Four Periods of Earth Movement Tasmania
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
West Coast Land Use Planning Strategy
" " " " " " " " " !"#$%&'(#$%&')*&+,%,(*-%)#"%.,(**+*/%#$0($"/1%" " #".$"23"0%4567% " " " " " " " " " " " " " " " " " " " " " " " " " " " Prepared for West Coast Council" " By:" ႛ Integrated Planning Solutions; ႛ Essential Economics; and ႛ Ratio Consultants " " " " !" !" #$%&'()*%#'$+ , 6868 '9:;<=>?;@%AB%=C;%,DEF%)@;%.GDEE>EH%#=ID=;HJ% K 6848 $C;%2;=CAFAGAHJ% L -" ./0$$#$1+*'$%23%+ 4 4868 .GDEE>EH%&AE=IAG@% M #$!$!$ %&'()" * #$!$#$ +,((')-&.'" * #$!$/$ 0-1232'" !4 #$!$5$ %((32'" !! #$!$6$ 7&)(8(19" !# #$!$:$ ;,<<23" !# #$!$=$ >?(1<29)"2'@"A&@()" !/ 5" %62+/21#7/0%#82+9&0:2;'&<+ !, N868 ,DEF%)@;%.GDEE>EH%DEF%(OOIA?DG@%(<=%6MMN%P$D@Q% 6K N848 #=D=;%.GDEE>EH%'9:;<=>?;@% 6K N8N8 #=D=;%DEF%0;H>AEDG%.AG><>;@% 6L /$/$!$ 0-2-("B<2''C'D"B&<CEC()" !6 /$/$#$ 7(DC&'2<"B<2''C'D"B&<CEC()" !6 ," ./0$$#$1+*'$7#(2&0%#'$7+ != K868 '?;I?>;R% 67 5$!$!$ +,((')-&.'" !F 5$!$#$ 0-1232'" !F 5$!$/$ %((32'" !* 5$!$5$ 7&)(8(19" !* 5$!$6$ ;,<<23" !* 5$!$:$ G12'?C<<("H218&,1"2'@";1C2<"H218&,1" !* K848 !CD=%>@%=C;%<SII;E=%OGDEE>EH%<AE=;T=%BAI%=C;%!;@=%&AD@=U% 45 5$#$!$ G(&D12I3CE"E&'-(J-"K&1"-3("1(DC&'" #4 5$#$#$ L(9"M2E-&1)" #4 5$#$#$!$ B&I,<2-C&'"-1('@)" #! 5$#$#$#$ B&I,<2-C&'"I1&N(E-C&')" #! 5$#$#$/$ 0&EC&O(E&'&PCE"A3212E-(1C)-CE)" #6 5$#$#$5$ L(9"QE&'&PCE"R'@CE2-&1)" #= 5$#$/$ L(9"R'@,)-1C()" /# 5$#$/$!$ SC'C'D" /# 5$#$/$#$ ;&,1C)P" // #" K8N8 !CD=%DI;%=C;%@=I;EH=C@V%R;DWE;@@;@V%AOOAI=SE>=>;@%DEF%=CI;D=@%R>=C>E% =C;%GA<DG%@=ID=;H><%OGDEE>EH%<AE=;T=U% NL 5$/$!$ 0-1('D-3)" /6 5$/$#$ T(2U'())()" /: 5$/$/$ >II&1-,'C-C()" /: 5$/$5$ ;31(2-)" /: K8K8 .I;G>X>EDIJ%GDEF%@SOOGJ%<AE@>F;ID=>AE@% -
Tasmania's Forgotten Stories
Lake Plimsoll. The old footings Dundas. Ghost Towns Tasmania’s Forgotten Stories The ruins of Linda. Pillinger boiler. Gormanston Hall. History has a way of find western Tasmania a fascinating to my friend and resident Luke Campbell, These are the final words of a man to during the mining booms in western Tas- hard to imagine that this small, all but life- producing stories that place. It’s wild, rugged, feels 20 years who lives with his family in what was for- his wife, a man about to perish in the North mania, it soon waned. People decamped, less town was once home to eleven pubs. Ibehind much of mainland Australia merly the town bank – now contains two Mount Lyell disaster, one of the greatest buildings were moved or left to crumble Eleven! After being welcomed by Luke and fascinate and capture and its landscape is littered with crum- houses that are permanently occupied. disasters in Australian mining history. On and the town became a forlorn testament his family, we decided to explore, heading bling testaments to a bygone era. Ghost As of 2013, the town’s population was of- a late Saturday morning in 1912, a fire to a bygone era. to an old abandoned hall near the top of the imagination of us towns. Basing myself in the remarkably in- ficially six. Just how did Gormanston come raged through the somber catacombs of Upon entering Gormanston, I was town. all. Tasmania’s west tact ghost town of Gormanston, I explored to its present state? the Mount Lyell copper mine. -
Mount Lyell Abt Railway Tasmania
Mount Lyell Abt Railway Tasmania Nomination for Engineers Australia Engineering Heritage Recognition Volume 2 Prepared by Ian Cooper FIEAust CPEng (Retired) For Abt Railway Ministerial Corporation & Engineering Heritage Tasmania July 2015 Mount Lyell Abt Railway Engineering Heritage nomination Vol2 TABLE OF CONTENTS BIBLIOGRAPHIES CLARKE, William Branwhite (1798-1878) 3 GOULD, Charles (1834-1893) 6 BELL, Charles Napier, (1835 - 1906) 6 KELLY, Anthony Edwin (1852–1930) 7 STICHT, Robert Carl (1856–1922) 11 DRIFFIELD, Edward Carus (1865-1945) 13 PHOTO GALLERY Cover Figure – Abt locomotive train passing through restored Iron Bridge Figure A1 – Routes surveyed for the Mt Lyell Railway 14 Figure A2 – Mount Lyell Survey Team at one of their camps, early 1893 14 Figure A3 – Teamsters and friends on the early track formation 15 Figure A4 - Laying the rack rail on the climb up from Dubbil Barril 15 Figure A5 – Cutting at Rinadeena Saddle 15 Figure A6 – Abt No. 1 prior to dismantling, packaging and shipping to Tasmania 16 Figure A7 – Abt No. 1 as changed by the Mt Lyell workshop 16 Figure A8 – Schematic diagram showing Abt mechanical motion arrangement 16 Figure A9 – Twin timber trusses of ‘Quarter Mile’ Bridge spanning the King River 17 Figure A10 – ‘Quarter Mile’ trestle section 17 Figure A11 – New ‘Quarter Mile’ with steel girder section and 3 Bailey sections 17 Figure A12 – Repainting of Iron Bridge following removal of lead paint 18 Figure A13 - Iron Bridge restoration cross bracing & strengthening additions 18 Figure A14 – Iron Bridge new -
Regional Flood Methods Database Used to Develop ARR RFFE Technique
Australian Rainfall & Runoff Revision Projects PROJECT 5 Regional Flood Methods Database Used to Develop ARR RFFE Technique STAGE 3 REPORT P5/S3/026 MARCH 2015 Engineers Australia Engineering House 11 National Circuit Barton ACT 2600 Tel: (02) 6270 6528 Fax: (02) 6273 2358 Email:[email protected] Web: http://www.arr.org.au/ AUSTRALIAN RAINFALL AND RUNOFF PROJECT 5: REGIONAL FLOOD METHODS: DATABASE USED TO DEVELOP ARR RFFE TECHNIQUE 2015 MARCH, 2015 Project ARR Report Number Project 5: Regional Flood Methods: Database used to develop P5/S3/026 ARR RFFE Technique 2015 Date ISBN 4 March 2015 978-0-85825-940-9 Contractor Contractor Reference Number University of Western Sydney 20721.64138 Authors Verified by Ataur Rahman Khaled Haddad Ayesha S Rahman Md Mahmudul Haque Project 5: Regional Flood Methods ACKNOWLEDGEMENTS This project was made possible by funding from the Federal Government through Geoscience Australia. This report and the associated project are the result of a significant amount of in kind hours provided by Engineers Australia Members. Contractor Details The University of Western Sydney School of Computing, Engineering and Mathematics, Building XB, Kingswood Locked Bag 1797, Penrith South DC, NSW 2751, Australia Tel: (02) 4736 0145 Fax: (02) 4736 0833 Email: [email protected] Web: www.uws.edu.au P5/S3/026 : 4 March 2015 ii Project 5: Regional Flood Methods FOREWORD ARR Revision Process Since its first publication in 1958, Australian Rainfall and Runoff (ARR) has remained one of the most influential and widely used guidelines published by Engineers Australia (EA). The current edition, published in 1987, retained the same level of national and international acclaim as its predecessors. -
Development of Artificial Intelligence Based Regional Flood Frequency Analysis Technique
DEVELOPMENT OF ARTIFICIAL INTELLIGENCE BASED REGIONAL FLOOD FREQUENCY ANALYSIS TECHNIQUE Kashif Aziz, BScEng, MEng Student ID 16658598 A thesis submitted for fulfilment for the degree of Doctor of Philosophy in Civil Engineering Supervisory Panel: Assoc Prof Ataur Rahman Assoc Prof Gu Fang Assoc Prof Surendra Shrestha School of Computing, Engineering and Mathematics University of Western Sydney, Australia December 2014 Artificial Intelligence Based RFFA Aziz ABSTRACT Flood is one of the worst natural disasters, which brings disruptions to services and damages to infrastructure, crops and properties and sometimes causes loss of human lives. In Australia, the average annual flood damage is worth over $377 million, and infrastructure requiring design flood estimate is over $1 billion per annum. The 2010-11 devastating flood in Queensland alone caused flood damage over $5 billion. Design flood estimation is required in numerous engineering applications e.g., design of bridge, culvert, weir, spill way, detention basin, flood protection levees, highways, floodplain modelling, flood insurance studies and flood damage assessment tasks. For design flood estimation, the most direct method is flood frequency analysis, which requires long period of recorded streamflow data at the site of interest. This is not a feasible option at many locations due to absence or limitation of streamflow records. For these ungauged or poorly gauged catchments, regional flood frequency analysis (RFFA) is adopted. The use of RFFA enables the transfer of flood characteristics information from gauged to ungauged catchments. RFFA essentially consists of two principal steps: (i) formation of regions; and (ii) development of prediction equations. For developing the regional flood prediction equations, the commonly used techniques include the rational method, index flood method and quantile regression technique. -
Corkery Daniel Frederick 4748
LANCE CORPORAL DANIEL FREDERICK CORKERY 4748 – 3rd Tunnelling Company Daniel Frederick Corkery was born at Ringarooma, Tasmania on 11 June 1896, the son of Daniel Edward and Margaret (nee Kay) Corkery. Zeehan and Dundas Herald, Tasmania – Wednesday 24 February 1909: LYELL LOST IN THE BUSH. On Sunday, at about mid-day, a party consisting of Jack Venn and two boys named, Corkery left with the intention of visiting Lake Beatrice. Their non-return by 10 o'clock that same evening caused some anxiety to the parents. Later on Messrs Venn, Chapman, and Corkery went out to see what they could do, but were forced to return, as the night was dark. The boys, however, turned up at their homes at about 9 o'clock on Monday morning. They had evidently become 'bushed,' and had spent the night by the side of a warm fire. The North Western Advocate and Emu Bay Times, Tasmania- Thursday 19 October 1911 FOR VALOR. ROYAL HUMANE SOCIETY AWARDS. TASMANIAN RECIPIENTS. HOBART, Wednesday— Royal Humane Society awards were presented by the Governor to the following recipients to-day: — Bronze Medal. — John Henry Venn, Linda, Tasmania, miner, aged 17, who risked his life in attempting to rescue John William Harding, aged 18, and Henry Lodge, aged 17, and in rescuing Daniel Corkery, aged 19, from drowning in the King River, Gormanston, Tasmania, on February 27, 1910. Several young men had been bathing, when Harding and Lodge got into difficulties, and while struggling with one another sank. Venn dived in and separated them, but as Harding attempted to swim away Lodge caught him by the legs, and the three sank together. -
Discovery of Van Diemen's Land in 1642 with Notes on the Localities Mentioned in Tasman's Journal of the Voyage
( No. 80.) 1891. PARLIAMENT OF TASMANIA. DISCOVERY OF ·VAN DIEMEN'S LAND . IN 1642 :. WITH NOTES ON THE LOCALITIES MENTIONED IN TASlVIAN'S JOURNAL OF THE VOYAGE. Presented to both Houses of Parliament by His Excellency's Command .. THE D'ISCO'VERY OF VAN D'lEMEN~s LAND IN 1642; WI'£H NOTES ON THE LOC .A.LITIES :MENTION E,n IN TASMAN'S JOURNAL OF THE VOYAGE. BY JAMES BAOKHOUSE WALKER ABEL J anszoon Tasman was unquestionably one of East Indies published in 1726, gave a inore extended the greatest, if not the greatest, of the navigators between account, illustrated by copies of Tasman's maps and Magellan, who in the early years of the 16th century sketches. But the joumal itself remained practically first crossed the Pacific Ocean, and Cook, who in the unknown until a copy of it and of the original sketches latter years of the 18th practically opened Oceania and and charts was discovered in London in 1776 and pur Austrnlia to Europe. chased for half a guinea. This MS. aftei:wards came Little is known of Tasman's personal history, except into the possession of Sir Joseph Banks, and he employed that he was born about the year 1602, at Hoorn on the the Rev. C. G. Waide, a Dutch clergyman living in Zuyder Zee, a seaport which produced many another London," to make a translation of it. Thirty years later hardy navigator. Tasman has made familiar in our seas the substance of this translation was printed by Dr. the name of one of these fellow townsmen, the Cornelis Burney in his "History of Discovery in the South Sea," zoon Schouten, who in 1616 doubled the Cape, :softerwards published in J 814. -
The Philosophers' Tale
1 Photo: Ollie Khedun Photo: THE VISION THE CONCEPT THE PROPOSAL The Philosophers’ Tale is The West Coast Range consists The Next Iconic Walk – The of 6 mountains on a north south Philosophers’ Tale 2019 proposal more than just an iconic walk, ridge. The ridge is trisected by the – Chapter One: Owen, takes it is made up of a series of Lyell Highway (between Mt Lyell people on a journey over 28km in iconic walks to be developed and Mt Owen) and the King River 3 days and 2 nights experiencing Gorge (between Mt Huxley and Mt mountain peaks, incredible views, over a period of time. There Jukes). This makes for three distinct button grass plains, cantilever are an abundance of coastal regions, each with their own part platforms and suspension bridges walks – the Overland Track to play in telling the bigger story. over deep river gorges down into All areas have been impacted cool temperate rainforest, majestic is now mature, and people by mining exploration or other waterfalls along the tranquil King are looking for the next development in the past 100 years. River on the incredible West Coast of Tasmania. With the option to option – The Philosophers’ The area is naturally divided into finish via train, hi-rail, raft, kayak, four zones, or in story telling Tale is just that. People will helicopter or jet boat, making it a parlance, ‘Chapters’. The Chapters be drawn locally and across truly unforgettable experience. (outlined on page 8), let’s call them the globe to experience these Owen, Jukes, Lyell and Tyndall lead View West Coast video iconic walks, returning time easily to the staged construction of any proposed track works. -
Report on Field Investigations Mt Darwin–Mt Murchison Region
Mineral Resources Tasmania Tasmanian Geological Survey Tasmania DEPARTMENT of Record 2002/18 INFRASTRUCTURE, ENERGYand RESOURCES Western Tasmanian Regional Minerals Program Mount Read Volcanics Compilation Report on field investigations Mt Darwin–Mt Murchison Region K. C. Morrison CONTENTS SUMMARY ……………………………………………………………………… 2 INTRODUCTION ………………………………………………………………… 3 SCOPE OF THE PROJECT ………………………………………………………… 3 ACKNOWLEDGMENTS ………………………………………………………… 3 FIELD TRAVERSES ……………………………………………………………… 4 DISCUSSION AND CONCLUSIONS ……………………………………………… 6 The Tyndall Group–Eastern Quartz-Phyric Sequence problem …………………… 6 Granite and related intrusive rocks — Exploration implications …………………… 7 Exploration potential of the region ……………………………………………… 9 REFERENCES …………………………………………………………………… 12 APPENDIX 1: Rock analyses ……………………………………………………… 14 FIGURES 1. Location of traverses …………………………………………………………… 16 2. Schematic cross section showing Cu-Au exploration potential of the Jukes–Darwin area, southern Mount Read Volcanics ……………………………… 10 While every care has been taken in the preparation of this report, no warranty is given as to the correctness of the information and no liability is accepted for any statement or opinion or for any error or omission. No reader should act or fail to act on the basis of any material contained herein. Readers should consult professional advisers. As a result the Crown in Right of the State of Tasmania and its employees, contractors and agents expressly disclaim all and any liability (including all liability from or attributable -
Department of Lands and Surveys: Report of the Surveyor-General and Secretary for Lands, 1899-1900
.{No. 41.} 19 0 0. PARLIAMENT OF TASMANIA. DEPARTMENT OF LANDS AND SURVEYS: REPORT OF THE SURVEYOR-GENERAL AND SECRETARY· . FOR LANDS, 1899-1900, \. Presented to both Houses of Parliament by His Excellency's Comurnnd._ Cost of pl'inting-,£34 lOs • ... ·_TASMANIA. REPORT OJI' 'lHE SURVEYOR-GENERAL AND SECRETARY FOR. LANDS POR 18 9 9--1·90 0. ftat:1mania: JOHN VAIL, GOV.ERNMENT PRINTER, HOBART (No. 44.) DEPARTMENT OF LANDS AND SURVEYS. Surveyor- General's Office, Hobart, 13th July, 1900. S1R, I HAVE the honour to furnish you with the following Report on the working of the Departmant of Lands and Surveys for the twelve months ending· 30th of June, 1900. REVENUE. The total territorial revenue collected by the Department of Lands and Surveys during the year ending 31st December, 1899, was £55,860, and the total sum collected during the year ending 31 st December, 1898, was £60,205. These figures show a shortage of £4345, which shortage i'! wholly due to the greater amount collected as Survey Fees during the former year, The estimate made by me in April, 1899, of the revenue to be collected for that year, was £56,400, thus showing a difference between the estimate and the actual receipts of only £540. The revenue collected during the six months ending the 30th Jnne, 1900, is £25,463, and the revenue collected during· the corresponding six months of 1899 was £25,425, showing a very slight difference of £38 iu favour of the later period. The separate headings from which the total receipts are made up are set forth in tppendix A to this Report, Return No. -
Abstract Clark, Catherine Margaret
ABSTRACT CLARK, CATHERINE MARGARET. Genetic diversity and phylogeography in a Tasmanian rainforest conifer (Lagarostrobos franklinii (Hook f.) Quinn Podocarpaceae. (Under the direction of Dr. Ronald Sederoff and Dr. Thomas Wentworth). Genetic variation in Huon pine (Lagarostrobos franklinii), a Tasmanian rainforest conifer, was estimated using several marker systems and two spatial scales. Genealogy based methods were used to infer population history of eight Huon pine stands based on chloroplast DNA variation. Chloroplast nucleotide diversity (π) was low (0.00093± 0.00006) in a multilocus haplotype generated by three universal chloroplast primers (trnS-trnT, trnD-trnT, psbC-trnS). Five haplotypes were identified; two were€ widely distributed but the most frequently occurring haplotype was found only in trees in the western portion of the range. Genetic differentiation among populations was significant and showed a high degree of structure (GST = 0.26077 p ≤ 0.00001). Pairwise comparisons between populations revealed significant structure between the southeastern and northwestern watersheds and significant isolation€ by distance€ ( p ≤ 0.0220). Nucleotide variation was also assessed in segments of three nuclear genes, 4Cl (4- € coumarate: coenzyme A ligase), ITS2 (intergenic spacer region of ribosomal DNA) and G3pdh (glyceraldehyde 3-phosphate dehydrogenase). A total of 1,154 base pairs were sequenced from 79 individuals (158 alleles) representing seven geographic locations. Estimates of nucleotide diversity (π = 0.00089 ± 0.00007) and theta (θ) (0.00061 ± 0.00031) were low for the combined loci and similar to chloroplast estimates. There was a higher level of variation at the 4Cl locus (π = 0.00167 ± 0.00014) associated with recombination. Nucleotide diversity for nuclear loci was highest in the subalpine Mt. -
Geochemical Journal, Vol. 50 (No. 2), Pp. 197-210, 2016
Geochemical Journal, Vol. 50, pp. 197 to 210, 2016 doi:10.2343/geochemj.2.0405 Geochemistry of Late Cambrian-Early Ordovician fluvial to shallow marine sandstones, western Tasmania, Australia: Implications for provenance, weathering, tectonic settings, and chemostratigraphy S. A. MAHMUD,1* S. NASEEM,2 M. HALL1 and KHALID A. ALMALKI3 1School of Earth, Atmosphere and Environment, Monash University, Clayton, VIC 3800, Australia 2Department of Geology, University of Karachi, Pakistan 3King Abdulaziz City for Science and Technology, Saudi Arabia (Received March 3, 2015; Accepted November 5, 2015) A geochemical study of the Late Cambrian-Early Ordovician sandstones exposed in the West Coast Range, Tasmania, Australia, was carried out to develop an understanding of the provenance and tectonic settings. The average composition of these sandstones displayed high SiO2 (92.72%), moderate Al2O3 (3.34%) and Fe2O3 (1.71%), low K2O (0.90%) and MgO (0.15%), and very low CaO and Na2O (<0.01%) concentrations. The sandstones were mainly classified as quartzarenite, and some samples were classified as sublitharenite. Tectonic discrimination diagrams based on major and trace elements suggest passive margin settings. Provenance diagram (Al2O3 vs. TiO2) revealed that the Owen Group was derived from a silica-rich source. The average chemical index of alteration (CIA) was 78.45, indicating that the source area suffered severe weathering due to persistent warm and humid climate. High amounts of rare earth elements (REE) and strong negative anomalies on the chondrite-normalized REE pattern indicate an oxidizing deposition environment. The trace element chemostratigraphy reflects sharp contrasts in concentrations, distinguishing the unconformity between the lower and upper sequences and also shows the effect of alteration assemblages.