edu.co/icn/publicaciones/caldasia.htm Caldasia 31(2):407-440. 2009 HACIA UNA SÍNTESIS DE LOS PAPILIONOIDEA (INSECTA: LEPIDOPTERA) DE GUATEMALA CON UNA RESEÑA HISTÓRICA Towards a synthesis of the Papilionoidea (Insecta: Lepidoptera) from Guatemala with a historical sketch JOSÉ LUIS SALINAS-GUTIÉRREZ El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] CLAUDIO MÉNDEZ Escuela de Biología, Universidad de San Carlos, Ciudad Universitaria, Campus Central USAC, Zona 12. Guatemala, Guatemala. [email protected] MERCEDES BARRIOS Centro de Estudios Conservacionistas (CECON), Universidad de San Carlos, Avenida La Reforma 0-53, Zona 10, Guatemala, Guatemala. [email protected] CARMEN POZO El Colegio de la Frontera Sur (ECOSUR). Unidad Chetumal. Av. Centenario km. 5.5, A. P. 424, C. P. 77900. Chetumal, Quintana Roo, México, México. [email protected] JORGE LLORENTE-BOUSQUETS Museo de Zoología, Facultad de Ciencias, UNAM. Apartado Postal 70-399, México D.F. 04510; México. [email protected]. Autor responsable. RESUMEN La riqueza biológica de Mesoamérica es enorme. Dentro de esta gran área geográfi ca se encuentran algunos de los ecosistemas más diversos del planeta (selvas tropicales), así como varios de los principales centros de endemismo en el mundo (bosques nublados). Países como Guatemala, en esta gran área biogeográfi ca, tiene grandes zonas de bosque húmedo tropical y bosque mesófi lo, por esta razón es muy importante para analizar la diversidad en la región. Lamentablemente, la fauna de mariposas de Guatemala es poco conocida y por lo tanto, es necesario llevar a cabo un estudio y análisis de la composición y la diversidad de las mariposas (Lepidoptera: Papilionoidea) en Guatemala. -
Arthropods of Elm Fork Preserve
Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux. -
A Time-Calibrated Phylogeny of the Butterfly Tribe Melitaeini
UC Davis UC Davis Previously Published Works Title A time-calibrated phylogeny of the butterfly tribe Melitaeini. Permalink https://escholarship.org/uc/item/1h20r22z Journal Molecular phylogenetics and evolution, 79(1) ISSN 1055-7903 Authors Long, Elizabeth C Thomson, Robert C Shapiro, Arthur M Publication Date 2014-10-01 DOI 10.1016/j.ympev.2014.06.010 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Molecular Phylogenetics and Evolution 79 (2014) 69–81 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A time-calibrated phylogeny of the butterfly tribe Melitaeini ⇑ Elizabeth C. Long a, , Robert C. Thomson b, Arthur M. Shapiro a a Center for Population Biology and Department of Evolution and Ecology, University of California, Davis, CA 95616, USA b Department of Biology, University of Hawaii at Manoa, Honolulu, HI 96822, USA article info abstract Article history: The butterfly tribe Melitaeini [Nymphalidae] contains numerous species that have been the subjects of a Received 10 March 2014 wide range of biological studies. Despite numerous taxonomic revisions, many of the evolutionary Revised 22 May 2014 relationships within the tribe remain unresolved. Utilizing mitochondrial and nuclear gene regions, we Accepted 11 June 2014 produced a time-calibrated phylogenetic hypothesis for 222 exemplars comprising at least 178 different Available online 18 June 2014 species and 21 of the 22 described genera, making this the most complete phylogeny of the tribe to date. Our results suggest that four well-supported clades corresponding to the subtribes Euphydryina, Keywords: Chlosynina, Melitaeina, and Phyciodina exist within the tribe. -
Biology and Systematics of Phyciodes (Phyciodes)
cf#']i:z 10 Feb. 20, 1998 PAPILIO ~ $4.00 - ..- ·-- .. -· - ~- - PHYCIODES (PHYCIOD£S): N£W DISCOVERIES, NEW SUBSPECIES, AND comf£R6ENCE by DR. JAMES A. SCOTT 60 Estes Street, Lakewood, Colorado 80226 Abstract. The paper presents new discoveries in Phyciodes (Phyciodes ). New life history information is given for P. mylitta arizonensis, P. pallida pallida, P. pallida barnesi, P. tharos tharos, P. cocyta selenis, P. cocyta dimin'utor, P. batesii lakota, P. b. apsaalooke, P. b. anasazi, P. pulchella camillus, and P. picta picta. P. batesii anasazi was found to significantly converge toward P. cocyta in western Colorado in appearance of some adults larvae and pupae, and P. cocyta selenis from the same area was found to converge a little toward anasazi in adult wing pattern and larval head pattern, so some individuals of these two tax.a are difficult to distinguish. The nomenclatural identity of P. tharos form marcia is clarified. Five new subspecies are named: P. tharos orantain has orange antenna nudum and is somewhat intermediate between P. tharos tharos and P. cocyta. P. cocyta diminutor is multivoltine with late-flying summer generations that are small like P. tharos, and might possibly even be a separate species from the sympatric univoltine larger P. cocyta selenis. P. pulchella deltarufa has oranger ups than ssp. pulchella. P. pulchella owimba differs from ssp. pulchella by having an orange antenna nudum and some different wing pattern details. P. phaon jalapeno has paler median ups bands. INTRODUCTION Scott (1994) reported on the systematics and biology of Phyciodes (Phyciodes), described numerous new life histories, named five new tax.a, and corrected prior nomenclature. -
Butterfly Checklist 2013 Date Or Location of Observation ABCD
Butterfly Checklist 2013 Date or Location of Observation ABCD Skippers (Hesperiidae) Silver-spotted Skipper (Epargyreus clarus) N, U Northern Cloudywing (Thorybes pylades) N, R Wild Indigo Duskywing (Erynnis baptisiae) N, C Dreamy Duskywing (Erynnis icelus) N, U Juvenal's Duskywing (Erynnis juvenalis) N, C Columbine Duskywing (Erynnis lucilius) N, U Mottled Duskywing (Erynnis martialis) N, R Common Sootywing (Pholisora catullus) N, U Arctic Skipper (Carterocephalus palaemon) N, U Least Skipper (Ancyloxypha numitor) N, C European Skipper (Thymelicus lineola) E Fiery Skipper (Hylephila phyleus) N, R Leonardus Skipper (Hesperia leonardus) N, R Indian Skipper (Hesperia sassacus) N, R Long Dash (Polites mystic) N,C Crossline Skipper (Polites origenes) N, C Peck's Skipper (Polites peckius) N, C Tawny-edged Skipper (Polites themistocles) N, C Northern Broken Dash (Wallengrenia egeremet) N,C Little Glassywing (Pompeius verna) N, C Mulberry Wing (Poanes massasoit) N, R Hobomok Skipper (Poanes hobomok) N, C Broad-winged Skipper (Poanes viator) N, C Delaware Skipper (Anatrytone logan) N, C Dion Skipper (Euphyes dion) N, U Black Dash (Euphyes conspicua) N, U Two-spotted Skipper (Euphyes bimacula) N,R Dun Skipper (Euphyes vestris) N, C Ocola Skipper (Panoquina ocola) N, R Swallowtails (Papilionidae) Giant Swallowtail (Papilio cresphontes) N, U Eastern Tiger Swallowtail (Papilio glaucus) N, C Black Swallowtail (Papilio polyxenes) N, C Spicebush Swallowtail (Papilio troilus) N, R Mourning Cloak, Chris Hamilton Eastern Tiger Swallowtail, Hamilton Conservation -
The Population Ecology of an Invasive Social Insect, Vespula Germanica (Hymenoptera: Vesp¡Dae) in South Australia
The Population Ecology of an Invasive Social Insect, Vespula germanica (Hymenoptera: Vesp¡dae) in South Australia. MRnrn L. Knspen A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy. Environmental Biology School of Earth and Environmental Sciences The University of Adelaide, Adelaide, Australia April 2004 Tnele or GoTTENTS FrcuRE 1NDEx.......... V TABLE lnoex...... X ABSTRACT xil Decl¡nrnoN ......... xlil .. XIV CxapteR 1 : lNTRoDUcnoN............... 1 1.1 PopuLAT|oN DYNAMtcS .............. .1 1 .2 BroLocy oF rNVAStoNs................. .4 1.2.1 Stages of a biological invasion .4 1.2.2 Characteristics of successful invaders.... .5 1.3 SocrAL lrusecrs .b 1.4 INTRoDUCTION TO VESPULA SPP............. .8 1.4.1 Classification .8 1.4.2 Morphology and social organisation of V. germanica...... .9 1.4.3 Determination of sex and caste 11 1.4.4 World distribution of V. germanica and V. vulgaris.......... 11 1.4.5 lntroduction and spread of V. germanica and V. vulgaris 12 1.5 BASIC BIOLOGY AND ECOLOGY OF VESPULA SPP, 15 1.5.1 Nest site selection and preferences......... 15 1.5.2 Life cycle .......... 15 1 .5.3 Colony development................ 17 1 .5.4 Overwintering and po|y9yny ................ 18 L5.5 Foraging.............. 19 1 .6 ANNUAL FLUCTUATIONS IN YESPULA POPU14TIONS,.,,...........,...,, 21 1.7 IMPACT AND CONTROT OT VESPUTA SPP. 23 1.7.1 lmpact on native communities ................. 23 1.7.2 lmpact on humans 23 1.7.3 Chemical and biological control 24 1,8 RESEARCH OBJECTIVES AND THESIS OUTLINE 25 1.8.1 Overall objectives 25 1.8.2 Specific aims..... -
Smithsonian Miscellaneous Collections
SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 116, NUMBER 7 (End of Volume) THE BUTTERFLIES OF VIRGINIA (With 31 Plates) BY AUSTIN H. CLARK AND LEILA F. CLARK Smithsonian Institution DEC 89 «f (PUBUCATION 4050) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION DECEMBER 20, 1951 0EC2 01951 SMITHSONIAN MISCELLANEOUS COLLECTIONS VOL. 116, NO. 7, FRONTISPIECE Butterflies of Virginia (From photograph by Frederick M. Bayer. For explanation, see page 195.) SMITHSONIAN MISCELLANEOUS COLLECTIONS VOLUME 116, NUMBER 7 (End of Volume) THE BUTTERFLIES OF VIRGINIA (With 31 Plates) BY AUSTIN H. CLARK AND LEILA F. CLARK Smithsonian Institution z Mi -.££& /ORG (Publication 4050) CITY OF WASHINGTON PUBLISHED BY THE SMITHSONIAN INSTITUTION DECEMBER 20, 1951 Zfyt. Borb QBattimovt (preee BALTIMORE, 1ID., D. 6. A. PREFACE Since 1933 we have devoted practically all our leisure time to an intensive study of the butterflies of Virginia. We have regularly spent our annual leave in the State, stopping at various places from which each day we drove out into the surrounding country. In addition to prolonged visits of 2 weeks or more to various towns and cities, we spent many week ends in particularly interesting localities. We have visited all the 100 counties in the State at least twice, most of them many times, and our personal records are from more than 800 locali- ties. We have paid special attention to the Coastal Plain, particularly the great swamps in Nansemond, Norfolk, and Princess Anne Counties, and to the western mountains. Virginia is so large and so diversified that it would have been im- possible for us, without assistance, to have made more than a super- ficial and unsatisfactory study of the local butterflies. -
2010 Butterfly Inventories in Boulder County Open Space Properties
2010 Butterfly Inventories In Boulder County Open Space Properties By Janet Chu October 2, 2010 1 Table of Contents I. Acknowledgments …………………… 3 II. Abstract …………………………… 4 II. Introduction……………………………… 5 IV. Objectives ………………………….. 6 V. Research Methods ………………….. 7 VI. Results and Discussion ………………... 8 VII. Weather ………………………………… 12 VIII. Conclusions …………………………….. 13 VIII. Recommendations …………………….. 15 IX. References …………………………. 16 X. Butterfly Survey Data Tables …………. 17 Table I. Survey Dates and Locations ……………. 17 Table II. Southeast Buffer …………………. 18 Table III. Anne U. White – Fourmile Trail …… 21 Table IV. Heil Valley Open Space –Geer Watershed... 24 Table V. Heil Valley Open Space –Plumely Canyon 27 Table VI. Heil Valley Open Space – North ………… 30 Table VII. Walker Ranch - Meyer’s Gulch ………… 34 Table VIII. Caribou Ranch Open Space ……………… 37 Table IX. Compilation of Species and Locations …… 38 2 I. Acknowledgments Our research team has conducted butterfly surveys for nine consecutive years, from 2002 through 2010, with 2002-2004 introductory to the lands and species, and 2005-2010 in more depth. My valuable field team this year was composed of friends with sharp eyes and ready binoculars Larry Crowley who recorded not only the butterflies but blossoming plants and wildlife joined by Jean Morgan and Amy Chu both joined enthusiastic butterfly chasers. Venice Kelley and John Barr, professional photographers, joined us on many surveys. With their digital photos we are often able to classify the hard-to-identify butterflies later on at the desk. The surveys have been within Boulder County Parks and Open Space (BCPOS) lands. Therese Glowacki, Manager-Resource Manager, issued a Special Collection Permit for access into the Open Spaces; Susan Spaulding, Wildlife Specialist, oversaw research, maintained records of our monographs and organized seminars for presentation of data. -
Papilio (New Series) # 25 2016 Issn 2372-9449
PAPILIO (NEW SERIES) # 25 2016 ISSN 2372-9449 ERNEST J. OSLAR, 1858-1944: HIS TRAVEL AND COLLECTION ITINERARY, AND HIS BUTTERFLIES by James A. Scott, Ph.D. in entomology University of California Berkeley, 1972 (e-mail: [email protected]) Abstract. Ernest John Oslar collected more than 50,000 butterflies and moths and other insects and sold them to many taxonomists and museums throughout the world. This paper attempts to determine his travels in America to collect those specimens, by using data from labeled specimens (most in his remaining collection but some from published papers) plus information from correspondence etc. and a few small field diaries preserved by his descendants. The butterfly specimens and their localities/dates in his collection in the C. P. Gillette Museum (Colorado State University, Fort Collins, Colorado) are detailed. This information will help determine the possible collection locations of Oslar specimens that lack accurate collection data. Many more biographical details of Oslar are revealed, and the 26 insects named for Oslar are detailed. Introduction The last collection of Ernest J. Oslar, ~2159 papered butterfly specimens and several moths, was found in the C. P. Gillette Museum, Colorado State University, Fort Collins, Colorado by Paul A. Opler, providing the opportunity to study his travels and collections. Scott & Fisher (2014) documented specimens sent by Ernest J. Oslar of about 100 Argynnis (Speyeria) nokomis nokomis Edwards labeled from the San Juan Mts. and Hall Valley of Colorado, which were collected by Wilmatte Cockerell at Beulah New Mexico, and documented Oslar’s specimens of Oeneis alberta oslari Skinner labeled from Deer Creek Canyon, [Jefferson County] Colorado, September 25, 1909, which were collected in South Park, Park Co. -
Checklist of Butterflies (Insecta: Lepidoptera) from Serra Do Intendente State Park - Minas Gerais, Brazil
Biodiversity Data Journal 2: e3999 doi: 10.3897/BDJ.2.e3999 Taxonomic paper Checklist of butterflies (Insecta: Lepidoptera) from Serra do Intendente State Park - Minas Gerais, Brazil Izabella Nery†, Natalia Carvalho†, Henrique Paprocki† † Pontifícia Universidade Católica de Minas Gerais, Belo Horizonte, Brazil Corresponding author: Henrique Paprocki ([email protected]) Academic editor: Bong-Kyu Byun Received: 28 Aug 2014 | Accepted: 10 Nov 2014 | Published: 25 Nov 2014 Citation: Nery I, Carvalho N, Paprocki H (2014) Checklist of butterflies (Insecta: Lepidoptera) from Serra do Intendente State Park - Minas Gerais, Brazil. Biodiversity Data Journal 2: e3999. doi: 10.3897/BDJ.2.e3999 Abstract In order to contribute to the butterflies’ biodiversity knowledge at Serra do Intendente State Park - Minas Gerais, a study based on collections using Van Someren-Rydon traps and active search was performed. In this study, a total of 395 butterflies were collected, of which 327 were identified to species or morphospecies. 263 specimens were collected by the traps and 64 were collected using entomological hand-nets; 43 genera and 60 species were collected and identified. Keywords Espinhaço Mountain Range, Arthropoda, frugivorous butterflies, Peixe Tolo, inventory Introduction The Lepidoptera is comprised of butterflies and moths; it is one of the main orders of insects which has approximately 157,424 described species (Freitas and Marini-Filho 2011, Zhang 2011). The butterflies, object of this study, have approximately 19,000 species described worldwide (Heppner 1991). The occurrence of 3,300 species is estimated for © Nery I et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.