Crustacea: Decapoda Reptantia: Scyllaridae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lobsters-Identification, World Distribution, and U.S. Trade
Lobsters-Identification, World Distribution, and U.S. Trade AUSTIN B. WILLIAMS Introduction tons to pounds to conform with US. tinents and islands, shoal platforms, and fishery statistics). This total includes certain seamounts (Fig. 1 and 2). More Lobsters are valued throughout the clawed lobsters, spiny and flat lobsters, over, the world distribution of these world as prime seafood items wherever and squat lobsters or langostinos (Tables animals can also be divided rougWy into they are caught, sold, or consumed. 1 and 2). temperate, subtropical, and tropical Basically, three kinds are marketed for Fisheries for these animals are de temperature zones. From such partition food, the clawed lobsters (superfamily cidedly concentrated in certain areas of ing, the following facts regarding lob Nephropoidea), the squat lobsters the world because of species distribu ster fisheries emerge. (family Galatheidae), and the spiny or tion, and this can be recognized by Clawed lobster fisheries (superfamily nonclawed lobsters (superfamily noting regional and species catches. The Nephropoidea) are concentrated in the Palinuroidea) . Food and Agriculture Organization of temperate North Atlantic region, al The US. market in clawed lobsters is the United Nations (FAO) has divided though there is minor fishing for them dominated by whole living American the world into 27 major fishing areas for in cooler waters at the edge of the con lobsters, Homarus americanus, caught the purpose of reporting fishery statis tinental platform in the Gul f of Mexico, off the northeastern United States and tics. Nineteen of these are marine fish Caribbean Sea (Roe, 1966), western southeastern Canada, but certain ing areas, but lobster distribution is South Atlantic along the coast of Brazil, smaller species of clawed lobsters from restricted to only 14 of them, i.e. -
Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an Assessment of Macaronesian and Cape Verde Biogeographic Marine Ecoregions
Zootaxa 4413 (3): 401–448 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2018 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4413.3.1 http://zoobank.org/urn:lsid:zoobank.org:pub:2DF9255A-7C42-42DA-9F48-2BAA6DCEED7E Checklists of Crustacea Decapoda from the Canary and Cape Verde Islands, with an assessment of Macaronesian and Cape Verde biogeographic marine ecoregions JOSÉ A. GONZÁLEZ University of Las Palmas de Gran Canaria, i-UNAT, Campus de Tafira, 35017 Las Palmas de Gran Canaria, Spain. E-mail: [email protected]. ORCID iD: 0000-0001-8584-6731. Abstract The complete list of Canarian marine decapods (last update by González & Quiles 2003, popular book) currently com- prises 374 species/subspecies, grouped in 198 genera and 82 families; whereas the Cape Verdean marine decapods (now fully listed for the first time) are represented by 343 species/subspecies with 201 genera and 80 families. Due to changing environmental conditions, in the last decades many subtropical/tropical taxa have reached the coasts of the Canary Islands. Comparing the carcinofaunal composition and their biogeographic components between the Canary and Cape Verde ar- chipelagos would aid in: validating the appropriateness in separating both archipelagos into different ecoregions (Spalding et al. 2007), and understanding faunal movements between areas of benthic habitat. The consistency of both ecoregions is here compared and validated by assembling their decapod crustacean checklists, analysing their taxa composition, gath- ering their bathymetric data, and comparing their biogeographic patterns. Four main evidences (i.e. different taxa; diver- gent taxa composition; different composition of biogeographic patterns; different endemicity rates) support that separation, especially in coastal benthic decapods; and these parametres combined would be used as a valuable tool at comparing biotas from oceanic archipelagos. -
The Utilization of Lobsters by Humans in the Mediterranean Basin from the Prehistoric Era to the Modern Era – an Interdisciplinary Short Review
Athens Journal of Mediterranean Studies- Volume 1, Issue 3 – Pages 223-234 The Utilization of Lobsters by Humans in the Mediterranean Basin from the Prehistoric Era to the Modern Era – An Interdisciplinary Short Review By Ehud Spanier The Mediterranean and Red Seas host a variety of clawed, spiny and slipper lobsters. Lobsters' utilization in ancient times varied, ranging from complete prohibition by the Jewish religion, to that of epicurean status in the Roman world. One of the earliest known illustrations of a spiny lobster was a wall carving in Egypt depicting the Queen Hatshepsut expedition to the Red Sea in the 15th century BC. Lobsters were known by the ancient Greeks and Romans as was expressed in art forms and writings. Lobsters also appeared in ancient mosaics and coins. The writings of naturalists and philosophers from the Roman-Hellenistic period, together with illustrative records indicate that lobsters were a popular food and there was considerable knowledge of their classification, biology and fisheries. The popularity of lobsters as gourmet food increased with time followed by an expansion of the scientific knowledge as well as over exploitation of these resources. Keywords: Antiquity, Biology, Fisheries, Lobsters, Mediterranean. Introduction A variety of edible lobsters, that are still commercially significant to human inhabitants today, are found in the water of the Mediterranean and adjacent Red Sea regions. This important marine resource includes at least two Mediterranean clawed lobsters (the European lobster, Homarus gammarus, and the Norway lobster, Nephrops norvegicus), five spiny lobsters (two in the Mediterranean: the common spiny lobster, Palinurus elephas, and the pink spiny lobster, P. -
Growth Models and Analysis of Crustacean Growth Data
Growth Models and Analysis of Crustacean Growth Data Chuan Hui Foo B.Sc Edu (Hon), M.Sc (Hon) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2017 School of Mathematics and Physics Abstract Crustaceans represent one of the most important fishery species in the world, both ecologically and economically. Understanding the growth pattern of these species is fundamental to their stock assessment and sustainability management. Unlike most other fishery species, crustaceans must shed their exoskeleton periodically in order to grow, a process known as `moulting'. As a result, their growth trajectories do not follow a linear pattern. Traditional growth models, how- ever, are based on continuous growth trajectories and thus are not appropriate for modellling stepwise growth in crustaceans. This thesis develops novel methodology for modelling discrete growth pattern in crustacean species. We introduce new stochastic growth models that incorporate discontinuous jumps, taking into account individual heterogeneity and environmental variability. There are two different settings, data from an artificial condition (tank data) and data from the natural environment (tag-recapture data). We propose new approaches for modelling the growth of crustaceans from each data type, respectively. A likelihood approach is constructed to estimate the parameters of our growth models. Our methodology addresses four major challenges in modelling crustacean growth. Firstly, as previously mentioned, crustacean growth is a discrete stepwise process and hence traditional models, which assumes continuous growth over time, is not appropriate for use. Secondly, growth patterns are significantly affected by individual variability. The process of moulting involves interaction between two major stochastic processes of growth, namely the intermoult period (the time interval between two successive moults) and the moult increment (the increase in size between moults). -
Slipper Lobsters (Scyllaridae) Off the Southeastern Coast of Brazil: Relative Growth, Population Structure, and Reproductive
55 Abstract—The hooded slipper lobster Slipper lobsters (Scyllaridae) off the (Scyllarides deceptor) and Brazilian slipper lobster (S. brasiliensis) are southeastern coast of Brazil: relative growth, commonly caught by fishing fleets (with double-trawling and longline population structure, and reproductive biology pots and traps) off the southeastern coast of Brazil. Their reproductive Luis Felipe de Almeida Duarte (contact author)1 biology is poorly known and research 2 on these 2 species would benefit ef- Evandro Severino-Rodrigues forts in resource management. This Marcelo A. A. Pinheiro3 study characterized the population Maria A. Gasalla4 structure of these exploited species on the basis of sampling from May Email address for contact author: [email protected] 2006 to April 2007 off the coast of Santos, Brazil. Data for the abso- 1 Departamento de Zoologia 3 Laboratório de Biologia de Crustáceos lute fecundity, size at maturity in Ca[mpus de Rio Claro Grupo de Pesquisa em Biologia de Crustáceos females, reproductive period, and Universidade Estadual Paulista Ca[mpus Experimental do Litoral Paulista morphometric relationships of the Avenida 24 A, 1515 Universidade Estadual Paulista dominant species, the hooded slipper 13506-900, Rio Claro Praça Infante D. Henrique lobster, are presented. Significant São Paulo, Brazil s/n°11330-900, São Vicente differential growth was not observed 2 São Paulo, Brazil between juveniles and adults of each Instituto de Pesca 4 sex, although there was a small in- Agência Paulista de Tecnologia dos Laboratório de Ecossistemas Pesqueiros vestment of energy in the width and Agronegócios Departamento de Oceanográfico Biológica length of the abdomen in females Secretaria de Agricultura e Abastecimento Instituto Oceanográfico and in the carapace length for males Governo do Estado São Paulo Universidade de São Paulo in larger animals (>25 cm in total Avenida Bartolomeu de Gusmão, 192 Praça do Oceanográfico, 191 length [TL]). -
Fish, Crustaceans, Molluscs, Etc Capture Production by Species
440 Fish, crustaceans, molluscs, etc Capture production by species items Atlantic, Northeast C-27 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Atlantique, nord-est (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Atlántico, nordeste English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 2002 2003 2004 2005 2006 2007 2008 Nombre inglés Nombre científico Grupo de especies t t t t t t t Freshwater bream Abramis brama 11 2 023 1 650 1 693 1 322 1 240 1 271 1 299 Freshwater breams nei Abramis spp 11 1 543 1 380 1 412 1 420 1 643 1 624 1 617 Common carp Cyprinus carpio 11 11 4 2 - 0 - 1 Tench Tinca tinca 11 1 2 5 5 10 9 13 Crucian carp Carassius carassius 11 69 45 28 45 24 38 30 Roach Rutilus rutilus 11 4 392 3 630 3 467 3 334 3 409 3 571 3 339 Rudd Scardinius erythrophthalmus 11 2 1 - - - - - Orfe(=Ide) Leuciscus idus 11 211 216 164 152 220 220 233 Vimba bream Vimba vimba 11 277 149 122 129 84 99 97 Sichel Pelecus cultratus 11 523 532 463 393 254 380 372 Asp Aspius aspius 11 23 23 20 17 27 26 4 White bream Blicca bjoerkna 11 - - - - - 0 1 Cyprinids nei Cyprinidae 11 63 59 34 80 132 91 121 Northern pike Esox lucius 13 2 307 2 284 2 102 2 049 3 125 3 077 3 077 Wels(=Som)catfish Silurus glanis 13 - - 0 0 1 1 1 Burbot Lota lota 13 346 295 211 185 257 247 242 European perch Perca fluviatilis 13 5 552 6 012 5 213 5 460 6 737 6 563 6 122 Ruffe Gymnocephalus cernuus 13 31 - 2 1 2 2 1 Pike-perch Sander lucioperca 13 2 363 2 429 2 093 1 698 2 017 2 117 1 771 Freshwater -
Fish, Crustaceans, Molluscs, Etc Capture Production by Species
465 Fish, crustaceans, molluscs, etc Capture production by species items Atlantic, Northeast C-27 Poissons, crustacés, mollusques, etc Captures par catégories d'espèces Atlantique, nord-est (a) Peces, crustáceos, moluscos, etc Capturas por categorías de especies Atlántico, nordeste English name Scientific name Species group Nom anglais Nom scientifique Groupe d'espèces 2005 2006 2007 2008 2009 2010 2011 Nombre inglés Nombre científico Grupo de especies t t t t t t t Freshwater bream Abramis brama 11 1 322 1 240 1 271 1 386 1 691 1 608 1 657 Freshwater breams nei Abramis spp 11 1 420 1 643 1 624 1 617 1 705 1 628 1 869 Common carp Cyprinus carpio 11 - 0 - 1 0 2 2 Tench Tinca tinca 11 5 10 9 13 14 11 14 Crucian carp Carassius carassius 11 45 24 38 30 43 36 33 Roach Rutilus rutilus 11 3 334 3 409 3 571 2 935 2 957 2 420 2 662 Rudd Scardinius erythrophthalmus 11 - - - - - - 3 Orfe(=Ide) Leuciscus idus 11 152 220 220 268 262 71 83 Vimba bream Vimba vimba 11 129 84 99 97 93 91 116 Sichel Pelecus cultratus 11 393 254 380 372 417 312 423 Asp Aspius aspius 11 17 27 26 4 31 3 2 White bream Blicca bjoerkna 11 - - 0 1 1 23 70 Cyprinids nei Cyprinidae 11 80 132 91 121 162 45 94 Northern pike Esox lucius 13 2 049 3 125 3 077 1 915 1 902 1 753 1 838 Wels(=Som) catfish Silurus glanis 13 0 1 1 1 2 3 2 Burbot Lota lota 13 185 257 247 121 134 127 128 European perch Perca fluviatilis 13 5 460 6 737 6 563 5 286 5 145 5 072 5 149 Ruffe Gymnocephalus cernuus 13 1 2 2 1 1 33 61 Pike-perch Sander lucioperca 13 1 698 2 017 2 117 1 730 1 768 1 404 1 653 Freshwater -
First Record of an Adult Galapagos Slipper Lobster, Scyllarides Astori
Azofeifa-Solano et al. Marine Biodiversity Records (2016) 9:48 DOI 10.1186/s41200-016-0030-9 MARINE RECORD Open Access First record of an adult Galapagos slipper lobster, Scyllarides astori, (Decapoda, Scyllaridae) from Isla del Coco, Eastern Tropical Pacific Juan Carlos Azofeifa-Solano1*, Manon Fourriére2,3 and Patrick Horgan4 Abstract The Galapagos Slipper lobster, Scyllarides astori, has been reported from rocky reefs along the Eastern Tropical Pacific: the Gulf of California, the Galapagos Archipelago and mainland Ecuador. Although larval stage S. astori has been found in other localities throughout this range, there are no records of adults inhabiting waters between these three locations. Here we present the first record of an adult S. astori from Isla del Coco and Costa Rican Pacific waters. The single specimen, a male, was hand-collected within a coral reef in Pájara islet. This finding increases the reported lobster species richness of Costa Rican Pacific waters to six species and expands the adult geographic range of S. astori to Isla del Coco. Keywords: Diversity record, Coral reefs, Scyllaridae, Oceanic island, Tropical waters, Costa Rica Introduction Hendrickx 1995). The Shield Fan Lobster (E. princeps)isdis- Marine lobsters are a highly diverse group that includes tributed along the Pacific coast from the Gulf of California six families, 55 genera, and 248 species that occupy a to Peru (Johnson 1975b; Holthuis 1985; Hendrickx 1995), wide range of habitats and are distributed worldwide while S. astori has been reported in the Gulf of California, (Chan 2014; Briones-Fourzán and Lozano-Álvarez 2015). the Galapagos Archipelago, nearby Clipperton atoll and The slipper lobsters (Scyllaridae) can be distinguished mainland Ecuador (Holthuis and Loesch 1967; Holthuis from other lobster families in the infraorder Achelata by 1991; Hendrickx 1995; Béarez and Hendrickx 2006; Butler having the antennal peduncle segments wide and flat, et al. -
Two Newly Recorded Species of the Lobster Family Scyllaridae (Thenus Indicus and Scyllarides Haanii) from South of Java, Indonesia
HAYATI Journal of Biosciences 23 (2016) 101e105 HOSTED BY Contents lists available at ScienceDirect HAYATI Journal of Biosciences journal homepage: http://www.journals.elsevier.com/ hayati-journal-of-biosciences Original research article Two Newly Recorded Species of the Lobster Family Scyllaridae (Thenus indicus and Scyllarides haanii) From South of Java, Indonesia * Yusli Wardiatno, Agus Alim Hakim, Ali Mashar, Nurlisa Alias Butet, Luky Adrianto Department of Aquatic Resources Management, Faculty of Fisheries and Marine Science, Bogor Agricultural University, Bogor, West Java, Indonesia. article info abstract Article history: Two species of slipper lobster, Thenus indicus Leach, 1815, and Scyllarides haanii De Haan, 1841, are re- Received 5 February 2016 ported for the first time from the coastal waters of South of Java, part of the Indian Ocean. A total of two Received in revised form specimens, one specimen of T. indicus from Palabuhanratu Bay and one specimen of S. haanii from 30 April 2016 Yogyakarta coastal waters, were collected in April and September 2015, respectively. Descriptions and Accepted 9 May 2016 illustrations of the morphological characteristics of the two species and their habitat are presented. Available online 26 May 2016 Copyright © 2016 Institut Pertanian Bogor. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). KEYWORDS: Crustacean, Decapoda, first record, Indian Ocean, slipper lobster 1. Introduction only one species, Thenus orientalis. Taxonomic and biodiversity studies on Indonesian lobsters resulted in the collection of two From a fishery point of view, slipper lobsters of the family different species of family Scyllaridae from South of Java. -
Larval Stages of Crustacean Species of Interest for Conservation and Fishing Exploitation in the Western Mediterranean
SCIENTIA MARINA 77(1) March 2013, 149-160, Barcelona (Spain) ISSN: 0214-8358 doi: 10.3989/scimar.03749.26D Larval stages of crustacean species of interest for conservation and fishing exploitation in the western Mediterranean ASVIN P. TORRES 1, ANTONINA DOS SANTOS 2, FRANCISCO ALEMANY 1 and ENRIC MASSUTÍ 1 1 Instituto Español de Oceanografía, Centre Oceanogràfic de les Balears, Moll de Ponent s/n, 07015 Palma de Mallorca, Spain. E-mail: [email protected] 2 Instituto Português do Mar e da Atmosfera (IPMA), Avenida de Brasília s/n, 1449-006 Lisbon, Portugal. SUMMARY: Decapod crustaceans are the main target species of deep water bottom trawl fisheries in the western Mediterranean. Despite their importance for fisheries and conservation, little is known about their larval development, especially in the case of deep water species. In this paper we present new information on the occurrence and morphology of larval stages for some species of commercial interest based on samples collected off the Balearic Islands. Mesozooplankton sampling was carried out using depth-stratified sampling devices at two stations located on the continental shelf break and middle slope, in the northwest and south of Mallorca in late autumn 2009 and summer 2010. We describe in detail the second mysis stage of the red shrimp Aristeus antennatus, not previously known, and the first larval stage of the slipper lobster Scyllarides latus, poorly described almost a hundred years ago. We also report the second finding of larvae of the spider crab Maja squinado and the first capture from the field of larval stages of the rose shrimp Parapenaeus longirostris and slipper lobster in the Mediterranean. -
The Early Polychelidan Lobster Tetrachela Raiblana and Its Impact on the Homology of Carapace Grooves in Decapod Crustaceans
Contributions to Zoology, 87 (1) 41-57 (2018) The early polychelidan lobster Tetrachela raiblana and its impact on the homology of carapace grooves in decapod crustaceans Denis Audo1,5, Matúš Hyžný2, 3, Sylvain Charbonnier4 1 UMR CNRS 6118 Géosciences, Université de Rennes I, Campus de Beaulieu, avenue du général Leclerc, 35042 Rennes cedex, France 2 Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia 3 Geological-Palaeontological Department, Natural History Museum Vienna, Vienna, Austria 4 Muséum national d’Histoire naturelle, Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements (CR2P, UMR 7207), Sorbonne Universités, MNHN, UPMC, CNRS, 57 rue Cuvier F-75005 Paris, France 5 E-mail: [email protected] Keywords: Austria, Crustacea, Decapoda, Depth, Homology, Italy, Lagerstätte, Palaeoenvironment, Palaeoecology, Triassic Abstract Taphonomy ......................................................... 52 Palaeoenvironment ............................................... 52 Polychelidan lobsters, as the sister group of Eureptantia Palaeoecology ..................................................... 53 (other lobsters and crabs), have a key-position within decapod Conclusion .............................................................. 53 crustaceans. Their evolutionary history is still poorly understood, Acknowledgements .................................................. 54 although it has been proposed that their Mesozoic representatives References ............................................................. -
Homarus Americanus H
BioInvasions Records (2021) Volume 10, Issue 1: 170–180 CORRECTED PROOF Rapid Communication An American in the Aegean: first record of the American lobster Homarus americanus H. Milne Edwards, 1837 from the eastern Mediterranean Sea Thodoros E. Kampouris1,*, Georgios A. Gkafas2, Joanne Sarantopoulou2, Athanasios Exadactylos2 and Ioannis E. Batjakas1 1Marine Sciences Department, School of the Environment, University of the Aegean, University Hill, Mytilene, Lesvos Island, 81100, Greece 2Department of Ichthyology & Aquatic Environment, School of Agricultural Sciences, University of Thessaly, Fytoko Street, Volos, 38 445, Greece Author e-mails: [email protected] (TEK), [email protected] (IEB), [email protected] (GAG), [email protected] (JS), [email protected] (AE) *Corresponding author Citation: Kampouris TE, Gkafas GA, Sarantopoulou J, Exadactylos A, Batjakas Abstract IE (2021) An American in the Aegean: first record of the American lobster A male Homarus americanus individual, commonly known as the American lobster, Homarus americanus H. Milne Edwards, was caught by artisanal fishermen at Chalkidiki Peninsula, Greece, north-west Aegean 1837 from the eastern Mediterranean Sea. Sea on 26 August 2019. The individual weighted 628.1 g and measured 96.7 mm in BioInvasions Records 10(1): 170–180, carapace length (CL) and 31.44 cm in total length (TL). The specimen was identified https://doi.org/10.3391/bir.2021.10.1.18 by both morphological and molecular means. This is the species’ first record from Received: 7 June 2020 the eastern Mediterranean Sea and Greece, and only the second for the whole basin. Accepted: 16 October 2020 However, several hypotheses for potential introduction vectors are discussed, as Published: 21 December 2020 well as the potential implication to the regional lobster fishery.