Mtor Complex 1 Implicated in Aphid/Buchnera Host/Symbiont Integration

Total Page:16

File Type:pdf, Size:1020Kb

Mtor Complex 1 Implicated in Aphid/Buchnera Host/Symbiont Integration G3: Genes|Genomes|Genetics Early Online, published on July 26, 2018 as doi:10.1534/g3.118.200398 1 mTOR complex 1 implicated in aphid/Buchnera host/symbiont integration 2 3 Edward B. James, Honglin Feng, & Alex C. C. Wilson 4 Department of Biology, University of Miami, Coral Gables, FL 33146 USA 5 6 © The Author(s) 2013. Published by the Genetics Society of America. 7 Running Title: Aphid mTOR 8 9 Keywords: mTORC1, symbiosis, Myzus persicae, transcriptome 10 11 Corresponding author: 12 Dr. Alex C. C. Wilson 13 Department of Biology 14 1301 Memorial Drive 15 Coral Gables, FL 33146 16 USA 17 (305) 284-2003 18 [email protected] 19 ABSTRACT 20 Obligate nutritional endosymbioses are arguably the most intimate of all interspecific 21 associations. While many insect nutritional endosymbioses are well studied, a full picture 22 of how two disparate organisms, a bacterial endosymbiont and a eukaryotic host, are 23 integrated is still lacking. The mTOR pathway is known to integrate nutritional conditions 24 with cell growth and survival in eukaryotes. Characterization and localization of amino acid 25 transporters in aphids suggest the mTOR pathway as point of integration between an aphid 26 host and its amino acid-provisioning endosymbiont Buchnera aphidicola. The mTOR 27 pathway is unannotated in aphids and unstudied in any nutritional endosymbiosis. We 28 annotated mTOR pathway genes in two aphid species, Acyrthosiphon pisum and Myzus 29 persicae, using both BLASTp searches and Hidden Markov Models. Using previously 30 collected RNAseq data we constructed new reference transcriptomes for bacteriocyte, gut, 31 and whole insect tissue for three lines of M. persicae. Annotation of the mTOR pathway 32 identified homologs of all known invertebrate mTOR genes in both aphid species with 33 some duplications. Differential expression analysis showed that genes specific to the amino 34 acid-sensitive mTOR Complex 1 were more highly expressed in bacteriocytes than genes 35 specific to the amino acid-insensitive mTOR Complex 2. Almost all mTOR genes involved in 36 sensing amino acids showed higher expression in bacteriocytes than in whole insect tissue. 37 When compared to gut, the putative glutamine/arginine sensing transporter ACYPI000333, 38 an ortholog of SLC38A9, showed 6.5 times higher expression in bacteriocytes. Our results 39 suggest that the mTOR pathway may be functionally important in mediating integration of 40 Buchnera into aphid growth and reproduction. 41 INTRODUCTION 42 Two species living together in symbiosis can reciprocally impact each other’s evolution 43 (Ehrlich and Raven 1964). The most intimate symbioses are those where one species 44 resides inside the cells of the second species in obligate endosymbiosis (Wernegreen 45 2004). In plant-sap feeding insects such obligate endosymbioses are typically nutritional 46 and feature hosts that require their endosymbiont for reproduction, and endosymbionts 47 that are unable to survive outside their host. Despite the apparent harmony between 48 members of these nutritional endosymbioses the partners must balance conflict and 49 cooperation for the relationship to persist (Bennett and Moran 2015; Wernegreen 2004). 50 The host must not completely reject the intracellular symbiont population but instead must 51 provision the metabolites required for endosymbiont survival. In turn, the endosymbiont 52 must persist within the host cell without imposing a fatal cost upon the host. Members of 53 an endosymbiosis face unique and separate selection pressures that govern their evolution 54 as discrete species, while existing in a robust state of integration (Bennett and Moran 2015; 55 Keeling and McCutcheon 2017). Despite the evolutionary, ecological, agricultural and 56 economic importance of many insect obligate nutritional endosymbioses a full picture of 57 how these relationships are functionally regulated by their members is lacking. Therefore 58 an understanding of how these endosymbiotic interactions evolved, are maintained, and 59 indeed how they might be targeted for human control is also wanting. 60 The most-studied insect model of a host endosymbiont relationship is that of aphids 61 and their endosymbiont, Buchnera aphidicola. Buchnera are housed within specialized 62 aphid organs called bacteriomes, where they are contained inside bacteriocyte cells 63 (Baumann et al. 1995). The two species are integrated to such an extent that Buchnera is 64 unable to produce their own outer-membrane, and instead it is assumed to be produced by 65 the aphid host (Shigenobu et al. 2000). Another feature of the integration includes the loss 66 in both aphid hosts and Buchnera of amino acid biosynthesis genes. Such gene losses have 67 sometimes involved the complete degradation of pathways like the TCA cycle in Buchnera, 68 (rendering Buchnera incapable of producing glutamate and aspartate), and the urea cycle 69 in aphids (rendering aphids incapable of producing arginine) (International Aphid 70 Genomics 2010; Shigenobu et al. 2000). Other times gene losses have not eliminated a 71 pathway but rather fragmented it in such a way that completion of the metabolic pathway 72 requires the contribution of enzymes encoded by genes in both the host and the symbiont 73 genome (Hansen and Moran 2011; Price et al. 2015; Wilson et al. 2010). 74 Multiple points of regulation of the collaborative biosynthesis of amino acids in 75 aphids have recently been identified. First, Buchnera’s amino acid production has been 76 proposed to be in part regulated by host-controlled supply of the precursor glutamine via a 77 glutamine specific amino-acid transporter which is highly expressed in bacteriocytes and 78 competitively inhibited by arginine, a Buchnera produced end-product amino acid (Price et 79 al. 2014; Price et al. 2015). Second, microbial small RNAs that are conserved across 80 Buchnera from different aphid species have been proposed to function in Buchnera gene 81 regulation (Hansen and Degnan 2014). In particular, life-stage dependent differential 82 expression of amino acid biosynthesis pathways within Buchnera has been hypothesized to 83 result from post-transcriptional small RNA regulation within Buchnera (Hansen and 84 Degnan 2014). Third, microRNAs (miRNAs) encoded in aphid genomes have been found to 85 show bacteriocyte-specific expression (Feng et al. 2017). Remarkably, of the 14 miRNAs 86 highly or differentially expressed within aphid bacteriocytes, ten have previously been 87 characterized to play roles in host/microbe interactions (Feng et al. 2017). The emerging 88 picture of host/endosymbiont regulation is one of multiple concurrent and overlapping 89 mechanisms of integration. While some of these mechanisms have been characterized we 90 do not yet have a full mechanistic understanding of host/endosymbiont integration. In 91 particular, the mechanisms that link Buchnera amino acid output, the currency of this 92 nutritional endosymbiotic relationship, to symbiont growth and proliferation are yet to be 93 identified. 94 The highly conserved mechanistic target of rapamycin (mTOR) signaling pathway 95 (fig. 1) links a cell’s intracellular amino acid availability, extracellular growth factors, and 96 available energy levels to cellular responses that include protein synthesis, lipid synthesis, 97 cell proliferation, cytoskeleton organization, autophagy, and mitochondrial regulation and 98 proliferation (Crespo and Hall 2002; Laplante and Sabatini 2012; Morita et al. 2015; 99 Sarbassov et al. 2004; Shimobayashi and Hall 2016; Goberdhan et al. 2016). This signaling 100 pathway centers around two complexes: mTOR complex 1 (mTORC1) and mTOR complex 2 101 (mTORC2). The complexes form around the mTOR protein, but differ in protein 102 composition such that each complex has distinct functions. mTORC1 is activated in 103 response to sufficient levels of amino acids and responds by signaling for protein, 104 nucleotide and lipid synthesis, and blocking autophagy; mTORC1 allows cellular growth 105 when nutritional conditions will support growth (Goberdhan et al. 2016). The genes and 106 complexes upstream of mTORC1 and mTORC1 itself are referred to in this paper as the 107 amino acid sensing pathway. In contrast, mTORC2 integrates growth factors and other 108 extracellular signals with cell survival and cytoskeleton organization (Ebner et al. 2017; 109 Wullschleger et al. 2006). The mTOR pathway represents a conspicuous candidate for 110 integrating amino acid-provisioning, endosymbiont growth and population size to their 111 metabolic output within host tissues. Currently, mTOR is unannotated and unstudied in any 112 nutritional endosymbiosis. 113 114 In this study we present an annotation of the central components of the mTOR 115 pathway and its associated amino acid sensing cellular machinery in the aphids Myzus 116 persicae and Acyrthosiphon pisum. In addition, we re-analyze previously collected RNAseq 117 data generated from M. persicae bacteriome, gut, and whole insect tissue reporting 118 differential and ranked expression of mTOR pathway components from three genetically 119 distinct M. persicae lines. 120 MATERIALS AND METHODS 121 Annotation of the mTOR pathway in Myzus persicae and Acyrthosiphon pisum was done 122 using both BLASTp searches in which annotated mTOR proteins from Drosophila 123 melanogaster were used as queries (accessed from FlyBase), and Hidden Markov Models of 124 mTOR-associated genes (accessed from PantherDB) against the M. persicae G006 (NCBI 125 taxid: 13164) and A.
Recommended publications
  • Extreme Genome Reduction in Buchnera Spp.: Toward the Minimal Genome Needed for Symbiotic Life
    Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life Rosario Gil, Beatriz Sabater-Mun˜ oz, Amparo Latorre, Francisco J. Silva, and Andre´ s Moya* Institut Cavanilles de Biodiversitat i Biologı´aEvolutiva, Universitat de Valencia, Apartat Oficial 2085, 46071 Vale`ncia, Spain Communicated by Francisco J. Ayala, University of California, Irvine, CA, February 5, 2002 (received for review November 27, 2001) Buchnera is a mutualistic intracellular symbiont of aphids. Their transmission (10). A recent study has demonstrated they may association began about 200 million years ago, with host and have positive effects in host fitness (14). It is conceivable that symbiont lineages evolving in parallel since that time. During this S-endosymbionts may interact and modify the established mu- coevolutionary process, Buchnera has experienced a dramatic de- tualism between the aphid and Buchnera. crease of genome size, retaining only essential genes for its Phylogenetic studies have proven that the symbiosis between specialized lifestyle. Previous studies reported that genome size in Buchnera and its host resulted from a single bacterial infection Buchnera spp. is very uniform, suggesting that genome shrinkage of the common ancestor to all extant aphids about 200 million occurred early in evolution, and that modern lineages retain the years ago (15), leading to the cospeciation of the host and their genome size of a common ancestor. Our physical mapping of symbionts. During this coevolutionary process, Buchnera suf- Buchnera genomes obtained from five aphid lineages shows that fered considerable genomic changes (i.e., a great reduction in the genome size is not conserved among them, but has been genome size, an increased AϩT bias, great accumulation of reduced down to 450 kb in some species.
    [Show full text]
  • Profile of Nancy A. Moran ‘‘ Always Liked Insects,’’ Says Nancy A
    Profile of Nancy A. Moran ‘‘ always liked insects,’’ says Nancy A. bination,’’ she says. ‘‘Why have males Moran, Regent’s Professor of Ecol- and females, and not just reproduce by ogy and Evolutionary Biology at parthenogenesis and have all females?’’ the University of Arizona (Tuc- One of her advisors, William Hamilton, son,I AZ). ‘‘As a little kid, I was known had proposed that sexual reproduction as the girl who collected insects and had was important to create genetic diversity them in jars and things like that.’’ Years to stay one step ahead of coevolving later, this youthful bug collector has be- natural enemies, especially parasites and come a renowned entomologist whose pathogens. ‘‘I became interested in that work crosses over into multiple disci- idea and began looking at it in aphids,’’ plines, including microbiology, ecology, she says, ‘‘which are very useful since and molecular evolution. Moran’s re- they are parthogenetic for part of their search primarily focuses on the ecology life cycle’’ (3). and evolution of aphids and, since 1990, After receiving her Ph.D. in zoology has especially focused on the interaction in 1982, Moran spent the next several and coevolution of these small insects years studying evolutionary ecology in and the symbiotic bacteria that live in- aphids. ‘‘It was less than completely side of them. satisfying in a lot of ways,’’ she admits. ‘‘The whole evolution of insects has ‘‘At that time you were so far from the been in tandem with these bacteria,’’ actual genetic basis of the variation you Moran says. ‘‘We would not see insects were looking at, so you had no handle feeding on plant sap if it weren’t for as to which genes were actually causing symbiosis.’’ Elected to the National Nancy A.
    [Show full text]
  • Phylogenetics of Buchnera Aphidicola Munson Et Al., 1991
    Türk. entomol. derg., 2019, 43 (2): 227-237 ISSN 1010-6960 DOI: http://dx.doi.org/10.16970/entoted.527118 E-ISSN 2536-491X Original article (Orijinal araştırma) Phylogenetics of Buchnera aphidicola Munson et al., 1991 (Enterobacteriales: Enterobacteriaceae) based on 16S rRNA amplified from seven aphid species1 Farklı yaprak biti türlerinden izole edilen Buchnera aphidicola Munson et al., 1991 (Enterobacteriales: Enterobacteriaceae)’nın 16S rRNA’ya göre filogenetiği Gül SATAR2* Abstract The obligate symbiont, Buchnera aphidicola Munson et al., 1991 (Enterobacteriales: Enterobacteriaceae) is important for the physiological processes of aphids. Buchnera aphidicola genes detected in seven aphid species, collected in 2017 from different plants and altitudes in Adana Province, Turkey were analyzed to reveal phylogenetic interactions between Buchnera and aphids. The 16S rRNA gene was amplified and sequenced for this purpose and a phylogenetic tree built up by the neighbor-joining method. A significant correlation between B. aphidicola genes and the aphid species was revealed by this phylogenetic tree and the haplotype network. Specimens collected in Feke from Solanum melongena L. was distinguished from the other B. aphidicola genes on Aphis gossypii Glover, 1877 (Hemiptera: Aphididae) with a high bootstrap value of 99. Buchnera aphidicola in Myzus spp. was differentiated from others, and the difference between Myzus cerasi (Fabricius, 1775) and Myzus persicae (Sulzer, 1776) was clear. Although, B. aphidicola is specific to its host aphid, certain nucleotide differences obtained within the species could enable specification to geographic region or host plant in the future. Keywords: Aphid, genetic similarity, phylogenetics, symbiotic bacterium Öz Obligat simbiyont, Buchnera aphidicola Munson et al., 1991 (Enterobacteriales: Enterobacteriaceae), yaprak bitlerinin fizyolojik olaylarının sürdürülmesinde önemli bir rol oynar.
    [Show full text]
  • Serial Horizontal Transfer of Vitamin-Biosynthetic Genes Enables the Establishment of New Nutritional Symbionts in Aphids’ Di-Symbiotic Systems
    The ISME Journal (2020) 14:259–273 https://doi.org/10.1038/s41396-019-0533-6 ARTICLE Serial horizontal transfer of vitamin-biosynthetic genes enables the establishment of new nutritional symbionts in aphids’ di-symbiotic systems 1 1 1 2 2 Alejandro Manzano-Marıń ● Armelle Coeur d’acier ● Anne-Laure Clamens ● Céline Orvain ● Corinne Cruaud ● 2 1 Valérie Barbe ● Emmanuelle Jousselin Received: 25 February 2019 / Revised: 24 August 2019 / Accepted: 7 September 2019 / Published online: 17 October 2019 © The Author(s) 2019. This article is published with open access Abstract Many insects depend on obligate mutualistic bacteria to provide essential nutrients lacking from their diet. Most aphids, whose diet consists of phloem, rely on the bacterial endosymbiont Buchnera aphidicola to supply essential amino acids and B vitamins. However, in some aphid species, provision of these nutrients is partitioned between Buchnera and a younger bacterial partner, whose identity varies across aphid lineages. Little is known about the origin and the evolutionary stability of these di-symbiotic systems. It is also unclear whether the novel symbionts merely compensate for losses in Buchnera or 1234567890();,: 1234567890();,: carry new nutritional functions. Using whole-genome endosymbiont sequences of nine Cinara aphids that harbour an Erwinia-related symbiont to complement Buchnera, we show that the Erwinia association arose from a single event of symbiont lifestyle shift, from a free-living to an obligate intracellular one. This event resulted in drastic genome reduction, long-term genome stasis, and co-divergence with aphids. Fluorescence in situ hybridisation reveals that Erwinia inhabits its own bacteriocytes near Buchnera’s. Altogether these results depict a scenario for the establishment of Erwinia as an obligate symbiont that mirrors Buchnera’s.
    [Show full text]
  • Table S4. Phylogenetic Distribution of Bacterial and Archaea Genomes in Groups A, B, C, D, and X
    Table S4. Phylogenetic distribution of bacterial and archaea genomes in groups A, B, C, D, and X. Group A a: Total number of genomes in the taxon b: Number of group A genomes in the taxon c: Percentage of group A genomes in the taxon a b c cellular organisms 5007 2974 59.4 |__ Bacteria 4769 2935 61.5 | |__ Proteobacteria 1854 1570 84.7 | | |__ Gammaproteobacteria 711 631 88.7 | | | |__ Enterobacterales 112 97 86.6 | | | | |__ Enterobacteriaceae 41 32 78.0 | | | | | |__ unclassified Enterobacteriaceae 13 7 53.8 | | | | |__ Erwiniaceae 30 28 93.3 | | | | | |__ Erwinia 10 10 100.0 | | | | | |__ Buchnera 8 8 100.0 | | | | | | |__ Buchnera aphidicola 8 8 100.0 | | | | | |__ Pantoea 8 8 100.0 | | | | |__ Yersiniaceae 14 14 100.0 | | | | | |__ Serratia 8 8 100.0 | | | | |__ Morganellaceae 13 10 76.9 | | | | |__ Pectobacteriaceae 8 8 100.0 | | | |__ Alteromonadales 94 94 100.0 | | | | |__ Alteromonadaceae 34 34 100.0 | | | | | |__ Marinobacter 12 12 100.0 | | | | |__ Shewanellaceae 17 17 100.0 | | | | | |__ Shewanella 17 17 100.0 | | | | |__ Pseudoalteromonadaceae 16 16 100.0 | | | | | |__ Pseudoalteromonas 15 15 100.0 | | | | |__ Idiomarinaceae 9 9 100.0 | | | | | |__ Idiomarina 9 9 100.0 | | | | |__ Colwelliaceae 6 6 100.0 | | | |__ Pseudomonadales 81 81 100.0 | | | | |__ Moraxellaceae 41 41 100.0 | | | | | |__ Acinetobacter 25 25 100.0 | | | | | |__ Psychrobacter 8 8 100.0 | | | | | |__ Moraxella 6 6 100.0 | | | | |__ Pseudomonadaceae 40 40 100.0 | | | | | |__ Pseudomonas 38 38 100.0 | | | |__ Oceanospirillales 73 72 98.6 | | | | |__ Oceanospirillaceae
    [Show full text]
  • Evolutionary Loss and Replacement of Buchnera, the Obligate Endosymbiont of Aphids
    The ISME Journal (2018) 12:898–908 https://doi.org/10.1038/s41396-017-0024-6 ARTICLE Evolutionary loss and replacement of Buchnera, the obligate endosymbiont of aphids 1,2 1 Rebecca A. Chong ● Nancy A. Moran Received: 25 August 2017 / Revised: 24 October 2017 / Accepted: 11 November 2017 / Published online: 23 January 2018 © International Society of Microbial Ecology 2018 Abstract Symbiotic interactions between organisms create new ecological niches. For example, many insects survive on plant-sap with the aid of maternally transmitted bacterial symbionts that provision essential nutrients lacking in this diet. Symbiotic partners often enter a long-term relationship in which the co-evolutionary fate of lineages is interdependent. Obligate symbionts that are strictly maternally transmitted experience genetic drift and genome degradation, compromising symbiont function and reducing host fitness unless hosts can compensate for these deficits. One evolutionary solution is the acquisition of a novel symbiont with a functionally intact genome. Whereas almost all aphids host the anciently acquired bacterial endosymbiont Buchnera aphidicola (Gammaproteobacteria), Geopemphigus species have lost Buchnera and instead contain 1234567890 a maternally transmitted symbiont closely related to several known insect symbionts from the bacterial phylum Bacteroidetes. A complete genome sequence shows the symbiont has lost many ancestral genes, resulting in a genome size intermediate between that of free-living and symbiotic Bacteroidetes. The Geopemphigus symbiont retains biosynthetic pathways for amino acids and vitamins, as in Buchnera and other insect symbionts. This case of evolutionary replacement of Buchnera provides an opportunity to further understand the evolution and functional genomics of symbiosis. Introduction cells called bacteriocytes, where synthesized nutrients are exchanged with the host [3].
    [Show full text]
  • Interaction of Host Immune Systems with Endosymbionts in Glossina and Sitophilus Anna Zaidman-Rémy, Aurélien Vigneron, Brian Weiss, Abdelaziz Heddi
    What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus Anna Zaidman-Rémy, Aurélien Vigneron, Brian Weiss, Abdelaziz Heddi To cite this version: Anna Zaidman-Rémy, Aurélien Vigneron, Brian Weiss, Abdelaziz Heddi. What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus. BMC Microbiology, BioMed Central, 2018, 18 (S1), 10.1186/s12866-018-1278-5. hal-02051649 HAL Id: hal-02051649 https://hal.archives-ouvertes.fr/hal-02051649 Submitted on 27 Feb 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License Zaidman-Rémy et al. BMC Microbiology 2018, 18(Suppl 1):150 https://doi.org/10.1186/s12866-018-1278-5 REVIEW Open Access What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus Anna Zaidman-Rémy1*, Aurélien Vigneron2, Brian L Weiss2 and Abdelaziz Heddi1* Abstract The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa.
    [Show full text]
  • Hemiptera: Adelgidae)
    The ISME Journal (2012) 6, 384–396 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae) Elena R Toenshoff1, Thomas Penz1, Thomas Narzt2, Astrid Collingro1, Stephan Schmitz-Esser1,3, Stefan Pfeiffer1, Waltraud Klepal2, Michael Wagner1, Thomas Weinmaier4, Thomas Rattei4 and Matthias Horn1 1Department of Microbial Ecology, University of Vienna, Vienna, Austria; 2Core Facility, Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria; 3Department of Veterinary Public Health and Food Science, Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria and 4Department of Computational Systems Biology, University of Vienna, Vienna, Austria Adelgids (Insecta: Hemiptera: Adelgidae) are known as severe pests of various conifers in North America, Canada, Europe and Asia. Here, we present the first molecular identification of bacteriocyte-associated symbionts in these plant sap-sucking insects. Three geographically distant populations of members of the Adelges nordmannianae/piceae complex, identified based on coI and ef1alpha gene sequences, were investigated. Electron and light microscopy revealed two morphologically different endosymbionts, coccoid or polymorphic, which are located in distinct bacteriocytes. Phylogenetic analyses of their 16S and 23S rRNA gene sequences assigned both symbionts to novel lineages within the Gammaproteobacteria sharing o92% 16S rRNA sequence similarity with each other and showing no close relationship with known symbionts of insects. Their identity and intracellular location were confirmed by fluorescence in situ hybridization, and the names ‘Candidatus Steffania adelgidicola’ and ‘Candidatus Ecksteinia adelgidicola’ are proposed for tentative classification.
    [Show full text]
  • Ubiquity of the Symbiont Serratia Symbiotica in the Aphid Natural Environment
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440331; this version posted April 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Ubiquity of the Symbiont Serratia symbiotica in the Aphid Natural Environment: 2 Distribution, Diversity and Evolution at a Multitrophic Level 3 4 Inès Pons1*, Nora Scieur1, Linda Dhondt1, Marie-Eve Renard1, François Renoz1, Thierry Hance1 5 6 1 Earth and Life Institute, Biodiversity Research Centre, Université catholique de Louvain, 1348, 7 Louvain-la-Neuve, Belgium. 8 9 10 * Corresponding author: 11 Inès Pons 12 Croix du Sud 4-5, bte L7.07.04, 1348 Louvain la neuve, Belgique 13 [email protected] 14 15 16 17 18 19 20 21 22 23 24 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.04.18.440331; this version posted April 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 25 ABSTRACT 26 Bacterial symbioses are significant drivers of insect evolutionary ecology. However, despite recent 27 findings that these associations can emerge from environmentally derived bacterial precursors, there 28 is still little information on how these potential progenitors of insect symbionts circulates in the trophic 29 systems. The aphid symbiont Serratia symbiotica represents a valuable model for deciphering 30 evolutionary scenarios of bacterial acquisition by insects, as its diversity includes intracellular host- 31 dependent strains as well as gut-associated strains that have retained some ability to live independently 32 of their hosts and circulate in plant phloem sap.
    [Show full text]
  • Bacterial Endosymbionts in Animals Nancy a Moran* and Paul Baumann†
    270 Bacterial endosymbionts in animals Nancy A Moran* and Paul Baumann† Molecular phylogenetic studies reveal that many This review is concentrated on evolutionary aspects of endosymbioses between bacteria and invertebrate hosts result endosymbiosis involving bacteriocyte associates of animals. from ancient infections followed by strict vertical transmission For these bacteria, there is clear evidence of a coevolved, within host lineages. Endosymbionts display a distinctive mutualistic relationship with the host and a distinctive set constellation of genetic properties including AT-biased base of genetic traits that result from the association. To date, composition, accelerated sequence evolution, and, at least most studies have focused on insect symbionts, although sometimes, small genome size; these features suggest there are a few evolutionary studies of symbionts in other increased genetic drift. Molecular genetic characterization also invertebrate groups. The best-characterized animal has revealed adaptive, host-beneficial traits such as endosymbiont is Buchnera aphidicola, a bacteriocyte-associ- amplification of genes underlying nutrient provision. ated mutualist of aphids, insects that feed on phloem sap of host plants. Many comparative studies of host-beneficial Addresses and other loci have been carried out using Buchnera, and a *Department of Ecology and Evolutionary Biology, University of full genome has recently been completely sequenced Arizona, Tucson, Arizona 85721, USA; e-mail: [email protected] (H Ishikawa, personal communication), with sequencing of † Microbiology Section, University of California at Davis, Davis, another genome in progress. We emphasize molecular stud- California 95616, USA; e-mail: [email protected] ies within the past two years that have applied molecular Current Opinion in Microbiology 2000, 3:270–275 approaches to reconstruct the evolution of Buchnera and 1369-5274/00/$ — see front matter other bacteriocyte-associates.
    [Show full text]
  • International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/Ijsem.0.001485
    International Journal of Systematic and Evolutionary Microbiology (2016), 66, 5575–5599 DOI 10.1099/ijsem.0.001485 Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Mobolaji Adeolu,† Seema Alnajar,† Sohail Naushad and Radhey S. Gupta Correspondence Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Radhey S. Gupta L8N 3Z5, Canada [email protected] Understanding of the phylogeny and interrelationships of the genera within the order ‘Enterobacteriales’ has proven difficult using the 16S rRNA gene and other single-gene or limited multi-gene approaches. In this work, we have completed comprehensive comparative genomic analyses of the members of the order ‘Enterobacteriales’ which includes phylogenetic reconstructions based on 1548 core proteins, 53 ribosomal proteins and four multilocus sequence analysis proteins, as well as examining the overall genome similarity amongst the members of this order. The results of these analyses all support the existence of seven distinct monophyletic groups of genera within the order ‘Enterobacteriales’. In parallel, our analyses of protein sequences from the ‘Enterobacteriales’ genomes have identified numerous molecular characteristics in the forms of conserved signature insertions/deletions, which are specifically shared by the members of the identified clades and independently support their monophyly and distinctness. Many of these groupings, either in part or in whole, have been recognized in previous evolutionary studies, but have not been consistently resolved as monophyletic entities in 16S rRNA gene trees. The work presented here represents the first comprehensive, genome- scale taxonomic analysis of the entirety of the order ‘Enterobacteriales’.
    [Show full text]
  • Hamiltonella Defensa</Em>
    University of Kentucky UKnowledge Entomology Faculty Publications Entomology 9-2014 Factors Limiting the Spread of the Protective Symbiont Hamiltonella defensa in Aphis craccivora Aphids Hannah R. Dykstra University of Georgia Stephanie R. Weldon University of Georgia Adam J. Martinez University of Georgia Jennifer A. White University of Kentucky, [email protected] Keith R. Hopper US Department of Agriculture See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/entomology_facpub Part of the Entomology Commons Repository Citation Dykstra, Hannah R.; Weldon, Stephanie R.; Martinez, Adam J.; White, Jennifer A.; Hopper, Keith R.; Heimpel, George E.; Asplen, Mark K.; and Oliver, Kerry M., "Factors Limiting the Spread of the Protective Symbiont Hamiltonella defensa in Aphis craccivora Aphids" (2014). Entomology Faculty Publications. 72. https://uknowledge.uky.edu/entomology_facpub/72 This Article is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Entomology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Hannah R. Dykstra, Stephanie R. Weldon, Adam J. Martinez, Jennifer A. White, Keith R. Hopper, George E. Heimpel, Mark K. Asplen, and Kerry M. Oliver Factors Limiting the Spread of the Protective Symbiont Hamiltonella defensa in Aphis craccivora Aphids Notes/Citation Information Published in Applied and Environmental Microbiology, v. 80, no. 18, p. 5818-5827. Copyright © 2014, American Society for Microbiology. All Rights Reserved. The opc yright holder has granted permission for posting the article here.
    [Show full text]