The Role of CCL5/RANTES in Regulating Cellular Metabolism in Activated T Cells

Total Page:16

File Type:pdf, Size:1020Kb

The Role of CCL5/RANTES in Regulating Cellular Metabolism in Activated T Cells The Role of CCL5/RANTES in Regulating Cellular Metabolism in Activated T cells by Olivia Chan A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Immunology University of Toronto © Copyright by Olivia Chan, 2011 The Role of CCL5/RANTES in Regulating Cellular Metabolism in Activated T cells Olivia Chan Master of Science Graduate Department of Immunology University of Toronto, 2011 Recruitment of effector T cells to sites of infection is essential for an effective adaptive immune response. The inflammatory chemokine CCL5/RANTES activates its cognate receptor, CCR5, to initiate cellular functions including chemotaxis. This thesis describes the signaling events invoked by CCL5 and its ability to regulate the energy status of activated T cells. CCL5 treatment in ex vivo activated human T cells induced the activation of AMPK and downstream substrates ACC1, PFKFB2 and GSK-3. Evidence is provided that CCL5 treatment is able to induce glucose uptake in an mTOR-dependent manner. Using 2-deoxy-D-glucose, an inhibitor of glucose uptake, and Compound C, an inhibitor of AMPK, evidence is provided that demonstrate that CCL5-mediated chemotaxis is dependent on metabolic events, since these inhibitors perturb chemotaxis in a dose-dependent manner. Collectively, these studies suggest that CCL5 may also influence the metabolic status of activated T cells by simultaneously activating the AMPK and mTOR pathways. ii ACKNOWLEDGEMENTS I would like to dedicate this thesis to everyone who supported me throughout my graduate studies, and would like to express my gratitude to the individuals whom, without which, none of this could have been possible. Eleanor, your guidance, without fail, has always pointed me in the right direction. Whenever things looked grim, your encouragement and advice would always put me back on the right path. Thank you for your patience and mentorship throughout my studies – you have been an incredible driving-force that has helped me grow both as a scientist and as an individual. I am especially thankful for the opportunity to have gone to multiple international conferences, and the chance to present my work around the world. I look forward to working with you in the future, as we further embark on the „CCL5-era‟ in the lab! To my supervisory committee members, Dr. Pam Ohashi and Dr. Juan Carlos Zuniga-Pflucker, I am grateful for your helpful guidance and input into my work. Also, thank you Dr. Shannon Dun for taking the time to discuss my research plans and long term goals. To past and present Fishies, I offer my sincerest thanks for all your emotional and scientific support (especially your PBMCs). Beata, you‟ve given multi-tasking a whole new meaning, and I look to you as a constant source of inspiration and motivation. You‟ve been the shoulders I could always depend on and a friend I could always turn to. Thank you for holding my hand through some of the toughest times during my studies. Daniel, without a doubt, you‟ve been an invaluable „metabolism-and-protein-translation- buddy‟. Thank you for our many scientific discussions – which have always made the realm of metabolism a little less daunting. Thank you for all your encouragement and friendship throughout the years, and keep working on your chopstick skills! Carole, I‟ve always been determined to answer at least one of your unanswerable questions! Thank you for taking the time to guide and mentor me throughout my project and for letting me pick-your-brain about experimental design. I wish you, Kip and Kaycee all the very best. Leesa, I can‟t help but chuckle whenever I come across or hear about PKR (I think that video is still on my desktop…). Thank you for sharing your incredible energy with the lab, and although there is much work to be done to improve your Chinese accent, there is no doubt that you are well on your way towards obtaining your Ph.D. Ben, thank you for bringing Fail Blog into our daily lunch routine (or was that Craig?). I wish you all the best in your Ph.D. journey, and remember to take advantage of the lab hammock when you truly need it! Craig, I look forward to the day when you and Ben revolutionize IGSA (with karaoke nights!). Thank you for bringing your calming-influence to the lab and I wish you best of luck in your Ph.D. studies. Thomas, Danlin and Ramtin, thank you for your continuous support throughout the years and for always being an email away! You‟ve been brilliant mentors and role models, and I wish you all happiness in your new lives. iii To my Mom, Dad and Oscar, thank you for your constant vote of confidence. Mom and Dad, you give me strength and hope during my rough patches – thank you for believing, before I did, in my ability to achieve something substantial. Oscar, you never fail to cheer me up following rather disappointing experiments. Thank you for your tremendous support and encouragement, and I can‟t wait to see what life has in store for you! Thanks to all my friends and labmates who have donated blood to „fuel‟ the studies undertaken in my project. None of this would have been possible without your generous donations; and I may owe royalties to many of you. Finally, a heartfelt thank you goes to my fellow students of the Immunology Department for their support and friendship. Nothing beats sharing a pint of beer together when experiments go awry, and I look forward to working with all of you again in the future. iv Table of Contents Title Page………………………………………………………………………………….. i Abstract…………………………………………………………………………………ii-iii Acknowledgments……………………………………………………………. ………..iv-v Table of Contents……………………………………………………………………….v-vi List of Figures………………………………………………………………………….... vii List of Tables…………………………………………………………………………….viii List of Abbreviations………………………………………………………………….. ix-xi CHAPTER 1: INTRODUCTION…………………………………………………... 1-52 1.1 Chemokine Superfamily……………………………………………………………….2 1.1.1. Classification……………………………………………………………………2 1.1.2. Chemokine Structure……………………………………………………………4 1.1.3. Chemokine-mediated Signaling………………………………………………... 7 1.1.3.1. Jak-Stat Pathway…………………………………………………………11 1.1.3.2. MAPK Signaling Cascade……………………………………………….12 1.2 Chemokine Receptors……………………………………………………………….. 15 1.2.1. Classification…………………………………………………………………. 15 1.2.2. Chemokine Receptor Structure and Ligand Binding…………………………. 18 1.2.3. Receptor Dimerization and Internalization…………………………………… 19 1.3. Chemokine/ Chemokine Receptor Functions………………………………………. 20 1.3.1. Chemotaxis…………………………………………………………………… 20 1.3.1.1. Cellular Polarization……………………………………………………. 20 1.3.1.2. The Rho Family GTPases in Cytoskeletal Rearrangement…………….. 21 1.3.1.3. Activation of the PI-3‟K Pathway……………………………………… 22 1.3.1.4. The mTOR/4E-BP1 Pathway and Chemotaxis………………………… 24 1.3.2. Role in determining Cellular Fate…………………………………………….. 32 1.3.2.1. T cell Differentiation and Activation…………………………………… 33 1.3.2.2. Role in Cell Death………………………………………………………. 35 1.4. mTOR Signaling and Metabolic Regulation……………………………………....... 36 1.4.1. Growth Factor and Nutrient-Sensing by mTOR……………………………… 36 1.4.1.1. AMPK-regulation of mTOR……………………………………………. 39 1.4.2. mTOR Signaling in Lymphocyte Trafficking………………………………… 40 1.4.3. mTOR-mediated Proliferation………………………………………………... 41 1.5. Energy Metabolism and the T cell Response……………………………………….. 43 1.5.1. Regulation of T lymphocyte Metabolism…………………………………….. 43 1.5.2. Quiescent Cells and Oxidative Phosphorylation……………………………… 44 1.5.3. Proliferating Lymphocytes and Glycolysis…………………………………... 45 1.5.3.1. PI-3‟K Signaling in Aerobic Glycolysis………………………………... 46 1.5.4. Energy Regulation during an Immune Response…………………………….. 48 v 1.6. Thesis Hypothesis and Objectives………………………………………………….. 52 CHAPTER 2: MATERIALS AND METHODS…………………………………. 53-57 2.1. Cells and Reagents ………………………………………………………………….54 2.2. Immunoblotting …………………………………………………………………….55 2.3. Flow Cytometric Analysis ………………………………………………………….55 2.4. Chemotaxis Assay …………………………………………………………………..56 2.5. Glucose Uptake Assay ………………………………………………………………56 2.6. AMPK Antibody Signaling Array ………………………………………………….57 2.7 Statistical Analysis……………………………………………………………………57 CHAPTER 3: RESULTS…………………………………………………………... 58-87 3.1. CCL5 induces phosphorylation of proteins in the AMPK signaling pathway……... 59 3.2. CCL5-mediated glucose uptake is mTOR-dependent……………………………… 69 3.3. CCL5-mediated glucose uptake is not accompanied by changes in the surface expression of nutrient receptors ………………………………….....................................74 3.4. Glucose uptake and AMPK signaling are required for efficient CCL5-mediated chemotaxis ………………………………………………………………………………80 3.5. CCL5-induced AMPK signaling phosphorylates the 4E-BP1 repressor of mRNA translation………………………………………………………………………………... 80 CHAPTER 4: DISCUSSION………………………………………………………. 88-97 CHAPTER 5: FUTURE DIRECTIONS………………………………..…………98-101 CHAPTER 6: REFERENCES…………………………………………………...102-118 vi LIST OF FIGURES CHAPTER 1 Figure 1.1. Chemokines share similar structure………………………………………….. 5 Figure 1.2. Chemokine-induced signaling pathways……………………………………... 9 Figure 1.3. The MAPK signaling cascade………………………………………………. 13 Figure 1.4. Two-dimension depiction of CCR5 and residues critical for ligand binding and signaling transduction………………………………………………………………. 16 Figure 1.5. mTOR signaling complexes………………………………………………….26 Figure 1.6. Regulation of cap-dependent mRNA translation ……………………………30 CHAPTER 3 Figure 3.1. CCR5 surface expression is induced upon T cell activation in the presence of cytokines………………………………………………………………………………….60 Figure
Recommended publications
  • Enhanced Monocyte Migration to CXCR3 and CCR5 Chemokines in COPD
    ERJ Express. Published on March 10, 2016 as doi: 10.1183/13993003.01642-2015 ORIGINAL ARTICLE IN PRESS | CORRECTED PROOF Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD Claudia Costa1, Suzanne L. Traves1, Susan J. Tudhope1, Peter S. Fenwick1, Kylie B.R. Belchamber1, Richard E.K. Russell2, Peter J. Barnes1 and Louise E. Donnelly1 Affiliations: 1Airway Disease, National Heart and Lung Institute, Imperial College London, London, UK. 2Chest Clinic, King Edward King VII Hospital, Windsor, UK. Correspondence: Louise E. Donnelly, Airway Disease, National Heart and Lung Institute, Dovehouse Street, London, SW3 6LY, UK. E-mail: [email protected] ABSTRACT Chronic obstructive pulmonary disease (COPD) patients exhibit chronic inflammation, both in the lung parenchyma and the airways, which is characterised by an increased infiltration of macrophages and T-lymphocytes, particularly CD8+ cells. Both cell types can express chemokine (C-X-C motif) receptor (CXCR)3 and C-C chemokine receptor 5 and the relevant chemokines for these receptors are elevated in COPD. The aim of this study was to compare chemotactic responses of lymphocytes and monocytes of nonsmokers, smokers and COPD patients towards CXCR3 ligands and chemokine (C-C motif) ligand (CCL)5. Migration of peripheral blood mononuclear cells, monocytes and lymphocytes from nonsmokers, smokers and COPD patients toward CXCR3 chemokines and CCL5 was analysed using chemotaxis assays. There was increased migration of peripheral blood mononuclear cells from COPD patients towards all chemokines studied when compared with nonsmokers and smokers. Both lymphocytes and monocytes contributed to this enhanced response, which was not explained by increased receptor expression.
    [Show full text]
  • Recapitulates Some Features of Psoriasis Α , And
    The Journal of Immunology Skin Inflammation Induced by the Synergistic Action of IL-17A, IL-22, Oncostatin M, IL-1a, and TNF-a Recapitulates Some Features of Psoriasis Karline Guilloteau,*,† Isabelle Paris,*,‡ Nathalie Pedretti,*,† Katia Boniface,*,1 Franck Juchaux,*,† Vincent Huguier,x Gerard Guillet,{ Franc¸ois-Xavier Bernard,*,† Jean-Claude Lecron,*,‡ and Franck Morel* Keratinocytes play a crucial role in the regulation of skin inflammation, responding to environmental and immune cells stimuli. They produce soluble factors that can act in an autocrine or paracrine manner on immune cells or directly on aggressors. A screen- ing of the activities of 36 cytokines on keratinocyte gene expression identified IL-17A, IL-22, oncostatin M, TNF-a, and IL-1a as potent cytokines in inducing cutaneous inflammation. These five proinflammatory cytokines synergistically increased production of CXCL8 and b-defensin 2 (BD2). In addition, ex vivo studies on human skin explants demonstrated upregulation of BD2, S100A7, and CXCL8 expression in response to the same combination of cytokines. In vivo intradermal injection of these five cytokines in mouse increased CXCL1, CXCL2, CXCL3, S100A9, and BD3 expression, associated with neutrophil infiltration. We confirmed and extended this synergistic effect using quantitative real-time PCR analysis and observed increased expression of nine chemokines and 12 antimicrobial peptides. Production of CXCL, CXCL5, and CXCL8 by keratinocytes stimulated in the presence of this cytokine combination was associated with increased neutrophil chemotactic activity. Similarly, high production of BD2, BD3, and S100A7 was associated with an increased antimicrobial activity. Finally, the transcriptional profile observed in this in vitro model of inflammatory keratinocytes correlated with the one of lesional psoriatic skin.
    [Show full text]
  • S41467-017-02610-0.Pdf
    ARTICLE DOI: 10.1038/s41467-017-02610-0 OPEN Angiogenic factor-driven inflammation promotes extravasation of human proangiogenic monocytes to tumours Adama Sidibe 1,4, Patricia Ropraz1, Stéphane Jemelin1, Yalin Emre 1, Marine Poittevin1, Marc Pocard2,3, Paul F. Bradfield1 & Beat A. Imhof1 1234567890():,; Recruitment of circulating monocytes is critical for tumour angiogenesis. However, how human monocyte subpopulations extravasate to tumours is unclear. Here we show mechanisms of extravasation of human CD14dimCD16+ patrolling and CD14+CD16+ inter- mediate proangiogenic monocytes (HPMo), using human tumour xenograft models and live imaging of transmigration. IFNγ promotes an increase of the chemokine CX3CL1 on vessel lumen, imposing continuous crawling to HPMo and making these monocytes insensitive to chemokines required for their extravasation. Expression of the angiogenic factor VEGF and the inflammatory cytokine TNF by tumour cells enables HPMo extravasation by inducing GATA3-mediated repression of CX3CL1 expression. Recruited HPMo boosts angiogenesis by secreting MMP9 leading to release of matrix-bound VEGF-A, which amplifies the entry of more HPMo into tumours. Uncovering the extravasation cascade of HPMo sets the stage for future tumour therapies. 1 Department of Pathology and Immunology, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland. 2 Department of Oncologic and Digestive Surgery, AP-HP, Hospital Lariboisière, 2 rue Ambroise Paré, F-75475 Paris cedex 10, France. 3 Université Paris Diderot, Sorbonne Paris Cité, CART, INSERM U965, 49 boulevard de la Chapelle, F-75475 Paris cedex 10, France. 4Present address: Department of Physiology and Metabolism, Centre Médical Universitaire (CMU), Medical faculty, University of Geneva, Rue Michel-Servet 1, CH-1211 Geneva, Switzerland.
    [Show full text]
  • Lung Adenocarcinoma-Intrinsic GBE1 Signaling Inhibits Anti-Tumor Immunity
    Li et al. Molecular Cancer (2019) 18:108 https://doi.org/10.1186/s12943-019-1027-x RESEARCH Open Access Lung adenocarcinoma-intrinsic GBE1 signaling inhibits anti-tumor immunity Lifeng Li1,3,4,5†, Li Yang1,3,4†, Shiqi Cheng1,3,4†, Zhirui Fan3, Zhibo Shen1,3,4, Wenhua Xue2, Yujia Zheng1,3,4, Feng Li1,3,4, Dong Wang1,3,4, Kai Zhang1,3,4, Jingyao Lian1,3,4, Dan Wang1,3,4, Zijia Zhu2, Jie Zhao2,5,6* and Yi Zhang1,3,4* Abstract Background: Changes in glycogen metabolism is an essential feature among the various metabolic adaptations used by cancer cells to adjust to the conditions imposed by the tumor microenvironment. Our previous study showed that glycogen branching enzyme (GBE1) is downstream of the HIF1 pathway in hypoxia-conditioned lung cancer cells. In the present study, we investigated whether GBE1 is involved in the immune regulation of the tumor microenvironment in lung adenocarcinoma (LUAD). Methods: We used RNA-sequencing analysis and the multiplex assay to determine changes in GBE1 knockdown cells. The role of GBE1 in LUAD was evaluated both in vitro and in vivo. Results: GBE1 knockdown increased the expression of chemokines CCL5 and CXCL10 in A549 cells. CD8 expression correlated positively with CCL5 and CXCL10 expression in LUAD. The supernatants from the GBE1 knockdown cells increased recruitment of CD8+ T lymphocytes. However, the neutralizing antibodies of CCL5 or CXCL10 significantly inhibited cell migration induced by shGBE1 cell supernatants. STING/IFN-I pathway mediated the effect of GBE1 knockdown for CCL5 and CXCL10 upregulation. Moreover, PD-L1 increased significantly in shGBE1 A549 cells compared to those in control cells.
    [Show full text]
  • Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3
    RX Zhang, et al ORIGINAL ARTICLE Complementary DNA Microarray Analysis of Chemokines and Their Receptors in Allergic Rhinitis RX Zhang,1 SQ Yu,2 JZ Jiang,3 GJ Liu3 1 Department of Otolaryngology, Huadong Hospital, Fudan University, Shanghai, China 2 Department of Otolaryngology , Jinan General Hospital of PLA, Shandong, China 3 Department of Otolaryngology, Changhai Hospital, Second Military Medical University, Shanghai, China ■ Abstract Objective: To analyze the roles of chemokines and their receptors in the pathogenesis of allergic rhinitis by observing the complementary DNA (cDNA) expression of the chemokines and their receptors in the nasal mucosa of patients with and without allergic rhinitis, using gene chips. Methods: The total RNAs were isolated from the nasal mucosa of 20 allergic rhinitis patients and purifi ed to messenger RNAs, and then reversely transcribed to cDNAs and incorporated with samples of fl uorescence-labeled with Cy5-dUPT (rhinitis patient samples) or Cy3- dUTP (control samples of nonallergic nasal mucosa). Thirty-nine cDNAs of chemokines and their receptors were latticed into expression profi le chips, which were hybridized with probes and then scanned with the computer to study gene expression according to the different fl uorescence intensities. Results: The cDNAs of the following chemokines were upregulated: CCL1, CCL2, CCL5, CCL7, CCL8, CCL11, CCL13, CCL14, CCL17, CCL18, CCL19, CCL24, and CX3CL1 in most of the allergic rhinitis sample chips. CCR2, CCR3, CCR4, CCR5, CCR8 and CX3CR1 were the highly expressed receptor genes. Low expression of CXCL4 was found in these tissues. Conclusion: The T helper cell (TH) immune system is not well regulated in allergic rhinitis.
    [Show full text]
  • Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species
    International Journal of Molecular Sciences Review Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species Mohammed Yusuf Zanna 1 , Abd Rahaman Yasmin 1,2,* , Abdul Rahman Omar 2,3 , Siti Suri Arshad 3, Abdul Razak Mariatulqabtiah 2,4 , Saulol Hamid Nur-Fazila 3 and Md Isa Nur Mahiza 3 1 Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] 2 Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (A.R.O.); [email protected] (A.R.M.) 3 Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; [email protected] (S.S.A.); [email protected] (S.H.N.-F.); [email protected] (M.I.N.M.) 4 Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia * Correspondence: [email protected]; Tel.: +603-8609-3473 or +601-7353-7341 Abstract: Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most effi- cient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this Citation: Zanna, M.Y.; Yasmin, A.R.; review has elucidated the general aspects of DCs as well as the current dynamic perspectives and Omar, A.R.; Arshad, S.S.; distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, Mariatulqabtiah, A.R.; Nur-Fazila, cat, horse, cattle, sheep, pig, and non-human primates.
    [Show full text]
  • Inhibition of CCL7 Derived from Mo-Mdscs Prevents Metastatic
    Ren et al. Cell Death and Disease (2021) 12:484 https://doi.org/10.1038/s41419-021-03698-5 Cell Death & Disease ARTICLE Open Access Inhibition of CCL7 derived from Mo-MDSCs prevents metastatic progression from latency in colorectal cancer Xiaoli Ren1,2, Jianbiao Xiao1,3, Wanning Zhang1,3,FeifeiWang1,3, Yongrong Yan1,3,XuehuiWu 1,3, Zhicheng Zeng1,3, Yumei He4,WeiYang1,3, Wangjun Liao5,YanqingDing1,3 and Li Liang 1,3 Abstract In colorectal cancer (CRC), overt metastases often appear after years of latency. But the signals that cause micro- metastatic cells to remain indolent, thereby enabling them to survive for extended periods of time, are unclear. Immunofluorescence and co-immunoprecipitation assays were used to explore the co-localization of CCL7 and CCR2. Immunohistochemical (IHC) assays were employed to detect the characters of metastatic HT29 cells in mice liver. Flow cytometry assays were performed to detect the immune cells. Bruberin vivo MS FX Pro Imager was used to observe the liver metastasis of CRC in mice. Quantitative real-time PCR (qRT-PCR) and western blot were employed to detect the expressions of related proteins. Trace RNA sequencing was employed to identify differentially expressed genes in MDSCs from liver micro-M and macro-M of CRC in mice. Here, we firstly constructed the vitro dormant cell models and metastatic dormant animal models of colorectal cancer. Then we found that myeloid-derived suppressor cells (MDSCs) were increased significantly from liver micro-metastases to macro-metastases of CRC in mice. Moreover, monocytic MDSCs (Mo-MDSC) significantly promoted the dormant activation of micro-metastatic cells compared to 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; polymorphonuclear MDSCs (PMN-MDSC).
    [Show full text]
  • CCL5 Secreted by Senescent Aged Fibroblasts Induces Proliferation of Prostate Epithelial Cells and Expression of Genes That Modu
    JCP-09-0003.R1(21776) ORIGINAL ARTICLE 1 JJ o o u u r r n n a a l l oo f f Cellular CCL5 Secreted by Senescent Aged Physiology Fibroblasts Induces Proliferation of Prostate Epithelial Cells and Expression of Genes that Modulate AngiogenesisQ1 1 1 2 1 D. EYMAN, M. DAMODARASAMY, S.R. PLYMATE, AND M.J. REED * 1Department of Medicine, Harborview Medical Center, University of Washington, Seattle, Washington 2Veterans Affairs Puget Sound Health Care System, Seattle Washington There is increased interest in the effects of secretory products from aged cells on promoting both benign and malignant cell growth. We identified a human fibroblast line, AG04382, from an aged donor that naturally demonstrated senescence-associated features and whose conditioned media significantly induced proliferation of benign prostatic hyperplasia (BPH1) cells. Candidate cytokines mediating this effect were identified with protein arrays and validated by ELISA. We found that the AG04382 fibroblast line secreted high levels of CXCL5, CCL5, and CCL2, but relative to the other lines, its conditioned media was unique in its increased expression of CCL5. Blocking studies using specific antibodies against CXCL5, CCL5, and CCL2 in the conditioned media of AG04382 showed that only CCL5 contributed significantly to BPH1 proliferation. Stimulation of BPH1 cells with rhuCCL5 resulted in increased proliferation and migration, as well as significant changes in the expression of genes that influence angiogenesis. These data suggest that CCL5 is a candidate chemokine secreted by aged cells that promotes prostate growth and regulates angiogenesis. J. Cell. Physiol. 9999: 1–6, 2009. ß 2009 Wiley-Liss, Inc. There is a close correlation between host age and the analyses for potential paracrine modulators demonstrated that prevalence of both benign (prostatic hyperplasia) and malignant the chemokine, CCL5, in the conditioned media of the aged (cancer) prostate disease (Balducci and Ershler, 2005; fibroblasts was responsible, in part, for inducing proliferation of Untergasser et al., 2005; Nelen, 2007).
    [Show full text]
  • Overexpression of Microrna-155 Suppresses Chemokine Expression Induced by Interleukin-13 in BEAS-2B Human Bronchial Epithelial Cells
    Allergology International 65 (2016) S17eS23 Contents lists available at ScienceDirect Allergology International journal homepage: http://www.elsevier.com/locate/alit Original article Overexpression of microRNA-155 suppresses chemokine expression induced by Interleukin-13 in BEAS-2B human bronchial epithelial cells * Satoshi Matsukura a, , Yuki Osakabe a, Ayaka Sekiguchi a, Daisuke Inoue a, Yusuke Kakiuchi a, Toshitaka Funaki a, Yohei Yamazaki a, Hiromi Takayasu a, Hidetsugu Tateno a, Eisuke Kato a, Aya Wakabayashi a, Makoto Hayashi a, Gen Ishii a, b, Fumihiro Yamaguchi a, Yutaka Tsuchiya a, Keita Kasahara b, Hironori Sagara c, Fumio Kokubu a a Department of Respiratory Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan b Respiratory Disease Center, Showa University Northern Yokohama Hospital, Kanagawa, Japan c Department of Internal Medicine, Division of Allergy and Respiratory Medicine, Showa University School of Medicine, Tokyo, Japan article info abstract Article history: Background: MicroRNAs are non-coding small RNAs that regulate expression of target genes by binding Received 22 January 2016 to 30 untranslated regions. In this study, we used bronchial epithelial cells to investigate in vitro the role Received in revised form of the microRNA miR-155 in the expression of chemokines associated with airway inflammation. miR- 23 April 2016 155 has previously been reported to regulate allergic inflammation. Accepted 30 April 2016 Methods: BEAS-2B bronchial epithelial cells were cultured and transfected with mimic or inhibitor oli- Available online 3 August 2016 gonucleotides to overexpress or downregulate miR-155, as confirmed by real-time PCR. Cells were then stimulated with tumor necrosis factor-alpha, interleukin-13 (IL-13), and a double stranded RNA that Keywords: Asthma binds Toll-like receptor 3.
    [Show full text]
  • Predictive Biomarkers for the Ranking of Pulmonary Toxicity of Nanomaterials
    nanomaterials Article Predictive Biomarkers for the Ranking of Pulmonary Toxicity of Nanomaterials Chinatsu Nishida 1, Hiroto Izumi 2, Taisuke Tomonaga 2 , Jun-ichi Takeshita 3 , Ke-Yong Wang 4, Kei Yamasaki 1, Kazuhiro Yatera 1 and Yasuo Morimoto 2,* 1 Department of Respiratory Medicine, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] (C.N.); [email protected] (K.Y.); [email protected] (K.Y.) 2 Department of Occupational Pneumology, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] (H.I.); [email protected] (T.T.) 3 Research Institute of Science for Safety and Sustainability, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan. 16-1 Onogawa, Tsukuba, Ibaraki 305-8569, Japan; [email protected] 4 Shared-Use Research Center, University of Occupational and Environmental Health, Japan. 1-1 Iseigaoka, Yahata-nishi-ku, Kitakyushu, Fukuoka 807-8555, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-93-691-7136 Received: 3 September 2020; Accepted: 9 October 2020; Published: 15 October 2020 Abstract: We analyzed the mRNA expression of chemokines in rat lungs following intratracheal instillation of nanomaterials in order to find useful predictive markers of the pulmonary toxicity of nanomaterials. Nickel oxide (NiO) and cerium dioxide (CeO2) as nanomaterials with high pulmonary toxicity, and titanium dioxide (TiO2) and zinc oxide (ZnO) as nanomaterials with low pulmonary toxicity, were administered into rat lungs (0.8 or 4 mg/kg BW).
    [Show full text]
  • CXCL5 Signaling Is a Shared Pathway of Neuroinflammation and Blood
    Wang et al. Journal of Neuroinflammation (2016) 13:6 DOI 10.1186/s12974-015-0474-6 RESEARCH Open Access CXCL5 signaling is a shared pathway of neuroinflammation and blood–brain barrier injury contributing to white matter injury in the immature brain Lin-Yu Wang1,2, Yi-Fang Tu3,4, Yung-Chieh Lin3,4 and Chao-Ching Huang3,5,6* Abstract Background: In very preterm infants, white matter injury is a prominent brain injury, and hypoxic ischemia (HI) and infection are the two primary pathogenic factors of this injury. Microglia and microvascular endothelial cells closely interact; therefore, a common signaling pathway may cause neuroinflammation and blood–brain barrier (BBB) damage after injury to the immature brain. CXC chemokine ligand 5 (CXCL5) is produced in inflammatory and endothelial cells by various organs in response to insults. CXCL5 levels markedly increased in the amniotic cavity in response to intrauterine infection and preterm birth in clinical studies. The objective of this study is to determine whether CXCL5 signaling is a shared pathway of neuroinflammation and BBB injury that contributes to white matter injury in the immature brain. Methods: Postpartum day 2 (P2) rat pups received lipopolysaccharide (LPS) followed by 90-min HI. Immunohistochemical analyses were performed to determine microglial activation, neutrophil infiltration, BBB damage, and myelin basic protein and glial fibrillary acidic protein expression. Immunofluorescence experiments were performed to determine the cellular distribution of CXCL5. Pharmacological tests were performed to inhibit or enhance CXCL5 activity. Results: On P2, predominant increases in microglial activation and BBB damage were observed 24 h after LPS-sensitized HI induction, and white matter injury (decreasedmyelinationandincreasedastrogliosis) was observed on P12 compared with controls.
    [Show full text]
  • The CXCL5/CXCR2 Axis Is Sufficient to Promote Breast Cancer Colonization During Bone Metastasis
    ARTICLE https://doi.org/10.1038/s41467-019-12108-6 OPEN The CXCL5/CXCR2 axis is sufficient to promote breast cancer colonization during bone metastasis Ricardo Romero-Moreno1,2, Kimberly J. Curtis1,3, Thomas R. Coughlin1,3, Maria Cristina Miranda-Vergara1,2, Shourik Dutta1,2, Aishwarya Natarajan1,2, Beth A. Facchine1,2, Kristen M. Jackson1,3, Lukas Nystrom5,6, Jun Li1,4, William Kaliney1, Glen L. Niebur 1,3 & Laurie E. Littlepage 1,2 Bone is one of the most common sites for metastasis across cancers. Cancer cells that travel 1234567890():,; through the vasculature and invade new tissues can remain in a non-proliferative dormant state for years before colonizing the metastatic site. Switching from dormancy to colonization is the rate-limiting step of bone metastasis. Here we develop an ex vivo co-culture method to grow cancer cells in mouse bones to assess cancer cell proliferation using healthy or cancer- primed bones. Profiling soluble factors from conditioned media identifies the chemokine CXCL5 as a candidate to induce metastatic colonization. Additional studies using CXCL5 recombinant protein suggest that CXCL5 is sufficient to promote breast cancer cell pro- liferation and colonization in bone, while inhibition of its receptor CXCR2 with an antagonist blocks proliferation of metastatic cancer cells. This study suggests that CXCL5 and CXCR2 inhibitors may have efficacy in treating metastatic bone tumors dependent on the CXCL5/ CXCR2 axis. 1 Harper Cancer Research Institute, South Bend, IN, USA. 2 Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, USA. 3 Tissue Mechanics Laboratory, Department of Aerospace and Mechanical Engineering, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA.
    [Show full text]