Exploring Estrogen Receptor Gene Regulatory Mechanism in Breast Cancer

Total Page:16

File Type:pdf, Size:1020Kb

Exploring Estrogen Receptor Gene Regulatory Mechanism in Breast Cancer Exploring estrogen receptor gene regulatory mechanism in breast cancer ______________________________________ A Dissertation Presented to the Faculty of the Department of Biology and Biochemistry University of Houston _______________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _______________________________________ By Anne Chinenye Katchy August 2013 Exploring estrogen receptor gene regulatory mechanism in breast cancer ______________________________________________ Anne Chinenye Katchy APPROVED ______________________________________________ Dr. Cecilia Williams, Chairman ______________________________________________ Dr. Robert Schwartz ______________________________________________ Dr. Paul Webb Methodist Research Institute, Houston, TX ______________________________________________ Dr. Xiaolian Gao ______________________________________________ Dean, College of Natural Science and Mathematics ii Acknowledgements This dissertation was made possible because of the guidance from my advisor, guidance from my committee members, and help and support from family and friends. I would like to express my deepest gratitude and appreciation to my advisor, Dr. Cecilia Williams, for believing in me and letting me do my dissertation in her lab, for her patience and excellent guidance and support. I would like to thank you, Cecilia, for making this dissertation possible, and for your time and effort that you have put into preparing me for this moment. I am forever grateful to you. I would also like to thank my committee members: Dr. Robert Schwartz, Dr. Paul Webb, and Dr. Xiaolian Gao. I want to thank you all for your guidance, advice, and time you have given me to make this dissertation possible. I am very grateful to you all. I would like to thank all my dear friends and colleagues Trang, Philip, Jun, Eylem, Karin, Kim, Caroline, Ka, Lucy, Fotis, Efi, Sharanya, Stella, Ejike, and colleagues at CNRCS. Thank you all for the discussions, advice, and support. I appreciate you all. I would like to thank Ana, Esra, and Bukky. I have never known such good friends. I thank you all for your love and support. I remember when we first started, and look at us now. I love you all. I would most especially like to thank my family. I would like to thank my parents for their everlasting love and care. I thank you both for giving me the opportunity to study abroad and for believing in my dreams. I thank you both for everything. I would like to say a special thank you to my older sister, Ngozi. You have been an inspiration to me. I thank you for your encouraging words, and for never letting me give up on anything. You iii are my strength and I would always love you. To my brothers, Nnamdi and Kenechukwu, I would like to say thank you for your love and support, and especially for always being protective of me. To my baby sister, Oby, I thank you for your love and for being you. The sky is the limit for you, my dear. And finally, I would like to thank my friend, Laura, for being a sister to me. I thank you for your support, love, and care. You are the true definition of what a friend should be. You are my family and I appreciate you. iv Exploring estrogen receptor gene regulatory mechanism in breast cancer ______________________________________ An Abstract of a Dissertation Presented to the Faculty of the Department of Biology and Biochemistry University of Houston _______________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy _______________________________________ By Anne Chinenye Katchy August 2013 v ABSTRACT Estrogen has vital roles in development and maintenance of mammary gland and supports the growth of the majority of primary breast cancer. It carries out its function through the estrogen receptors (ER): ERα and ERβ. In this dissertation, we focused on identifying the functional and genome wide effects of both receptors in breast cancer cell lines (T47D and MCF7). First, we aimed at identifying microRNAs (miRNAs) that are significantly associated with normal or disrupted estrogen signaling in breast cancer cells, and are regulated by ERα and ERβ. Despite the fact that 24h estrogen treatment results in strong changes to expression of about 900 protein-coding transcripts, we found no significant changes in mature miRNA expression levels by 17β-estradiol (E2)-activated ERα in neither T47D nor MCF7 breast cancer cells. On the other hand, when studying the effects of exogenously expressed ERβ, we identified miR-135a, miR-21, miR-200c, and miR- 522, among others, as being regulated. Most of the ERβ effects were ligand-independent, but we observed a significant response to E2 in the MCF7-ERβ cells. Also, the MCF7- ERβ showed enhanced stem cell abilities in comparison to the MCF7-Control cells as illustrated by increased mammospheres formation during several generations. Secondly, we aimed at investigating environmental factors and its effect on the risk for breast cancer. We identified the gene expression response for each of these compounds: BPA, genistein (Gen), E2, and soy formula extract (SF) in MCF7 cells, and found that each regulated similar genes in the same manner. Many target genes regulated vi by BPA, Gen, and SF, were involved in important biological processes identical to those of estrogen. Investigation of non-ERα mediated regulations for these EDCs suggested that these compounds may regulate gene transcription solely through ERα, in the cells and doses used. Furthermore, we found that these compounds acted together in a sub- additive manner, and tumor clustering with the gene expression profile of these EDC compounds revealed a significantly lower disease free survival. Altogether, the data presented in this dissertation would aid in increasing the knowledge of early risk factors for breast cancer. Our work provides data for future use of the estrogen receptors in clinical applications by providing new candidates for pharmaceutical drug development, as well as, biomarkers for diagnosis and prognosis. vii Table of Contents Page Chapter 1 1 Introduction 1 1.1 Breast cancer 2 1.1.1 Origin and causes 3 1.1.2 Molecular characteristics of breast cancer 7 1.1.3 Treatment approaches 12 1.2 MicroRNA 13 1.2.1 miRNA biogenesis and mechanism of action 14 1.2.2 miRNA and breast cancer 17 1.3 Molecular functions of estrogen in breast cancer 20 1.3.1 Estrogen synthesis 20 1.3.2 Estrogen receptors 21 1.3.3 Estrogen receptor and miRNA 25 1.3.4 Influence of endocrine disruptive chemicals 26 Chapter 2 30 Materials and methods 30 2.1 Materials 31 2.2 Cell cultures 32 2.3 RNA preparation and cDNA synthesis for mRNA and miRNA analysis 33 2.4 Gene expression analysis 34 2.4.1 qPCR for mRNA and miRNA expression analysis 34 2.4.2 Microarray experiment for mRNA and miRNA analysis 35 2.5 Bioinformatics 36 Chapter 3 37 Estradiol-activated ERα does not regulate mature miRNAs in T47D breast cancer cells 37 viii Page 3.1 Abstract 38 3.2 Introduction 39 3.3 Methods 41 3.3.1 Cell culture 41 3.3.2 RNA extraction 42 3.3.3 cDNA synthesis 42 3.3.4 miRNA microarray analysis 42 3.3.5 qPCR analysis of mRNA and miRNA expression 43 3.3.6 Bioinformatics 44 3.4 Results 45 3.4.1 Strong ERα-mediated transcription of protein-coding genes occur at 24h in T47D cells 45 3.4.2 Profiling showed minimal ERα-mediated regulation of miRNAs at 24h 47 3.4.3 qPCR confirms non-significant ERα regulation of miRNAs 48 3.4.4 Previously reported estrogen-induced miRNA regulations could not be reproduced 51 3.4.5 Time-course study of miRNA reveals a slight variation in miRNA expression 55 3.4.6 miRNAs with an ERα chromatin-binding site nearby are not regulated in T47D cells 57 3.4.7 miRNAs can differentiate between non-tumor and tumor cell lines 60 3.5 Discussion 60 3.6 Conclusion 64 3.7 Supplemental figures to Chapter 3 65 Chapter 4 68 Estrogen Receptor β regulates mature miRNAs in breast cancer cells 68 4.1 Abstract 69 4.2 Introduction 70 4.3 Methods 73 ix Page 4.3.1 Cell culture 73 4.3.2 miRNA microarray analysis 73 4.3.3 qPCR analysis of mRNA and miRNA expression 74 4.3.4 siRNA analysis 74 4.3.5 Mammosphere formation assay 74 4.4 Results 76 4.4.1 Strong ERβ-mediated transcription of protein coding genes occurs at 24h in T47D and MCF7 cells 76 4.4.2 miRNA profiling reveals possible ERβ mediated regulation of miRNAs 78 4.4.3 qPCR confirms ERβ mediated regulation of miRNAs in T47D cells 80 4.4.4 Presence of ERβ may be responsible for miRNA regulation in T47D cells line 82 4.4.5 MCF7 showed a more pronounced ERβ-mediated regulation of miRNA 82 4.4.6 ERβ mediates a ligand-dependent regulation of miRNAs in MCF7 cells 85 4.4.7 ERβ affects mammosphere formation abilities in breast cancer cells 85 4.4.8 miR-135a in breast cancer cells 90 4.5 Discussion 97 4.6 Conclusion 100 Chapter 5 101 Bisphenol A and Phytoestrogens mediate identical and sub-additive effects on ERα-mediated transactivation 101 5.1 Abstract 102 5.2 Introduction 103 5.3 Methods 105 5.3.1 Cell culture 105 5.3.2 RNA preparation and cDNA synthesis 105 5.3.3 qPCR analysis for mRNA expression 106 5.3.4 Microarray experiment and analysis 106 x Page 5.3.4 Bioinformatics 107 5.3.5 Survival cluster analysis 107 5.4 Results 108 5.4.1 Comparison of dose-dependent transcriptional activation of endogenous ERα by BPA, genistein, and soy formula extract 108 5.4.2 Sub-additive effects of EDCs on ERα-mediated transcriptional activation 110 5.4.3 Transcriptional regulation by BPA, genistein, and SF are solely through an ERα-mediated pathway
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • RNA-Seq Transcriptome Analysis Of
    on: Sequ ati en er c Le Luyer et al, Next Generat Sequenc & Applic 2015, 2:1 n in e g G & t x A DOI: 10.4172/2469-9853.1000112 e p Journal of p N l f i c o a l t a i o n r ISSN: 2469-9853n u s o J Next Generation Sequencing & Applications Research Article Open Access RNA-Seq Transcriptome Analysis of Pronounced Biconcave Vertebrae: A Common Abnormality in Rainbow Trout (Oncorhynchus mykiss, Walbaum) Fed a Low-Phosphorus Diet Le Luyer J1, Deschamps MH1, Proulx E1, Poirier Stewart N1, Droit A2, Sire JY3, Robert C1 and Vandenberg GW1* 1Département of des sciences animales, Pavillon Paul-Comtois, Université Laval, Québec, QC, Canada G1V 0A6, Canada 2Department of Molecular Medicine, Centre de Recherche du CHU de Québec, Université Laval, Québec, QC, G1V 4G2 Canada 3Institut de Biologie Paris-Seine, UMR 7138-Evolution Paris-Seine, Université Pierre et Marie Curie, Paris, France Abstract The prevalence of bone deformities, particularly linked with mineral deficiency, is an important issue for fish production. Juvenile triploid rainbow trout (Oncorhynchus mykiss) were fed a low-phosphorus (P) diet for 27 weeks (60 to 630 g body mass). At study termination, 24.9% of the fish fed the low-P diet displayed homogeneous biconcave vertebrae (deformed vertebrae phenotype), while 5.5% displayed normal vertebral phenotypes for the entire experiment. The aim of our study was to characterize the deformed phenotype and identify the putative genes involved in the appearance of P deficiency-induced deformities. Both P status and biomechanical measurements showed that deformed vertebrae were significantly less mineralized (55.0 ± 0.4 and 59.4 ± 0.5,% ash DM, for deformed and normal vertebrae, respectively) resulting in a lower stiffness (80.3 ± 9.0 and 140.2 ± 6.3 N/mm, for deformed and normal phenotypes, respectively).
    [Show full text]
  • Dedifferentiation and Neuronal Repression Define Familial Alzheimer’S Disease Andrew B
    bioRxiv preprint doi: https://doi.org/10.1101/531202; this version posted November 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International licenseCaldwell. et al. BIORXIV/2019/531202 Dedifferentiation and neuronal repression define Familial Alzheimer’s Disease Andrew B. Caldwell1, Qing Liu2, Gary P. Schroth3, Douglas R. Galasko2, Shauna H. Yuan2,8, Steven L. Wagner2,4, & Shankar Subramaniam1,5,6,7* Affiliations 1Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. 2Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA. 3Illumina, Inc., San Diego, CA, USA. 4VA San Diego Healthcare System, La Jolla, CA, USA. 5Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. 6Department of Nanoengineering, University of California, San Diego, La Jolla, CA, USA. 7Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA. 8Present Address: N. Bud Grossman Center for Memory Research and Care, Department of Neurology, University of Minnesota, Minneapolis, MN, USA; GRECC, Minneapolis VA Health Care System, Minneapolis, MN, USA. *Correspondence: Correspondence and requests for materials should be addressed to S.S. ([email protected]). Abstract Early-Onset Familial Alzheimer’s Disease (EOFAD) is a dominantly inherited neurodegenerative disorder elicited by over 300 mutations in the PSEN1, PSEN2, and APP genes1. Hallmark pathological changes and symptoms observed, namely the accumulation of misfolded Amyloid-β (Aβ) in plaques and Tau aggregates in neurofibrillary tangles associated with memory loss and cognitive decline, are understood to be temporally accelerated manifestations of the more common sporadic Late-Onset Alzheimer’s Disease.
    [Show full text]
  • Genome-Wide Screen for Differentially Methylated Long Noncoding Rnas
    OPEN Oncogene (2017) 36, 6446–6461 www.nature.com/onc ORIGINAL ARTICLE Genome-wide screen for differentially methylated long noncoding RNAs identifies Esrp2 and lncRNA Esrp2-as regulated by enhancer DNA methylation with prognostic relevance for human breast cancer K Heilmann, R Toth, C Bossmann, K Klimo, C Plass and C Gerhauser The majority of long noncoding RNAs (lncRNAs) is still poorly characterized with respect to function, interactions with protein- coding genes, and mechanisms that regulate their expression. As for protein-coding RNAs, epigenetic deregulation of lncRNA expression by alterations in DNA methylation might contribute to carcinogenesis. To provide genome-wide information on lncRNAs aberrantly methylated in breast cancer we profiled tumors of the C3(1) SV40TAg mouse model by MCIp-seq (Methylated CpG Immunoprecipitation followed by sequencing). This approach detected 69 lncRNAs differentially methylated between tumor tissue and normal mammary glands, with 26 located in antisense orientation of a protein-coding gene. One of the hypomethylated lncRNAs, 1810019D21Rik (now called Esrp2-antisense (as)) was identified in proximity to the epithelial splicing regulatory protein 2 (Esrp2) that is significantly elevated in C3(1) tumors. ESRPs were shown previously to have a dual role in carcinogenesis. Both gain and loss have been associated with poor prognosis in human cancers, but the mechanisms regulating expression are not known. In- depth analyses indicate that coordinate overexpression of Esrp2 and Esrp2-as inversely correlates with DNA methylation. Luciferase reporter gene assays support co-expression of Esrp2 and the major short Esrp2-as variant from a bidirectional promoter, and transcriptional regulation by methylation of a proximal enhancer.
    [Show full text]
  • Twist1 Is a TNF-Inducible Inhibitor of Clock Mediated Activation of Period Genes
    RESEARCH ARTICLE Twist1 Is a TNF-Inducible Inhibitor of Clock Mediated Activation of Period Genes Daniel Meier1, Martin Lopez1, Paul Franken2, Adriano Fontana1* 1 Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland, 2 Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland * [email protected] Abstract Background Activation of the immune system affects the circadian clock. Tumor necrosis factor (TNF) and Interleukin (IL)-1β inhibit the expression of clock genes including Period (Per) genes and the PAR-bZip clock-controlled gene D-site albumin promoter-binding protein (Dbp). These effects are due to cytokine-induced interference of E-box mediated transcription of OPEN ACCESS clock genes. In the present study we have assessed the two E-box binding transcriptional Citation: Meier D, Lopez M, Franken P, Fontana A regulators Twist1 and Twist2 for their role in cytokine induced inhibition of clock genes. (2015) Twist1 Is a TNF-Inducible Inhibitor of Clock Mediated Activation of Period Genes. PLoS ONE 10 (9): e0137229. doi:10.1371/journal.pone.0137229 Methods Editor: Henrik Oster, University of Lübeck, The expression of the clock genes Per1, Per2, Per3 and of Dbp was assessed in NIH-3T3 GERMANY mouse fibroblasts and the mouse hippocampal neuronal cell line HT22. Cells were treated Received: June 17, 2015 for 4h with TNF and IL-1β. The functional role of Twist1 and Twist2 was assessed by siR- NAs against the Twist genes and by overexpression of TWIST proteins. In luciferase (luc) Accepted: August 14, 2015 assays NIH-3T3 cells were transfected with reporter gene constructs, which contain a Published: September 11, 2015 3xPer1 E-box or a Dbp E-box.
    [Show full text]
  • Human Inflammation Panel a Gene Set You Can Count On
    PRODUCT BULLETIN nCounter® Human Inflammation Panel A Gene Set You Can Count On The nCounter Human Inflammation Panel is a comprehensive assay of 249 human genes known to be differentially expressed in inflammation. The gene list represents a broad range of inflammation-related pathways, including: • Chemokine • Integrin signaling • Cytokine • Oxidative stress response • Interleukin • B cell activation • Toll receptor • T cell activiation This gene list was compiled by querying several public databases for inflammation-related genes. Each gene was verified to be differentially expressed under conditions leading to inflammation. Verification was performed using MSigDB, a repository of gene expression data developed by researchers at the Massachusetts Institute of Technology and the Broad Institute1. Other public databases were used to obtain functional gene expression information for each gene. The final nCounter Human Inflammation Panel consists of 249 inflammation-related genes and six internal reference genes. For the gene list and additional information about this panel, visit the nCounter Pre-built Panels product page at nanostring.com. Product Highlights nCounter Analysis System Overview • Simple No need for cross-referencing databases The nCounter Analysis System from NanoString offers a cost- effective way to easily profile hundreds of gene transcripts • Highly Curated simultaneously with high sensitivity and precision. The digital Our expert bioinformaticists use a very detection of target molecules and high levels of multiplexing rigorous process in selecting the most eliminate the compromise between data quality and data meaningful set of genes quantity, bringing better sensitivity, reproducibility, and linearity to your results. It is ideal for studying defined gene sets across • Efficient a large sample set, e.g., microarray validation, pathway analysis, Multiplexed assay profiles 249 human biomarker validation, and splice variation analysis.
    [Show full text]
  • SOX6 and PDCD4 Enhance Cardiomyocyte Apoptosis Through LPS-Induced Mir-499 Inhibition
    Apoptosis (2016) 21:174–183 DOI 10.1007/s10495-015-1201-6 ORIGINAL PAPER SOX6 and PDCD4 enhance cardiomyocyte apoptosis through LPS-induced miR-499 inhibition 1 2 1 3 1 Zhuqing Jia • Jiaji Wang • Qiong Shi • Siyu Liu • Weiping Wang • 1 1 1 1 1 Yuyao Tian • Qin Lu • Ping Chen • Kangtao Ma • Chunyan Zhou Published online: 10 December 2015 Ó The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Sepsis-induced cardiac apoptosis is one of the the cardiomyocytes against LPS-induced apoptosis. In major pathogenic factors in myocardial dysfunction. As it brief, our results demonstrate the existence of a miR-499- enhances numerous proinflammatory factors, lipopolysac- SOX6/PDCD4-BCL-2 family pathway in cardiomyocytes charide (LPS) is considered the principal mediator in this in response to LPS stimulation. pathological process. However, the detailed mechanisms involved are unclear. In this study, we attempted to explore Keywords SOX6 Á PDCD4 Á LPS Á miR-499 Á the mechanisms involved in LPS-induced cardiomyocyte Cardiomyocyte Á Apoptosis apoptosis. We found that LPS stimulation inhibited microRNA (miR)-499 expression and thereby upregulated the expression of SOX6 and PDCD4 in neonatal rat car- Introduction diomyocytes. We demonstrate that SOX6 and PDCD4 are target genes of miR-499, and they enhance LPS-induced Sepsis-induced myocardial functional disorder is one of the cardiomyocyte apoptosis by activating the BCL-2 family main predictors of morbidity and mortality of sepsis [1]; pathway. The apoptosis process enhanced by overexpres- apoptosis is one of the major contributors to the patho- sion of SOX6 or PDCD4, was rescued by the cardiac- physiology of sepsis [2].
    [Show full text]
  • Creb1 Regulates Late Stage Mammalian Lung
    www.nature.com/scientificreports OPEN Creb1 regulates late stage mammalian lung development via respiratory epithelial and Received: 24 November 2015 Accepted: 20 April 2016 mesenchymal-independent Published: 06 May 2016 mechanisms N. Antony1, A. R. McDougall1,2, T. Mantamadiotis3, T. J. Cole1,* & A. D. Bird1,* During mammalian lung development, the morphological transition from respiratory tree branching morphogenesis to a predominantly saccular architecture, capable of air-breathing at birth, is dependent on physical forces as well as molecular signaling by a range of transcription factors including the cAMP response element binding protein 1 (Creb1). Creb1−/− mutant mice exhibit complete neonatal lethality consistent with a lack of lung maturation beyond the branching phase. To further define its role in the developing mouse lung, we deleted Creb1 separately in the respiratory epithelium and mesenchyme. Surprisingly, we found no evidence of a morphological lung defect nor compromised neonatal survival in either conditional Creb1 mutant. Interestingly however, loss of mesenchymal Creb1 on a genetic background lacking the related Crem protein showed normal lung development but poor neonatal survival. To investigate the underlying requirement for Creb1 for normal lung development, Creb1−/− mice were re-examined for defects in both respiratory muscles and glucocorticoid hormone signaling, which are also required for late stage lung maturation. However, these systems appeared normal in Creb1−/− mice. Together our results suggest that the requirement of Creb1 for normal mammalian lung morphogenesis is not dependent upon its expression in lung epithelium or mesenchyme, nor its role in musculoskeletal development. Development of the mammalian lung is a highly intricate, multiphase process which is regulated largely by inter-germ layer molecular signaling, and by physical forces.
    [Show full text]
  • Downloaded from Depmap Portal ( and from the Project Score Website (
    cancers Article The Histone Methyltransferase DOT1L Is a Functional Component of Estrogen Receptor Alpha Signaling in Ovarian Cancer Cells 1, 1, 1 1,2 Annamaria Salvati y , Valerio Gigantino y , Giovanni Nassa , Giorgio Giurato , Elena Alexandrova 1,2 , Francesca Rizzo 1, Roberta Tarallo 1,* and Alessandro Weisz 1,* 1 Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, 84081 Baronissi (SA), Italy; [email protected] (A.S.); [email protected] (V.G.); [email protected] (G.N.); [email protected] (G.G.) [email protected] (E.A.); [email protected] (F.R.) 2 Genomix4Life Srl, 84081 Baronissi (SA), Italy * Correspondence: [email protected] (R.T.); [email protected] (A.W.); Tel.: +39-089-965-067 (R.T.); +39-089-965-043 (A.W.) Both authors contributed equally to this work. y Received: 12 September 2019; Accepted: 1 November 2019; Published: 4 November 2019 Abstract: Although a large fraction of high-grade serous epithelial ovarian cancers (OCs) expresses Estrogen Receptor alpha (ERα), anti-estrogen-based therapies are still not widely used against these tumors due to a lack of sufficient evidence. The histone methyltransferase Disruptor of telomeric silencing-1-like (DOT1L), which is a modulator of ERα transcriptional activity in breast cancer, controls chromatin functions involved in tumor initiation and progression and has been proposed as a prognostic OC biomarker. As molecular and clinico-pathological data from TCGA suggest a correlation between ERα and DOT1L expression and OC prognosis, the presence and significance of ERα/DOT1L association was investigated in chemotherapy-sensitive and chemotherapy-resistant ER+ OC cells.
    [Show full text]
  • Perkinelmer Genomics to Request the Saliva Swab Collection Kit for Patients That Cannot Provide a Blood Sample As Whole Blood Is the Preferred Sample
    Autism and Intellectual Disability TRIO Panel Test Code TR002 Test Summary This test analyzes 2429 genes that have been associated with Autism and Intellectual Disability and/or disorders associated with Autism and Intellectual Disability with the analysis being performed as a TRIO Turn-Around-Time (TAT)* 3 - 5 weeks Acceptable Sample Types Whole Blood (EDTA) (Preferred sample type) DNA, Isolated Dried Blood Spots Saliva Acceptable Billing Types Self (patient) Payment Institutional Billing Commercial Insurance Indications for Testing Comprehensive test for patients with intellectual disability or global developmental delays (Moeschler et al 2014 PMID: 25157020). Comprehensive test for individuals with multiple congenital anomalies (Miller et al. 2010 PMID 20466091). Patients with autism/autism spectrum disorders (ASDs). Suspected autosomal recessive condition due to close familial relations Previously negative karyotyping and/or chromosomal microarray results. Test Description This panel analyzes 2429 genes that have been associated with Autism and ID and/or disorders associated with Autism and ID. Both sequencing and deletion/duplication (CNV) analysis will be performed on the coding regions of all genes included (unless otherwise marked). All analysis is performed utilizing Next Generation Sequencing (NGS) technology. CNV analysis is designed to detect the majority of deletions and duplications of three exons or greater in size. Smaller CNV events may also be detected and reported, but additional follow-up testing is recommended if a smaller CNV is suspected. All variants are classified according to ACMG guidelines. Condition Description Autism Spectrum Disorder (ASD) refers to a group of developmental disabilities that are typically associated with challenges of varying severity in the areas of social interaction, communication, and repetitive/restricted behaviors.
    [Show full text]
  • Identification of a Multipotent Twist2-Expressing Cell Population in the Adult Heart
    Identification of a multipotent Twist2-expressing cell population in the adult heart Yi-Li Mina,b,c, Priscilla Jaichandera,b,c, Efrain Sanchez-Ortiza,b,c, Svetlana Bezprozvannayaa,b,c, Venkat S. Malladid, Miao Cuia,b,c, Zhaoning Wanga,b,c, Rhonda Bassel-Dubya,b,c, Eric N. Olsona,b,c,1, and Ning Liua,b,c,1 aDepartment of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390; bHamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390; cSenator Paul D. Wellstone Muscular Dystrophy Cooperative Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390; and dDepartment of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75390 Contributed by Eric N. Olson, July 12, 2018 (sent for review January 16, 2018; reviewed by Stefanie Dimmeler and Daniel J. Garry) Twist transcription factors function as ancestral regulators of (28) and are required for the formation of the adult musculature mesodermal cell fates in organisms ranging from Drosophila to (29). There are two Twist genes in vertebrates, Twist1 (Tw1)and mammals. Through lineage tracing of Twist2 (Tw2)-expressing Twist2 (Tw2), which are highly homologous and evolutionarily cells with tamoxifen-inducible Tw2-CreERT2 and tdTomato (tdTO) conserved (30). It has been shown that Twist overexpression can reporter mice, we discovered a unique cell population that pro- revert the terminal differentiation status of skeletal myotubes to gressively contributes to cardiomyocytes (CMs), endothelial cells, undifferentiated myoblasts (31). Tw2 global-knockout mice failed and fibroblasts in the adult heart. Clonal analysis confirmed the to thrive and died by postnatal day (P) 15.
    [Show full text]