Bgsu1150425606.Pdf (1.48

Total Page:16

File Type:pdf, Size:1020Kb

Bgsu1150425606.Pdf (1.48 BAYESIAN MODEL CHECKING STRATEGIES FOR DICHOTOMOUS ITEM RESPONSE THEORY MODELS Sherwin G. Toribio A Dissertation Submitted to the Graduate College of Bowling Green State University in partial ful¯llment of the requirements for the degree of DOCTOR OF PHILOSOPHY August 2006 Committee: James H. Albert, Advisor William H. Redmond Graduate Faculty Representative John T. Chen Craig L. Zirbel ii ABSTRACT James H Albert, Advisor Item Response Theory (IRT) models are commonly used in educational and psycholog- ical testing. These models are mainly used to assess the latent abilities of examinees and the e®ectiveness of the test items in measuring this underlying trait. However, model check- ing in Item Response Theory is still an underdeveloped area. In this dissertation, various model checking strategies from a Bayesian perspective for di®erent Item Response models are presented. In particular, three methods are employed to assess the goodness-of-¯t of di®erent IRT models. First, Bayesian residuals and di®erent residual plots are introduced to serve as graphical procedures to check for model ¯t and to detect outlying items and exami- nees. Second, the idea of predictive distributions is used to construct reference distributions for di®erent test quantities and discrepancy measures, including the standard deviation of point bi-serial correlations, Bock's Pearson-type chi-square index, Yen's Q1 index, Hosmer- Lemeshow Statistic, Mckinley and Mill's G2 index, Orlando and Thissen's S ¡G2 and S ¡X2 indices, Wright and Stone's W -statistic, and the Log-likelihood statistic. The prior, poste- rior, and partial posterior predictive distributions are discussed and employed. Finally, Bayes factor are used to compare di®erent IRT models in model selection and detection of outly- ing discrimination parameters. In this topic, di®erent numerical procedures to estimate the Bayes factors for these models are discussed. All of these proposed methods are illustrated using simulated data and Mathematics placement exam data from BGSU. ii iii ACKNOWLEDGMENTS First of all, I would like to thank Dr. Jim Albert, my advisor, for his constant support and many suggestions throughout this research. I also wish to thank him for the friendship and all the advice that he shared about life in general. I also want to extend my gratitude to the other members of my committee, Dr. John Chen, Dr. Craig Zirbel, and Dr. William Redmond, for their time and advice. I am grateful to the department of Mathematics and Statistics for all the support and for providing a wonderful research environment. I especially wish to thank Marcia Seubert, Cyndi Patterson, and Mary Busdeker for all their help. The dissertation fellowship for the period 2005-2006 was crucial to the completion of this work. I wish to thank my colleagues and friends from BG, Joel, Vhie, Merly, Florence, Dhanuja, Kevin, Mike, Khairul and Shapla, and all the other Pinoys for all the fun and interesting discussions. Finally, I thank my beloved wife, Alie, for all her support, love, and patience, and Simone for bringing all the joy and happiness in our lives during our stay in Bowling Green. Without them this work could never have come to existence. Sherwin G. Toribio Bowling Green, Ohio August, 2006 iii iv TABLE OF CONTENTS CHAPTER 1: ITEM RESPONSE THEORY MODELS 1 1.1 Introduction . 1 1.2 Item Response Curve . 2 1.3 Common IRT Models . 4 1.3.1 One-Parameter Model . 4 1.3.2 Two-Parameter Model . 6 1.3.3 Three-Parameter Model . 8 1.3.4 Exchangeable IRT Model . 8 1.4 Parameter Estimation . 9 1.4.1 Likelihood Function . 9 1.4.2 Joint Maximum Likelihood Estimation . 10 1.4.3 Bayesian Estimation . 14 1.4.4 Albert's Gibbs Sampler . 17 1.5 An Example - BGSU Mathematics Placement Exam . 20 1.6 Advantages of the Bayesian Approach . 24 CHAPTER 2: MODEL CHECKING METHODS FOR BINARY AND IRT MODELS 28 2.1 Introduction . 28 2.2 Residuals . 29 iv v 2.2.1 Classical Residuals . 31 2.2.2 Bayesian Residuals . 34 2.3 Chi-squared tests for Goodness-of-¯t of IRT Models . 35 2.3.1 Wright and Pachapakesan Index (WP) . 35 2.3.2 Bock's Index (B) . 36 2.3.3 Yen's Index (Q1) ............................. 37 2.3.4 Hosmer and Lemeshow Index (HL) . 37 2.3.5 Mckingley and Mills Index (G2)..................... 38 2.3.6 Orlando and Thissen Indices (S ¡ Â2 and S ¡ G2) . 39 2.4 Discrepancy Measures and Test quantities . 40 2.5 Predictive Distributions . 40 2.5.1 Prior Predictive Distribution . 40 2.5.2 Posterior Predictive Distribution . 42 2.5.3 Conditional Predictive Distribution . 43 2.5.4 Partial Posterior Predictive Distribution . 44 2.6 Bayes Factor . 44 CHAPTER 3: OUTLIER DETECTION IN IRT MODELS USING BAYESIAN RESIDUALS 46 3.1 Introduction . 46 3.2 Detecting Mis¯tted Items Using IRC Interval Band . 47 3.3 Detecting Guessers . 51 3.3.1 Examinee Bayesian Residual Plots . 51 vi 3.3.2 Examinee Bayesian Latent Residual Plots . 55 3.4 Detecting Mis¯tted Examinees . 59 3.5 Application To Real Data Set . 62 CHAPTER 4: ASSESSING THE GOODNESS-OF-FIT OF IRT MODELS USING PREDICTIVE DISTRIBUTIONS 67 4.1 Introduction . 67 4.2 Checking the Appropriateness of the One-parameter Probit IRT Model . 68 4.2.1 Point Biserial Correlation . 68 4.2.2 Using Prior Predictive . 70 4.2.3 Using Posterior Predictive . 74 4.3 Item Fit Analysis . 78 4.3.1 Using Prior Predictive . 79 4.3.2 Using Posterior Predictive . 80 4.3.3 Using Partial Posterior Predictive . 86 4.4 Examinee Fit Analysis . 88 4.4.1 Discrepancy Measures for Person Fit . 89 4.4.2 Detecting Guessers using Posterior Predictive . 90 4.5 Application To Real Data Set . 95 CHAPTER 5: BAYESIAN METHODS FOR IRT MODEL SELECTION 101 5.1 Introduction . 101 5.2 Checking the Beta-Binomial Model using Bayes Factors . 102 5.2.1 Beta Binomial Model . 103 vii 5.2.2 Bayes Factor . 105 5.2.3 Laplace Method for Integration . 106 5.2.4 Estimating the Bayes Factor . 108 5.2.5 Application to Real Data . 112 5.2.6 Approximating the Denominator of the Bayes Factor . 112 5.2.7 Using Importance Sampling . 114 5.3 Exchangeable IRT Model . 117 5.3.1 Approximating the One-parameter model . 120 5.3.2 Approximating the Two-parameter model . 122 5.4 IRT Model Comparisons and Model Selection . 124 5.4.1 Computing the Bayes Factor for IRT models . 125 5.4.2 IRT Model Comparison . 126 5.5 Finding Outlying Discrimination Parameters . 130 5.5.1 Using Bayes Factor . 131 5.5.2 Using Mixture Prior Density . 132 5.6 Application To Real Data Set . 138 CHAPTER 6: SUMMARY AND CONCLUSIONS 142 Appendix A: NUMERICAL METHODS 145 A.1 Newton Raphson for IRT Models . 145 A.2 Markov Chain Monte Carlo (MCMC) . 147 A.2.1 Metropolis-Hasting . 147 A.2.2 Gibbs Sampling . 149 viii A.2.3 Importance Sampling . 150 Appendix B: MATLAB PROGRAMS 151 B.1 Chapter 1 codes . 151 B.2 Chapter 3 codes . 154 B.3 Chapter 4 codes . 158 B.4 Chapter 5 codes . 164 REFERENCES 174 ix LIST OF FIGURES 1.1 A typical item response curve. 4 1.2 Item response curves for 3 di®erent di±culty values. 5 1.3 Item response curves for 3 di®erent discrimination values. 7 1.4 Items with high discrimination power have higher chances of distinguishing two examinees with di®erent ability scores than items with low discrimination power........................................ 7 1.5 Scatterplots of 35 actual item parameter versus their corresponding estimates 13 1.6 Scatterplots of 1000 actual ability scores versus their corresponding estimates. 13 1.7 Scatterplots of 35 actual item parameter versus their corresponding Bayesian estimates . 19 1.8 Scatterplot of 1000 actual ability scores versus their corresponding Bayesian estimates . 19 1.9 Summary plot of the JML estimates of the parameters of the 35 items in BGSU Math placement exam. 21 1.10 Scatterplot of the JML estimates of the ability scores versus their correspond- ing exam raw score. 22 1.11 Summary plot of the Bayesian estimates of the parameters of the 35 items in BGSU Math placement exam. 23 1.12 Scatterplot of the Bayesian estimates of the ability scores versus their corre- sponding exam raw score. 23 ix x 1.13 Scatterplots that compare the Bayesian estimates with the JMLE estimates of the item parameters. 25 1.14 A scatterplot that depicts a strong correlation between the Bayesian and JMLE estimates of the ability scores. 25 2.1 Classical Residual Plot . 33 3.1 A 90% interval band for the ¯tted item response curves of items 15 and 30 using the Two-parameter IRT model. 48 3.2 A 90% interval band for the item response curves of items 10 (above) and 26 (below) ¯tted with the (left) One-parameter IRT model and (right) Two- parameter IRT model. 49 3.3 Posterior residual plots of items 10 (above) and 26 (below) ¯tted.
Recommended publications
  • Two Principles of Evidence and Their Implications for the Philosophy of Scientific Method
    TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD by Gregory Stephen Gandenberger BA, Philosophy, Washington University in St. Louis, 2009 MA, Statistics, University of Pittsburgh, 2014 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Gregory Stephen Gandenberger It was defended on April 14, 2015 and approved by Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences Satish Iyengar, Pittsburgh, Dietrich School of Arts and Sciences John Norton, Pittsburgh, Dietrich School of Arts and Sciences Teddy Seidenfeld, Carnegie Mellon University, Dietrich College of Humanities & Social Sciences James Woodward, Pittsburgh, Dietrich School of Arts and Sciences Dissertation Director: Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences ii Copyright © by Gregory Stephen Gandenberger 2015 iii TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD Gregory Stephen Gandenberger, PhD University of Pittsburgh, 2015 The notion of evidence is of great importance, but there are substantial disagreements about how it should be understood. One major locus of disagreement is the Likelihood Principle, which says roughly that an observation supports a hypothesis to the extent that the hy- pothesis predicts it. The Likelihood Principle is supported by axiomatic arguments, but the frequentist methods that are most commonly used in science violate it. This dissertation advances debates about the Likelihood Principle, its near-corollary the Law of Likelihood, and related questions about statistical practice.
    [Show full text]
  • 5. Completeness and Sufficiency 5.1. Complete Statistics. Definition 5.1. a Statistic T Is Called Complete If Eg(T) = 0 For
    5. Completeness and sufficiency 5.1. Complete statistics. Definition 5.1. A statistic T is called complete if Eg(T ) = 0 for all θ and some function g implies that P (g(T ) = 0; θ) = 1 for all θ. This use of the word complete is analogous to calling a set of vectors v1; : : : ; vn complete if they span the whole space, that is, any v can P be written as a linear combination v = ajvj of these vectors. This is equivalent to the condition that if w is orthogonal to all vj's, then w = 0. To make the connection with Definition 5.1, let's consider the discrete case. Then completeness means that P g(t)P (T = t; θ) = 0 implies that g(t) = 0. Since the sum may be viewed as the scalar prod- uct of the vectors (g(t1); g(t2);:::) and (p(t1); p(t2);:::), with p(t) = P (T = t), this is the analog of the orthogonality condition just dis- cussed. We also see that the terminology is somewhat misleading. It would be more accurate to call the family of distributions p(·; θ) complete (rather than the statistic T ). In any event, completeness means that the collection of distributions for all possible values of θ provides a sufficiently rich set of vectors. In the continuous case, a similar inter- pretation works. Completeness now refers to the collection of densities f(·; θ), and hf; gi = R fg serves as the (abstract) scalar product in this case. Example 5.1. Let's take one more look at the coin flip example.
    [Show full text]
  • C Copyright 2014 Navneet R. Hakhu
    c Copyright 2014 Navneet R. Hakhu Unconditional Exact Tests for Binomial Proportions in the Group Sequential Setting Navneet R. Hakhu A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science University of Washington 2014 Reading Committee: Scott S. Emerson, Chair Marco Carone Program Authorized to Offer Degree: Biostatistics University of Washington Abstract Unconditional Exact Tests for Binomial Proportions in the Group Sequential Setting Navneet R. Hakhu Chair of the Supervisory Committee: Professor Scott S. Emerson Department of Biostatistics Exact inference for independent binomial outcomes in small samples is complicated by the presence of a mean-variance relationship that depends on nuisance parameters, discreteness of the outcome space, and departures from normality. Although large sample theory based on Wald, score, and likelihood ratio (LR) tests are well developed, suitable small sample methods are necessary when \large" samples are not feasible. Fisher's exact test, which conditions on an ancillary statistic to eliminate nuisance parameters, however its inference based on the hypergeometric distribution is \exact" only when a user is willing to base decisions on flipping a biased coin for some outcomes. Thus, in practice, Fisher's exact test tends to be conservative due to the discreteness of the outcome space. To address the various issues that arise with the asymptotic and/or small sample tests, Barnard (1945, 1947) introduced the concept of unconditional exact tests that use exact distributions of a test statistic evaluated over all possible values of the nuisance parameter. For test statistics derived based on asymptotic approximations, these \unconditional exact tests" ensure that the realized type 1 error is less than or equal to the nominal level.
    [Show full text]
  • Ancillary Statistics Largest Possible Reduction in Dimension, and Is Analo- Gous to a Minimal Sufficient Statistic
    provides the largest possible conditioning set, or the Ancillary Statistics largest possible reduction in dimension, and is analo- gous to a minimal sufficient statistic. A, B,andC are In a parametric model f(y; θ) for a random variable maximal ancillary statistics for the location model, or vector Y, a statistic A = a(Y) is ancillary for θ if but the range is only a maximal ancillary in the loca- the distribution of A does not depend on θ.Asavery tion uniform. simple example, if Y is a vector of independent, iden- An important property of the location model is that tically distributed random variables each with mean the exact conditional distribution of the maximum θ, and the sample size is determined randomly, rather likelihood estimator θˆ, given the maximal ancillary than being fixed in advance, then A = number of C, can be easily obtained simply by renormalizing observations in Y is an ancillary statistic. This exam- the likelihood function: ple could be generalized to more complex structure L(θ; y) for the observations Y, and to examples in which the p(θˆ|c; θ) = ,(1) sample size depends on some further parameters that L(θ; y) dθ are unrelated to θ. Such models might well be appro- priate for certain types of sequentially collected data where L(θ; y) = f(yi ; θ) is the likelihood function arising, for example, in clinical trials. for the sample y = (y1,...,yn), and the right-hand ˆ Fisher [5] introduced the concept of an ancillary side is to be interpreted as depending on θ and c, statistic, with particular emphasis on the usefulness of { } | = using the equations ∂ log f(yi ; θ) /∂θ θˆ 0and an ancillary statistic in recovering information that c = y − θˆ.
    [Show full text]
  • STAT 517:Sufficiency
    STAT 517:Sufficiency Minimal sufficiency and Ancillary Statistics. Sufficiency, Completeness, and Independence Prof. Michael Levine March 1, 2016 Levine STAT 517:Sufficiency Motivation I Not all sufficient statistics created equal... I So far, we have mostly had a single sufficient statistic for one parameter or two for two parameters (with some exceptions) I Is it possible to find the minimal sufficient statistics when further reduction in their number is impossible? I Commonly, for k parameters one can get k minimal sufficient statistics Levine STAT 517:Sufficiency Example I X1;:::; Xn ∼ Unif (θ − 1; θ + 1) so that 1 f (x; θ) = I (x) 2 (θ−1,θ+1) where −∞ < θ < 1 I The joint pdf is −n 2 I(θ−1,θ+1)(min xi ) I(θ−1,θ+1)(max xi ) I It is intuitively clear that Y1 = min xi and Y2 = max xi are joint minimal sufficient statistics Levine STAT 517:Sufficiency Occasional relationship between MLE's and minimal sufficient statistics I Earlier, we noted that the MLE θ^ is a function of one or more sufficient statistics, when the latter exists I If θ^ is itself a sufficient statistic, then it is a function of others...and so it may be a sufficient statistic 2 2 I E.g. the MLE θ^ = X¯ of θ in N(θ; σ ), σ is known, is a minimal sufficient statistic for θ I The MLE θ^ of θ in a P(θ) is a minimal sufficient statistic for θ ^ I The MLE θ = Y(n) = max1≤i≤n Xi of θ in a Unif (0; θ) is a minimal sufficient statistic for θ ^ ¯ ^ n−1 2 I θ1 = X and θ2 = n S of θ1 and θ2 in N(θ1; θ2) are joint minimal sufficient statistics for θ1 and θ2 Levine STAT 517:Sufficiency Formal definition I A sufficient statistic
    [Show full text]
  • Stat 609: Mathematical Statistics Lecture 24
    Lecture 24: Completeness Definition 6.2.16 (ancillary statistics) A statistic V (X) is ancillary iff its distribution does not depend on any unknown quantity. A statistic V (X) is first-order ancillary iff E[V (X)] does not depend on any unknown quantity. A trivial ancillary statistic is V (X) ≡ a constant. The following examples show that there exist many nontrivial ancillary statistics (non-constant ancillary statistics). Examples 6.2.18 and 6.2.19 (location-scale families) If X1;:::;Xn is a random sample from a location family with location parameter m 2 R, then, for any pair (i;j), 1 ≤ i;j ≤ n, Xi − Xj is ancillary, because Xi − Xj = (Xi − m) − (Xj − m) and the distribution of (Xi − m;Xj − m) does not depend on any unknown parameter. Similarly, X(i) − X(j) is ancillary, where X(1);:::;X(n) are the order statistics, and the sample variance S2 is ancillary. beamer-tu-logo UW-Madison (Statistics) Stat 609 Lecture 24 2015 1 / 15 Note that we do not even need to obtain the form of the distribution of Xi − Xj . If X1;:::;Xn is a random sample from a scale family with scale parameter s > 0, then by the same argument we can show that, for any pair (i;j), 1 ≤ i;j ≤ n, Xi =Xj and X(i)=X(j) are ancillary. If X1;:::;Xn is a random sample from a location-scale family with parameters m 2 R and s > 0, then, for any (i;j;k), 1 ≤ i;j;k ≤ n, (Xi − Xk )=(Xj − Xk ) and (X(i) − X(k))=(X(j) − X(k)) are ancillary.
    [Show full text]
  • Fundamental Theory of Statistical Inference
    Fundamental Theory of Statistical Inference G. A. Young November 2018 Preface These notes cover the essential material of the LTCC course `Fundamental Theory of Statistical Inference'. They are extracted from the key reference for the course, Young and Smith (2005), which should be consulted for further discussion and detail. The book by Cox (2006) is also highly recommended as further reading. The course aims to provide a concise but comprehensive account of the es- sential elements of statistical inference and theory. It is intended to give a contemporary and accessible account of procedures used to draw formal inference from data. The material assumes a basic knowledge of the ideas of statistical inference and distribution theory. We focus on a presentation of the main concepts and results underlying different frameworks of inference, with particular emphasis on the contrasts among frequentist, Fisherian and Bayesian approaches. G.A. Young and R.L. Smith. `Essentials of Statistical Inference'. Cambridge University Press, 2005. D.R. Cox. `Principles of Statistical Inference'. Cambridge University Press, 2006. The following provide article-length discussions which draw together many of the ideas developed in the course: M.J. Bayarri and J. Berger (2004). The interplay between Bayesian and frequentist analysis. Statistical Science, 19, 58{80. J. Berger (2003). Could Fisher, Jeffreys and Neyman have agreed on testing (with discussion)? Statistical Science, 18, 1{32. B. Efron. (1998). R.A. Fisher in the 21st Century (with discussion). Statis- tical Science, 13, 95{122. G. Alastair Young Imperial College London November 2018 ii 1 Approaches to Statistical Inference 1 Approaches to Statistical Inference What is statistical inference? In statistical inference experimental or observational data are modelled as the observed values of random variables, to provide a framework from which inductive conclusions may be drawn about the mechanism giving rise to the data.
    [Show full text]
  • Topics in Bayesian Hierarchical Modeling and Its Monte Carlo Computations
    Topics in Bayesian Hierarchical Modeling and its Monte Carlo Computations The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Tak, Hyung Suk. 2016. Topics in Bayesian Hierarchical Modeling and its Monte Carlo Computations. Doctoral dissertation, Harvard University, Graduate School of Arts & Sciences. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:33493573 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA Topics in Bayesian Hierarchical Modeling and its Monte Carlo Computations A dissertation presented by Hyung Suk Tak to The Department of Statistics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Statistics Harvard University Cambridge, Massachusetts April 2016 c 2016 Hyung Suk Tak All rights reserved. Dissertation Advisors: Professor Xiao-Li Meng Hyung Suk Tak Professor Carl N. Morris Topics in Bayesian Hierarchical Modeling and its Monte Carlo Computations Abstract The first chapter addresses a Beta-Binomial-Logit model that is a Beta-Binomial conjugate hierarchical model with covariate information incorporated via a logistic regression. Various researchers in the literature have unknowingly used improper posterior distributions or have given incorrect statements about posterior propriety because checking posterior propriety can be challenging due to the complicated func- tional form of a Beta-Binomial-Logit model. We derive data-dependent necessary and sufficient conditions for posterior propriety within a class of hyper-prior distributions that encompass those used in previous studies.
    [Show full text]
  • Ancillary Statistics: a Review
    1 ANCILLARY STATISTICS: A REVIEW M. Ghosh, N. Reid and D.A.S. Fraser University of Florida and University of Toronto Abstract: In a parametric statistical model, a function of the data is said to be ancillary if its distribution does not depend on the parameters in the model. The concept of ancillary statistics is one of R. A. Fisher's fundamental contributions to statistical inference. Fisher motivated the principle of conditioning on ancillary statistics by an argument based on relevant subsets, and by a closely related ar- gument on recovery of information. Conditioning can also be used to reduce the dimension of the data to that of the parameter of interest, and conditioning on ancillary statistics ensures that no information about the parameter is lost in this reduction. This review article illustrates various aspects of the use of ancillarity in statis- tical inference. Both exact and asymptotic theory are considered. Without any claim of completeness, we have made a modest attempt to crystalize many of the ideas in the literature. Key words and phrases: ancillarity paradox, approximate ancillary, estimating func- tions, hierarchical Bayes, local ancillarity, location, location-scale, multiple ancil- laries, nuisance parameters, p-values, P -ancillarity, S-ancillarity, saddlepoint ap- proximation. 1. Introduction Ancillary statistics were one of R.A. Fisher's many pioneering contributions to statistical inference, introduced in Fisher (1925) and further discussed in Fisher (1934, 1935). Fisher did not provide a formal definition of ancillarity, but fol- lowing later authors such as Basu (1964), the usual definition is that a statistic is ancillary if its distribution does not depend on the parameters in the assumed model.
    [Show full text]
  • An Interpretation of Completeness and Basu's Theorem E
    An Interpretation of Completeness and Basu's Theorem E. L. LEHMANN* In order to obtain a statistical interpretation of complete­ f. A necessary condition for T to be complete or bound­ ness of a sufficient statistic T, an attempt is made to edly complete is that it is minimal. characterize this property as equivalent to the condition The properties of minimality and completeness are of that all ancillary statistics are independent ofT. For tech­ a rather different nature. Under mild assumptions a min­ nical reasons, this characterization is not correct, but two imal sufficient statistic exists and whether or not T is correct versions are obtained in Section 3 by modifying minimal then depends on the choice of T. On the other either the definition of ancillarity or of completeness. The hand, existence of a complete sufficient statistic is equiv­ light this throws on the meaning of completeness is dis­ alent to the completeness of the minimal sufficient sta­ cussed in Section 4. Finally, Section 5 reviews some of tistic, and hence is a property of the model '!/' . We shall the difficulties encountered in models that lack say that a model is complete if its minimal sufficient sta­ completeness. tistic is complete. It has been pointed out in the literature that definition KEY WORDS: Anciltary statistic; Basu's theorem; Com­ (1.1) is purely technical and does not suggest a direct Unbiased estimation. pleteness; Conditioning; statistical interpretation. Since various aspects of statis­ 1. INTRODUCTION tical inference become particularly simple for complete models, one would expect this concept to carry statistical Let X be a random observable distributed according meaning.
    [Show full text]
  • How Ronald Fisher Became a Mathematical Statistician Comment Ronald Fisher Devint Statisticien
    Mathématiques et sciences humaines Mathematics and social sciences 176 | Hiver 2006 Varia How Ronald Fisher became a mathematical statistician Comment Ronald Fisher devint statisticien Stephen Stigler Édition électronique URL : http://journals.openedition.org/msh/3631 DOI : 10.4000/msh.3631 ISSN : 1950-6821 Éditeur Centre d’analyse et de mathématique sociales de l’EHESS Édition imprimée Date de publication : 1 décembre 2006 Pagination : 23-30 ISSN : 0987-6936 Référence électronique Stephen Stigler, « How Ronald Fisher became a mathematical statistician », Mathématiques et sciences humaines [En ligne], 176 | Hiver 2006, mis en ligne le 28 juillet 2006, consulté le 23 juillet 2020. URL : http://journals.openedition.org/msh/3631 ; DOI : https://doi.org/10.4000/msh.3631 © École des hautes études en sciences sociales Math. Sci. hum ~ Mathematics and Social Sciences (44e année, n° 176, 2006(4), p. 23-30) HOW RONALD FISHER BECAME A MATHEMATICAL STATISTICIAN Stephen M. STIGLER1 RÉSUMÉ – Comment Ronald Fisher devint statisticien En hommage à Bernard Bru, cet article rend compte de l’influence décisive qu’a eu Karl Pearson sur Ronald Fisher. Fisher ayant soumis un bref article rédigé de façon hâtive et insuffisamment réfléchie, Pearson lui fit réponse éditoriale d’une grande finesse qui arriva à point nommé. MOTS-CLÉS – Exhaustivité, Inférence fiduciaire, Maximum de vraisemblance, Paramètre SUMMARY – In hommage to Bernard Bru, the story is told of the crucial influence Karl Pearson had on Ronald Fisher through a timely and perceptive editorial reply to a hasty and insufficiently considered short submission by Fisher. KEY-WORDS – Fiducial inference, Maximum likelihood, Parameter, Sufficiency, It is a great personal pleasure to join in this celebration of the friendship and scholarship of Bernard Bru.
    [Show full text]
  • 1 Complete Statistics
    Complete Statistics February 4, 2016 Debdeep Pati 1 Complete Statistics Suppose X ∼ Pθ; θ 2 Θ. Let (X(1);:::;X(n)) denote the order statistics. Definition 1. A statistic T = T (X) is complete if Eθg(T ) = 0 for all θ implies Pθ(g(T ) = 0) = 1 for all θ: (Note: Eθ denotes expectation computed with respect to Pθ). Example: X = (X1;:::;Xn) iid N(θ; 1). T (X) = (X1;X2) is a statistic which is not complete because E(X1 − X2) = 0 for all θ: 2 and X1 − X2 here is a function of T where g : R ! R given by (x1; x2) 7! x1 − x2 but P (X1 − X2 = 0) 6= 1 for all θ. More formally: T is not complete because the function g satisfies Eθg(T ) = 0 for all θ but Pθ(g(T ) = 0) 6= 1 for all θ: Example: X = (X1;:::;Xn) iid Unif(θ; θ + 1). T = T (X) = (X(1);X(n)) is MSS. But T is not complete. We know that S(X) = X(n) − X(1) is ancillary. Thus E(X(n) − X(1)) = c where c does not depend on θ and therefore, E(X(n) − X(1) − c) = 0 for all θ but clearly, P (X(n) − X(1) − c = 0) 6= 1 for all θ: Hence taking g(T ) = X(n) − X(1) − c, we can see that T is not complete. Example: X = X1;:::;Xn iid Unif(0; θ) T = T (X) = X(n) is MSS. Fact: T is also complete. 1 Proof. Assume there exists g such that Eθg(T ) = 0 for all θ: T has cdf H(t) = t/θ)n; 0 ≤ t ≤ θ and pdf ntn−1/θn; 0 ≤ t ≤ θ.
    [Show full text]