How Ronald Fisher Became a Mathematical Statistician Comment Ronald Fisher Devint Statisticien
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
April 2, 2015 Probabilistic Voting in Models of Electoral Competition By
April 2, 2015 Probabilistic Voting in Models of Electoral Competition by Peter Coughlin Department of Economics University of Maryland College Park, MD 20742 Abstract The pioneering model of electoral competition was developed by Harold Hotelling and Anthony Downs. The model developed by Hotelling and Downs and many subsequent models in the literature about electoral competition have assumed that candidates embody policies and, if a voter is not indifferent between the policies embodied by two candidates, then the voter’s choices are fully determined by his preferences on possible polices. More specifically, those models have assumed that if a voter prefers the policies embodied by one candidate then the voter will definitely vote for that candidate. Various authors have argued that i) factors other than policy can affect a voter’s decision and ii) those other factors cause candidates to be uncertain about who a voter will vote for. These authors have modeled the candidates’ uncertainty by using a probabilistic description of the voters’ choice behavior. This paper provides a framework that is useful for discussing the model developed by Hotelling and Downs and for discussing other models of electoral competition. Using that framework, the paper discusses work that has been done on the implications of candidates being uncertain about whom the individual voters in the electorate will vote for. 1. An overview The initial step toward the development of the first model of electoral competition was taken by Hotelling (1929), who developed a model of duopolists in which each firm chooses a location for its store. Near the end of his paper, he briefly described how his duopoly model could be reinterpreted as a model of competition between two political parties. -
Harold Hotelling 1895–1973
NATIONAL ACADEMY OF SCIENCES HAROLD HOTELLING 1895–1973 A Biographical Memoir by K. J. ARROW AND E. L. LEHMANN Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 87 PUBLISHED 2005 BY THE NATIONAL ACADEMIES PRESS WASHINGTON, D.C. HAROLD HOTELLING September 29, 1895–December 26, 1973 BY K. J. ARROW AND E. L. LEHMANN AROLD HOTELLING WAS A man of many interests and talents. HAfter majoring in journalism at the University of Washington and obtaining his B.A in that field in 1919, he did his graduate work in mathematics at Princeton, where he received his Ph.D. in 1924 with a thesis on topology. Upon leaving Princeton, he took a position as research associate at the Food Research Institute of Stanford Univer- sity, from where he moved to the Stanford Mathematics Department as an associate professor in 1927. It was during his Stanford period that he began to focus on the two fields— statistics and economics—in which he would do his life’s work. He was one of the few Americans who in the 1920s realized the revolution that R. A. Fisher had brought about in statistics and he spent six months in 1929 at the Rothamstead (United Kingdom) agricultural research station to work with Fisher. In 1931 Hotelling accepted a professorship in the Eco- nomics Department of Columbia University. He taught a course in mathematical economics, but most of his energy during his 15 years there was spent developing the first program in the modern (Fisherian) theory of statistics. -
IMS Presidential Address(Es) Each Year, at the End of Their Term, the IMS CONTENTS President Gives an Address at the Annual Meeting
Volume 50 • Issue 6 IMS Bulletin September 2021 IMS Presidential Address(es) Each year, at the end of their term, the IMS CONTENTS President gives an address at the Annual Meeting. 1 IMS Presidential Addresses: Because of the pandemic, the Annual Meeting, Regina Liu and Susan Murphy which would have been at the World Congress in Seoul, didn’t happen, and Susan Murphy’s 2–3 Members’ news : Bin Yu, Marloes Maathuis, Jeff Wu, Presidential Address was postponed to this year. Ivan Corwin, Regina Liu, Anru The 2020–21 President, Regina Liu, gave her Zhang, Michael I. Jordan Address by video at the virtual JSM, which incorpo- 6 Profile: Michael Klass rated Susan’s video Address. The transcript of the two addresses is below. 8 Recent papers: Annals of 2020–21 IMS President Regina Liu Probability, Annals of Applied Probability, ALEA, Probability Regina Liu: It’s a great honor to be the IMS President, and to present this IMS and Mathematical Statistics Presidential address in the 2021 JSM. Like many other things in this pandemic time, this year’s IMS Presidential Address will be also somewhat different from those in the 10 IMS Awards past. Besides being virtual, it will be also given jointly by the IMS Past President Susan 11 IMS London meeting; Olga Murphy and myself. The pandemic prevented Susan from giving her IMS Presidential Taussky-Todd Lecture; Address last year. In keeping with the IMS tradition, I invited Susan to join me today, Observational Studies and I am very pleased she accepted my invitation. Now, Susan will go first with her 12 Sound the Gong: Going 2020 IMS Presidential Address. -
Projections of Education Statistics to 2022 Forty-First Edition
Projections of Education Statistics to 2022 Forty-first Edition 20192019 20212021 20182018 20202020 20222022 NCES 2014-051 U.S. DEPARTMENT OF EDUCATION Projections of Education Statistics to 2022 Forty-first Edition FEBRUARY 2014 William J. Hussar National Center for Education Statistics Tabitha M. Bailey IHS Global Insight NCES 2014-051 U.S. DEPARTMENT OF EDUCATION U.S. Department of Education Arne Duncan Secretary Institute of Education Sciences John Q. Easton Director National Center for Education Statistics John Q. Easton Acting Commissioner The National Center for Education Statistics (NCES) is the primary federal entity for collecting, analyzing, and reporting data related to education in the United States and other nations. It fulfills a congressional mandate to collect, collate, analyze, and report full and complete statistics on the condition of education in the United States; conduct and publish reports and specialized analyses of the meaning and significance of such statistics; assist state and local education agencies in improving their statistical systems; and review and report on education activities in foreign countries. NCES activities are designed to address high-priority education data needs; provide consistent, reliable, complete, and accurate indicators of education status and trends; and report timely, useful, and high-quality data to the U.S. Department of Education, the Congress, the states, other education policymakers, practitioners, data users, and the general public. Unless specifically noted, all information contained herein is in the public domain. We strive to make our products available in a variety of formats and in language that is appropriate to a variety of audiences. You, as our customer, are the best judge of our success in communicating information effectively. -
Two Principles of Evidence and Their Implications for the Philosophy of Scientific Method
TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD by Gregory Stephen Gandenberger BA, Philosophy, Washington University in St. Louis, 2009 MA, Statistics, University of Pittsburgh, 2014 Submitted to the Graduate Faculty of the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Pittsburgh 2015 UNIVERSITY OF PITTSBURGH KENNETH P. DIETRICH SCHOOL OF ARTS AND SCIENCES This dissertation was presented by Gregory Stephen Gandenberger It was defended on April 14, 2015 and approved by Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences Satish Iyengar, Pittsburgh, Dietrich School of Arts and Sciences John Norton, Pittsburgh, Dietrich School of Arts and Sciences Teddy Seidenfeld, Carnegie Mellon University, Dietrich College of Humanities & Social Sciences James Woodward, Pittsburgh, Dietrich School of Arts and Sciences Dissertation Director: Edouard Machery, Pittsburgh, Dietrich School of Arts and Sciences ii Copyright © by Gregory Stephen Gandenberger 2015 iii TWO PRINCIPLES OF EVIDENCE AND THEIR IMPLICATIONS FOR THE PHILOSOPHY OF SCIENTIFIC METHOD Gregory Stephen Gandenberger, PhD University of Pittsburgh, 2015 The notion of evidence is of great importance, but there are substantial disagreements about how it should be understood. One major locus of disagreement is the Likelihood Principle, which says roughly that an observation supports a hypothesis to the extent that the hy- pothesis predicts it. The Likelihood Principle is supported by axiomatic arguments, but the frequentist methods that are most commonly used in science violate it. This dissertation advances debates about the Likelihood Principle, its near-corollary the Law of Likelihood, and related questions about statistical practice. -
A History of Evidence in Medical Decisions: from the Diagnostic Sign to Bayesian Inference
BRIEF REPORTS A History of Evidence in Medical Decisions: From the Diagnostic Sign to Bayesian Inference Dennis J. Mazur, MD, PhD Bayesian inference in medical decision making is a concept through the development of probability theory based on con- that has a long history with 3 essential developments: 1) the siderations of games of chance, and ending with the work of recognition of the need for data (demonstrable scientific Jakob Bernoulli, Laplace, and others, we will examine how evidence), 2) the development of probability, and 3) the Bayesian inference developed. Key words: evidence; games development of inverse probability. Beginning with the of chance; history of evidence; inference; probability. (Med demonstrative evidence of the physician’s sign, continuing Decis Making 2012;32:227–231) here are many senses of the term evidence in the Hacking argues that when humans began to examine Thistory of medicine other than scientifically things pointing beyond themselves to other things, gathered (collected) evidence. Historically, evidence we are examining a new type of evidence to support was first based on testimony and opinion by those the truth or falsehood of a scientific proposition respected for medical expertise. independent of testimony or opinion. This form of evidence can also be used to challenge the data themselves in supporting the truth or falsehood of SIGN AS EVIDENCE IN MEDICINE a proposition. In this treatment of the evidence contained in the Ian Hacking singles out the physician’s sign as the 1 physician’s diagnostic sign, Hacking is examining first example of demonstrable scientific evidence. evidence as a phenomenon of the ‘‘low sciences’’ Once the physician’s sign was recognized as of the Renaissance, which included alchemy, astrol- a form of evidence, numbers could be attached to ogy, geology, and medicine.1 The low sciences were these signs. -
5. Completeness and Sufficiency 5.1. Complete Statistics. Definition 5.1. a Statistic T Is Called Complete If Eg(T) = 0 For
5. Completeness and sufficiency 5.1. Complete statistics. Definition 5.1. A statistic T is called complete if Eg(T ) = 0 for all θ and some function g implies that P (g(T ) = 0; θ) = 1 for all θ. This use of the word complete is analogous to calling a set of vectors v1; : : : ; vn complete if they span the whole space, that is, any v can P be written as a linear combination v = ajvj of these vectors. This is equivalent to the condition that if w is orthogonal to all vj's, then w = 0. To make the connection with Definition 5.1, let's consider the discrete case. Then completeness means that P g(t)P (T = t; θ) = 0 implies that g(t) = 0. Since the sum may be viewed as the scalar prod- uct of the vectors (g(t1); g(t2);:::) and (p(t1); p(t2);:::), with p(t) = P (T = t), this is the analog of the orthogonality condition just dis- cussed. We also see that the terminology is somewhat misleading. It would be more accurate to call the family of distributions p(·; θ) complete (rather than the statistic T ). In any event, completeness means that the collection of distributions for all possible values of θ provides a sufficiently rich set of vectors. In the continuous case, a similar inter- pretation works. Completeness now refers to the collection of densities f(·; θ), and hf; gi = R fg serves as the (abstract) scalar product in this case. Example 5.1. Let's take one more look at the coin flip example. -
Use of Statistical Tables
TUTORIAL | SCOPE USE OF STATISTICAL TABLES Lucy Radford, Jenny V Freeman and Stephen J Walters introduce three important statistical distributions: the standard Normal, t and Chi-squared distributions PREVIOUS TUTORIALS HAVE LOOKED at hypothesis testing1 and basic statistical tests.2–4 As part of the process of statistical hypothesis testing, a test statistic is calculated and compared to a hypothesised critical value and this is used to obtain a P- value. This P-value is then used to decide whether the study results are statistically significant or not. It will explain how statistical tables are used to link test statistics to P-values. This tutorial introduces tables for three important statistical distributions (the TABLE 1. Extract from two-tailed standard Normal, t and Chi-squared standard Normal table. Values distributions) and explains how to use tabulated are P-values corresponding them with the help of some simple to particular cut-offs and are for z examples. values calculated to two decimal places. STANDARD NORMAL DISTRIBUTION TABLE 1 The Normal distribution is widely used in statistics and has been discussed in z 0.00 0.01 0.02 0.03 0.050.04 0.05 0.06 0.07 0.08 0.09 detail previously.5 As the mean of a Normally distributed variable can take 0.00 1.0000 0.9920 0.9840 0.9761 0.9681 0.9601 0.9522 0.9442 0.9362 0.9283 any value (−∞ to ∞) and the standard 0.10 0.9203 0.9124 0.9045 0.8966 0.8887 0.8808 0.8729 0.8650 0.8572 0.8493 deviation any positive value (0 to ∞), 0.20 0.8415 0.8337 0.8259 0.8181 0.8103 0.8206 0.7949 0.7872 0.7795 0.7718 there are an infinite number of possible 0.30 0.7642 0.7566 0.7490 0.7414 0.7339 0.7263 0.7188 0.7114 0.7039 0.6965 Normal distributions. -
The Gompertz Distribution and Maximum Likelihood Estimation of Its Parameters - a Revision
Max-Planck-Institut für demografi sche Forschung Max Planck Institute for Demographic Research Konrad-Zuse-Strasse 1 · D-18057 Rostock · GERMANY Tel +49 (0) 3 81 20 81 - 0; Fax +49 (0) 3 81 20 81 - 202; http://www.demogr.mpg.de MPIDR WORKING PAPER WP 2012-008 FEBRUARY 2012 The Gompertz distribution and Maximum Likelihood Estimation of its parameters - a revision Adam Lenart ([email protected]) This working paper has been approved for release by: James W. Vaupel ([email protected]), Head of the Laboratory of Survival and Longevity and Head of the Laboratory of Evolutionary Biodemography. © Copyright is held by the authors. Working papers of the Max Planck Institute for Demographic Research receive only limited review. Views or opinions expressed in working papers are attributable to the authors and do not necessarily refl ect those of the Institute. The Gompertz distribution and Maximum Likelihood Estimation of its parameters - a revision Adam Lenart November 28, 2011 Abstract The Gompertz distribution is widely used to describe the distribution of adult deaths. Previous works concentrated on formulating approximate relationships to char- acterize it. However, using the generalized integro-exponential function Milgram (1985) exact formulas can be derived for its moment-generating function and central moments. Based on the exact central moments, higher accuracy approximations can be defined for them. In demographic or actuarial applications, maximum-likelihood estimation is often used to determine the parameters of the Gompertz distribution. By solving the maximum-likelihood estimates analytically, the dimension of the optimization problem can be reduced to one both in the case of discrete and continuous data. -
The Interpretation of Probability: Still an Open Issue? 1
philosophies Article The Interpretation of Probability: Still an Open Issue? 1 Maria Carla Galavotti Department of Philosophy and Communication, University of Bologna, Via Zamboni 38, 40126 Bologna, Italy; [email protected] Received: 19 July 2017; Accepted: 19 August 2017; Published: 29 August 2017 Abstract: Probability as understood today, namely as a quantitative notion expressible by means of a function ranging in the interval between 0–1, took shape in the mid-17th century, and presents both a mathematical and a philosophical aspect. Of these two sides, the second is by far the most controversial, and fuels a heated debate, still ongoing. After a short historical sketch of the birth and developments of probability, its major interpretations are outlined, by referring to the work of their most prominent representatives. The final section addresses the question of whether any of such interpretations can presently be considered predominant, which is answered in the negative. Keywords: probability; classical theory; frequentism; logicism; subjectivism; propensity 1. A Long Story Made Short Probability, taken as a quantitative notion whose value ranges in the interval between 0 and 1, emerged around the middle of the 17th century thanks to the work of two leading French mathematicians: Blaise Pascal and Pierre Fermat. According to a well-known anecdote: “a problem about games of chance proposed to an austere Jansenist by a man of the world was the origin of the calculus of probabilities”2. The ‘man of the world’ was the French gentleman Chevalier de Méré, a conspicuous figure at the court of Louis XIV, who asked Pascal—the ‘austere Jansenist’—the solution to some questions regarding gambling, such as how many dice tosses are needed to have a fair chance to obtain a double-six, or how the players should divide the stakes if a game is interrupted. -
STATISTICS in the DATA SCIENCE ERA: a Symposium to Celebrate 50 Years of Statistics at the University of Michigan
STATISTICS IN THE DATA SCIENCE ERA: A Symposium to Celebrate 50 Years of Statistics at the University of Michigan September 20-21, 2019 Rackham Graduate School 915 E. Washington Street Ann Arbor, MI 48109 A Symposium to Celebrate 50 Years of Statistics at the University of Michigan 1 PROGRAM Friday, September 20, 2019 Saturday, September 21, 2019 9:30-10:30 ...............Coffee and Registration 8:30-9:00 ................ Coffee 10:30-10:50 ..............Opening Remarks Invited Session 2 Chair: Snigdha Panigrahi, University of Michigan Xuming He and Dean Anne Curzan 9:00-9:30 ................ Adam Rothman, University of Minnesota Shrinking Characteristics of Precision Matrix Keynote Session 1 Chair: Ambuj Tewari, University of Michigan Estimators 10:50-11:50 ...............Susan Murphy, Harvard University Online Experimentation with Learning Algorithms 9:30-10:00 ............... Bodhisattva Sen, Columbia University in a Clinical Trial Multivariate Rank-based Distribution-free Nonparametric Testing using Measure 11:50-12:00 ...............Group Photo Transportation PROGRAM 12:00-1:30 ................Lunch and Poster Session 10:00-10:30 ............. Min Qian, Columbia University Personalized Policy Learning using Longitudinal University of Michigan Invited Session 1 Chair: Ziwei Zhu, Mobile Health Data 1:30-2:00 .................Sumanta Basu, Cornell University Large Spectral Density Matrix Estimation by 10:30-11:00 .............. Coffee Break Thresholding Invited Session 3 Chair: Kean Ming Tan, University of Michigan 2:00-2:30 .................Anindya Bhadra, Purdue University 11:00-11:30 ............... Ali Shojaie, University of Washington Horseshoe Regularization for Machine Learning in Incorporating Auxiliary Information into Learning Complex and Deep Models Directed Acyclic Graphs 2:30-3:00 .................Coffee Break 11:30-12:00 .............. -
THE HISTORY and DEVELOPMENT of STATISTICS in BELGIUM by Dr
THE HISTORY AND DEVELOPMENT OF STATISTICS IN BELGIUM By Dr. Armand Julin Director-General of the Belgian Labor Bureau, Member of the International Statistical Institute Chapter I. Historical Survey A vigorous interest in statistical researches has been both created and facilitated in Belgium by her restricted terri- tory, very dense population, prosperous agriculture, and the variety and vitality of her manufacturing interests. Nor need it surprise us that the successive governments of Bel- gium have given statistics a prominent place in their affairs. Baron de Reiffenberg, who published a bibliography of the ancient statistics of Belgium,* has given a long list of docu- ments relating to the population, agriculture, industry, commerce, transportation facilities, finance, army, etc. It was, however, chiefly the Austrian government which in- creased the number of such investigations and reports. The royal archives are filled to overflowing with documents from that period of our history and their very over-abun- dance forms even for the historian a most diflScult task.f With the French domination (1794-1814), the interest for statistics did not diminish. Lucien Bonaparte, Minister of the Interior from 1799-1800, organized in France the first Bureau of Statistics, while his successor, Chaptal, undertook to compile the statistics of the departments. As far as Belgium is concerned, there were published in Paris seven statistical memoirs prepared under the direction of the prefects. An eighth issue was not finished and a ninth one * Nouveaux mimoires de I'Acadimie royale des sciences et belles lettres de Bruxelles, t. VII. t The Archives of the kingdom and the catalogue of the van Hulthem library, preserved in the Biblioth^que Royale at Brussells, offer valuable information on this head.