Natural Heritage Trends. the Seas Around Scotland 2004

Total Page:16

File Type:pdf, Size:1020Kb

Natural Heritage Trends. the Seas Around Scotland 2004 Natural Heritage T Natural Heritage T Natural Heritage Trends Working with Scotland’s people to care for our natural heritage The Seas Around Scotland Scottish Natural Heritage is a government body responsible to the Scottish Executive and Scottish Parliament. 2004 Our mission statement is: Working with Scotland’s people to care for our natural heritage. Our aim is: rends: The Seas Ar rends: The Seas Ar Scotland’s natural heritage is a local, national and global asset. We promote its care and improvement, responsible enjoyment, greater understanding and appreciation, and sustainable use now and for future generations. Our operating principles are: We work in partnership, by co-operation, negotiation and consensus, where possible, with all relevant interests in Scotland: public, private and voluntary organisations, and individuals. We operate in a devolved manner, delegating decision-making to the local level within the organisation to encourage and assist SNH to be accessible, sensitive and responsive to local needs and circumstances. We operate in an open and accountable manner in all our activities. Further information further copies of this report are available from Scottish Natural Heritage Publications Section Battleby ound Scotland 2004 Redgorton ound Scotland 2004 Perth PH1 3EW t: 01738 444177 t: 01738 458613 e: [email protected] w: www.snh.org.uk/trends ISBN 1 85397 4048 NPO.5K0804 PRICE £10 HERIT NA SCOTTISH TURAL AGE Working with Scotland’s people to care for our natural heritage Natural Heritage Trends The Seas Around Scotland 2004 Graham Saunders Scottish Natural Heritage Battleby, Perth 2004 Acknowledgements This report was supervised and edited by Ed Mackey and John Baxter. Grateful thanks are due to Ed Mackey, Phil Shaw, Catriona Burns, Beth Mouat, Katie Gillham, Sandy Downie and John Baxter for their major contributions to the text of this publication. Thanks also to Colin Galbraith and George Lees for further editorial comment and suggestions. Thanks for contributions, use of data, thoughts and comments should also go to David Donnan, John Gordon, Anton Edwards, Judy Dobson, Bob Reid, Calum Duncan, the Marine Conservation Society, the Sea Mammal Research Unit, the Scottish Environment Protection Agency and the Scottish Executive. Finally, many thanks are due to Bill Forbes, Betty Common and Jim Jeffrey for assisting in the design and production. Front cover: Jewel anemones (Corynactis viridis), G. Saunders Inserts: Andi Robertson/SNH, MCNR/SNH, G. Saunders/SNH. Contents Acknowledgements 2 Part 3 47 Abbreviations 5 The use of the sea 47 Foreword 7 7 Mariculture 48 Introduction 9 Introduction 48 Trends 48 Part 1 11 Issues and implications 49 Knowledge of the marine environment 11 Sources of data 51 1 Knowledge and enjoyment 12 References 51 Introduction 12 8 Continental shelf fisheries 52 Trends 12 Introduction 52 Issues and implications 15 Trends 53 Sources of data 16 Issues and implications 58 References 16 Sources of data 63 2 Marine conservation 17 References 63 Introduction 17 9 Deep-water fish and fisheries 65 Trends 20 Introduction 65 Issues and implications 23 Trends 66 Sources of data 25 Issues and implications 66 References 25 Sources of data 68 References 68 Part 2 27 Marine life 27 Part 4 69 3 Sharks, skates and rays 28 Quality of the marine environment 69 Introduction 28 10 Coastal and estuarine environment quality 70 Trends 29 Introduction 70 Issues and implications 32 Trends 71 Sources of data 32 Issues and implications 76 References 32 Sources of data 77 4 Dolphins, porpoises and whales 33 References 77 Introduction 33 11 Marine litter 78 Trends 33 Introduction 78 Issues and implications 36 Trends 79 Sources of data 37 Issues and implications 81 References 38 Sources of data 83 5 Seals 39 References 84 Introduction 39 12 Non-native species 85 Trends 39 Introduction 85 Issues and implications 40 Trends 85 Sources of data 41 Issues and implications 88 References 41 References 94 6 Seabirds 42 13 Environmental change 95 Introduction 42 Introduction 95 Trends 42 Trends 95 Issues and implications 46 Issues and implications 98 Sources of data 46 Sources of data 101 References 46 References 101 Additional source 101 Natural Heritage Trends: The Seas Around Scotland 2004 353 Part 5 103 Conclusions 103 14 Conclusions 104 Summing up 110 Reference 110 Part 6 111 Appendices 111 Appendix 1: SEPA coastal waters classification scheme 112 Appendix 2: SEPA estuarine waters classification scheme 113 Appendix 3: definition of microbiological requirements for guideline and mandatory passes of bathing waters based on the minimum number of samples (20) that are taken from each location 114 Appendix 4: Scottish marine environment data sources 115 Biological 116 Biological and chemical 127 Physical 135 Part 7 151 Have Your Say! 151 What do you think of the report? 152 Index 155 4 Natural Heritage Trends: The Seas Around Scotland 2004 35 Abbreviations ACFM Advisory Committee on Fishery MBA Marine Biological Association of the Management United Kingdom ASCOBANS Agreement on Small Cetaceans of the MCS Marine Conservation Society Baltic and North Seas MLURI Macaulay Land Use Research Institute ASP amnesic shellfish poisoning MNCR Marine Nature Conservation Review BGS British Geological Survey NANSEN North Atlantic Norwegian Sea BOD biological oxygen demand Exchange BODC British Oceanographic Data Centre NERC Natural Environment Research Council CEFAS Centre for Environment, Fisheries and NERPB North East River Purification Board Aquaculture Science NHM Natural History Museum CFP Common Fisheries Policy NORSWAM North Sea wave model CITES Convention on International Trade in OSPAR Oslo and Paris Conventions for the Endangered Species of Wild Fauna and Prevention of Marine Pollution Flora OWS ocean weather ship CONSLEX Continental Slope Experiment PCBs polychlorinated biphenyls CPUE catch per unit effort PDV phocine distemper virus cSAC candidate Special Area of Conservation PML Plymouth Marine Laboratory CTD conductivity, temperature and depth POL Proudman Oceanographic Laboratory DDT dichlorodiphenyltrichloroethane PS particle size analysis DEFRA Department for Environment, Food and pSAC possible Special Area of Conservation Rural Affairs PSP paralytic shellfish poisoning DML Dunstaffnage Marine Laboratory ROSCOP Report of Observations/Samples DSP diarrhetic shellfish poisoning Collected by Oceanographic EC European Commission Programmes EQS environmental quality standards RPB River Purification Board EU European Union SAC Special Area of Conservation FAO Food and Agriculture Organisation of SAHFOS Sir Alister Hardy Foundation for Ocean the United Nations Science FRS Fisheries Research Services SAMS Scottish Association for Marine Science GIS geographical information systems SCOS Special Committee on Seals ha hectare SEPA Scottish Environment Protection Agency IACMST Inter-Agency Committee on Marine SMRU Sea Mammal Research Unit Science and Technology SNH Scottish Natural Heritage ICES International Council for the Exploration SOAFD Scottish Office Agriculture and Fisheries of the Sea Department IOS Institute of Oceanographic Sciences SPA Special Protection Area ISA infectious salmon anaemia SRD sewage-related debris IUCN International Union for Conservation of SRPB Solway River Purification Board Nature and Natural Resources (or World SSSI Site of Special Scientific Interest Conservation Union) STD salinity, temperature, depth IWC International Whaling Commission TBT tributyltin JCD Joint Cetacean Database TERC Tay Estuary Research Centre JONSDAP Joint North Sea Data Acquisition Project TRPB Tay River Purification Board JNCC Joint Nature Conservation Committee UKCIP02 UK Climate Impacts Programme 2002 JRC James Rennell Centre for Ocean UKOOA UK Offshore Operators Association Circulation UNESCO United Nations Education, Scientific and m metre Cultural Organisation MAFF Ministry of Agriculture, Fisheries and UOR undulating oceanographic recorder Food WFD Water Framework Directive MARPOL International Convention for the WOCE World Ocean Circulation Experiment Prevention of Pollution from Ships 34 Natural Heritage Trends: The Seas Around Scotland 2004 355 6 Natural Heritage Trends: The Seas Around Scotland 2004 Foreword n presenting this analysis of the seas around Scotland, three questions might come to mind: why have we done it?; how does it relate to our policies and plans?; and how can the outputs be used to Itake forward the work of Scottish Natural Heritage (SNH)? I shall address them in turn. In our Natural Heritage Futures policy statement on Scotland’s coasts and seas, which we published in 2002, we point out that comparatively little is known about the marine environment. Nevertheless, the wealth of information that does exist, from many and disparate sources, is not readily known or accessible to the non-specialist. Our task has been, quite simply, to bring together the best information available on natural heritage trends in the marine environment. Inevitably, we have had to put bounds on this. Our focus here is on life within the seas. While no less relevant, matters relating to the land/sea margin, landscape and recreation are largely beyond the scope of our present study. Trends across recent decades have been documented up to the start of 2004. The SNH Natural Heritage Futures programme sets out challenging, but achievable, natural heritage objectives within a 25-year time horizon. Eight key objectives are defined for coasts and seas, including, for example, improving understanding of marine ecosystems;
Recommended publications
  • Notes on the Occurrence of Some Poorly Known Decapoda (Crustacea) in the Southern North Sea
    NOTES ON THE OCCURRENCE OF SOME POORLY KNOWN DECAPODA (CRUSTACEA) IN THE SOUTHERN NORTH SEA by J. P. H M ADEMA Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands F CREUTZBERG & G J VAN NOORT Netherlands Institute for Sea Research, Texel, The Netherlands With 9 text-figures, 6 tables, 5 maps INTRODUCTION Since April 1972 an ecological trawl-survey programme has been undertaken by the Netherlands Institute for Sea Research (NIOZ), Texel, in the southern North Sea with the R. V. "Aurelia". The main object is to obtain information on distribution, density, biomass and fluctuations of crawling or swimming demersal (epibenthic) fauna such as small fishes, shrimps, prawns, crabs, asteroids, ophiuroids and some gastropods, for the evaluation of the role of these carnivores in the benthic ecosystem of the southern North Sea. Sedimentological aspects of the area are described by Creutzberg & Postma (1979). Within the context of the present paper the most important feature is the mesh of 5 x 5 mm2 of the cod end of the 5V2 m beam-trawl used and the extensive area of 5000-10,000 m2 covered during each haul. These exceptional circumstances resulted into faunistically interesting catches which gave rise to a cooperation with taxonomic specialists of the Rijksmuseum van Natuurlijke Historie (RMNH), Leiden. The present paper deals with decapod crustaceans, collected during "Aurelia"-cruises, which are considered to be scarce or rare in the southern North Sea, completed with data from bottom-samples and other sources The species in question are: Pandalina brevirostris, Spirontocans lilljeborgii, Alpheus macrocheles, Pontophilus spinosus, Pontophilus bi.spino.sus, Galathea dispersa, Ebalia tubero.sa, Ebalia tumefacta, Ebalia cranchii, Atelecyclus rotundatus, Monodaeus couchii, Callianassa subterranea, Callianas.sa tyrrhena, Upogebia stellata and Upogebia deltaura Of the genus Macropodia a number of specimens have been collected, which partly were identified as M.
    [Show full text]
  • Part I. an Annotated Checklist of Extant Brachyuran Crabs of the World
    THE RAFFLES BULLETIN OF ZOOLOGY 2008 17: 1–286 Date of Publication: 31 Jan.2008 © National University of Singapore SYSTEMA BRACHYURORUM: PART I. AN ANNOTATED CHECKLIST OF EXTANT BRACHYURAN CRABS OF THE WORLD Peter K. L. Ng Raffles Museum of Biodiversity Research, Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore 119260, Republic of Singapore Email: [email protected] Danièle Guinot Muséum national d'Histoire naturelle, Département Milieux et peuplements aquatiques, 61 rue Buffon, 75005 Paris, France Email: [email protected] Peter J. F. Davie Queensland Museum, PO Box 3300, South Brisbane, Queensland, Australia Email: [email protected] ABSTRACT. – An annotated checklist of the extant brachyuran crabs of the world is presented for the first time. Over 10,500 names are treated including 6,793 valid species and subspecies (with 1,907 primary synonyms), 1,271 genera and subgenera (with 393 primary synonyms), 93 families and 38 superfamilies. Nomenclatural and taxonomic problems are reviewed in detail, and many resolved. Detailed notes and references are provided where necessary. The constitution of a large number of families and superfamilies is discussed in detail, with the positions of some taxa rearranged in an attempt to form a stable base for future taxonomic studies. This is the first time the nomenclature of any large group of decapod crustaceans has been examined in such detail. KEY WORDS. – Annotated checklist, crabs of the world, Brachyura, systematics, nomenclature. CONTENTS Preamble .................................................................................. 3 Family Cymonomidae .......................................... 32 Caveats and acknowledgements ............................................... 5 Family Phyllotymolinidae .................................... 32 Introduction .............................................................................. 6 Superfamily DROMIOIDEA ..................................... 33 The higher classification of the Brachyura ........................
    [Show full text]
  • Illustrated Keys for the Identi¢Cation of the Pleocyemata (Crustacea: Decapoda) Zoeal Stages, from the Coastal Region of South-Western Europe
    J. Mar. Biol. Ass. U.K. (2004), 84, 205^227 Printed in the United Kingdom Illustrated keys for the identi¢cation of the Pleocyemata (Crustacea: Decapoda) zoeal stages, from the coastal region of south-western Europe Antonina dos Santos*P and Juan Ignacio Gonza¤ lez-GordilloO *Instituto de Investigac° a‹ o das Pescas e do Mar, Avenida de Brasilia s/n, 1449-006 Lisbon, Portugal. OCentro Andaluz de Ciencia y Tecnolog|¤a Marinas, Universidad de Ca¤ diz, Campus de Puerto Real, 11510öPuerto Real (Ca¤ diz), Spain. PCorresponding author, e-mail: [email protected] The identi¢cation keys of the zoeal stages of Pleocyemata decapod larvae from the coastal region of south-western Europe, based on both new and previously published descriptions and illustrations, are provided. The keys cover 127 taxa, most of them identi¢ed to genus and species level. These keys were mainly constructed upon external morphological characters, which are easy to observe under a stereo- microscope. Moreover, the presentation of detailed ¢gures allows a non-specialist to make identi¢cations more easily. INTRODUCTION nearby areas as a complement document when identifying larval stages. Identi¢cation of decapod larvae from plankton samples The order Decapoda comprises two suborders, the is not easy, principally because there are great morpholo- Dendrobranchiata and the Pleocyemata (Martin & Davis, gical changes between developmental phases, although less 2001). A key for the identi¢cation of Dendrobranchiata pronounced between larval stages. Moreover, larval larvae covering the same area of this study has been descriptions of many species are still unsuitable or even presented by dos Santos & Lindley (2001).
    [Show full text]
  • A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
    English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project ..............................................................................................
    [Show full text]
  • Faunal Change and Bathymetric Diversity Gradient in Deep-Sea Prosobranchs from Northeastern Atlantic
    Biodiversity and Conservation (2006) Ó Springer 2006 DOI 10.1007/s10531-005-1344-9 -1 Faunal change and bathymetric diversity gradient in deep-sea prosobranchs from Northeastern Atlantic CELIA OLABARRIA1,2 1Southampton Oceanography Centre, DEEPSEAS Benthic Biology Group, Empress Dock, South- ampton SO14 3ZH, United Kingdom; 2Present address: Departamento de Ecoloxı´a e Bioloxı´a Animal, Area Ecoloxı´a, Universidad de Vigo, Campus Lagoas-Marcosende, 36310 Vigo (Pontevedra), Spain (e-mail: [email protected]; phone: +34-986-812587; fax: +34-986-812556) Received 6 January 2005; accepted in revised form 11 July 2005 Key words: Deep sea, Diversity, Faunal turnover, Northeastern Atlantic, Porcupine Abyssal Plain, Porcupine Seabight, Prosobranchs Abstract. Despite the plethora of studies, geographic patterns of diversity in deep sea remain subject of speculation. This study considers a large dataset to examine the faunal change and depth-diversity gradient of prosobranch molluscs in the Porcupine Seabight and adjacent Abyssal Plain (NE Atlantic). Rates of species succession (addition and loss) increased rapidly with increasing depth and indicated four possible areas of faunal turnover at about 700, 1600, 2800 and 4100 m. Depth was a significant predictor of diversity, explaining nearly a quarter the variance. There was a pattern of decreasing diversity downslope from 250 m to 1500–1600 m, followed by an increase to high values at about 4000 m and then again, a fall to 4915 m. Processes causing diversity patterns of prosobranchs in the Porcupine Seabight and adjacent Abyssal Plain are likely to differ in magnitude or type, from those operating in other Atlantic areas. Introduction An increasing focus for biodiversity research in the deep sea has been to test for the existence of large-scale gradients in the diversity of marine soft- sediment fauna in deep sea (e.g.
    [Show full text]
  • Trivialnamen Für Mollusken Des Meeres Und Brackwassers in Deutschland (Polyplacophora, Gastropoda, Bivalvia, Scaphopoda Et Cephalopoda)
    > Mollusca 27 (1) 2009 3 3 – 32 © Museum für Tierkunde Dresden, ISSN 1864-5127, 15.04.2009 Trivialnamen für Mollusken des Meeres und Brackwassers in Deutschland (Polyplacophora, Gastropoda, Bivalvia, Scaphopoda et Cephalopoda) FRITZ GOSSELCK 1, ALEXANDER DARR 1, JÜRGEN H. JUNGBLUTH 2 & MICHAEL L. ZETTLER 3 1 Institut für Angewandte Ökologie GmbH, Alte Dorfstraße 11, D-18184 Broderstorf, Germany [email protected] 2 In der Aue 30e, D-69118 Schlierbach, Germany PROJEKTGRUPPE MOLLUSKENKARTIERUNG © [email protected] 3 Leibniz-Institut für Ostseeforschung Warnemünde, Seestraße 15, D-18119 Rostock, Germany [email protected] Received on July 11, 2008, accepted on February 10, 2009. Published online at www.mollusca-journal.de > Abstract German common names for marine and brackish water molluscs. – A list of common names of German marine and brackish water molluscs was compiled for the German coastal waters and the exclusive economic zone (EEZ) of the North and Baltic Seas. Main aim of this compilation is to give interested non-professionals better access to and understanding of sea shells and squids. As often long-lived and relatively stationary species, molluscs can provide a key function as water quality indicators. The taxonomic classifi cation was based on the Mollusca databases CLEMAM and ERMS (MARBEF). The list includes 309 species. > Kurzfassung Eine Liste deutscher Namen der marinen und Brackwasser-Mollusken der deutschen Küstengewässer und der Ausschließlichen Wirtschaftszone (AWZ) der Nord- und Ostsee wurde erstellt. Ziel der Zusammenstellung ist es, mit den Trivialnamen dem interessierten Laien die marinen Schnecken, Muscheln und Tintenfi sche etwas näher zu bringen.
    [Show full text]
  • Decapoda, Brachyura
    APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA de Decápodos Braquiuros de la Península Ibérica bérica I enínsula P raquiuros de la raquiuros B ecápodos D de APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA LA DE IDENTIFICACIÓN EN LA Y MOLECULARES MORFOLÓGICAS TÉCNICAS DE APLICACIÓN Herrero - MEGALOPA “big eyes” Leach 1793 Elena Marco Elena Marco-Herrero Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 Tesis Doctoral, Valencia 2015 Programa de Doctorado en Biodiversidad y Biología Evolutiva Rd. 99/2011 APLICACIÓN DE TÉCNICAS MORFOLÓGICAS Y MOLECULARES EN LA IDENTIFICACIÓN DE LA MEGALOPA DE DECÁPODOS BRAQUIUROS DE LA PENÍNSULA IBÉRICA TESIS DOCTORAL Elena Marco-Herrero Valencia, septiembre 2015 Directores José Antonio Cuesta Mariscal / Ferran Palero Pastor Tutor Álvaro Peña Cantero Als naninets AGRADECIMIENTOS-AGRAÏMENTS Colaboración y ayuda prestada por diferentes instituciones: - Ministerio de Ciencia e Innovación (actual Ministerio de Economía y Competitividad) por la concesión de una Beca de Formación de Personal Investigador FPI (BES-2010- 033297) en el marco del proyecto: Aplicación de técnicas morfológicas y moleculares en la identificación de estados larvarios planctónicos de decápodos braquiuros ibéricos (CGL2009-11225) - Departamento de Ecología y Gestión Costera del Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC) - Club Náutico del Puerto de Santa María - Centro Andaluz de Ciencias y Tecnologías Marinas (CACYTMAR) - Instituto Español de Oceanografía (IEO), Centros de Mallorca y Cádiz - Institut de Ciències del Mar (ICM-CSIC) de Barcelona - Institut de Recerca i Tecnología Agroalimentàries (IRTA) de Tarragona - Centre d’Estudis Avançats de Blanes (CEAB) de Girona - Universidad de Málaga - Natural History Museum of London - Stazione Zoologica Anton Dohrn di Napoli (SZN) - Universitat de Barcelona AGRAÏSC – AGRADEZCO En primer lugar quisiera agradecer a mis directores, el Dr.
    [Show full text]
  • Diversity of Shell-Bearing Gastropods Along the Western Coast of the Arctic Archipelago Novaya Zemlya: an Evaluation of Modern and Historical Data
    Diversity of shell-bearing gastropods along the western coast of the Arctic archipelago Novaya Zemlya: an evaluation of modern and historical data Ivan O. Nekhaev & Ekaterina N. Krol Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-017-2140-1 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Polar Biol DOI 10.1007/s00300-017-2140-1 ORIGINAL PAPER Diversity of shell-bearing gastropods along the western coast of the Arctic archipelago Novaya Zemlya: an evaluation of modern and historical data 1 2 Ivan O. Nekhaev • Ekaterina N. Krol Received: 27 June 2016 / Revised: 15 May 2017 / Accepted: 6 June 2017 Ó Springer-Verlag GmbH Germany 2017 Abstract Accurate estimation of biodiversity is necessary between local coastal gastropod faunas from various parts to provide a baseline for further ecosystem investigations of the Barents Sea (including Novaya Zemlya).
    [Show full text]
  • Energy Values of Marine Benthic Invertebrates from the Canadian Arctic
    MARINE ECOLOGY - PROGRESS SERIES Published September 10 Mar. Ecol. Prog. Ser. 1 Energy values of marine benthic invertebrates from the Canadian Arctic J. W. Wacasey, E. G.Atkinson Arctic Biological Station, Department of Fisheries and Oceans, 555 St. Pierre Boulevard, Ste-Anne-de-Bellevue, Quebec H9X 3R4,Canada ABSTRACT: Calonc values were determined for 121 species of cold-water benthic invertebrates, 109 of which are representative of a soft bottom community in Frobisher Bay, Northwest Territories (Canada). The mean calonc value for the community was 5.424 kcal g-' ash-free dry weight (SD f 0.403). This is not significantly different from values from lower latitudes, as has been suggested for planktonic communities. With one exception, the Ascidiacea, there were no significant differences in mean caloric value among major taxa. The lnterspecific distnbution of AFDW caloric value is discussed; present data support the growlng evidence that the natural pattern is symmetrical with values concentrated about a mean of 5.4 to 5.7 kcal g-' AFDW for benthic invertebrates. Caloric equivalents for biomass estimates and large-scale community comparisons may be derived from the regression of dry weight caloric value on percent organic content (dry weight): Y (kcal g-' AFDW) = -0.3897 + 0.0605 X (% organic content). when the organic fraction is determined directly. Two problematical taxa, Porifera and Echinodermata, are discussed and separate regressions are presented. INTRODUCTION community mean value, taxonomic variations, and interspecific distribution pattern of caloric values is Although energy values of many cold-water marine discussed. The relationships between caloric value and zoobenthic invertebrates are available (Ellis 1960, organic content gives equations from which fast, reli- Brawn et al.
    [Show full text]
  • Length–Weight Relationships of 216 North Sea Benthic Invertebrates
    Journal o f the Marine Biological Association o f the United 2010, Kingdom, 90(1), 95-104. © Marine Biological Association of the United Kingdom, 2010 doi:io.ioi7/Soo25 315409991408 Length-weight relationships of 216 North Sea benthic invertebrates and fish L.A. ROBINSON1, S.P.R. GREENSTREET2, H. REISS3, R. CALLAWAY4, J. CRAEYMEERSCH5, I. DE BOOIS5, S. DEGRAER6, S. EHRICH7, H.M. FRASER2, A. GOFFIN6, I. KRÖNCKE3, L. LINDAL JORGENSON8, M.R. ROBERTSON2 AND J. LANCASTER4 School of Biological Sciences, Ecosystem Dynamics Group, University of Liverpool, Liverpool, L69 7ZB, UK, fish eries Research Services, Marine Laboratory, PO Box 101, Aberdeen, AB11 9DB, UK, 3Senckenberg Institute, Department of Marine Science, Südstrand 40,26382 Wilhelmshaven, Germany, 4University of Wales, Swansea, Singleton Park, Swansea, SA2 8PP, UK, Netherlands Institute for Fisheries Research (IMARES), PO Box 77, 4400 AB Yerseke, The Netherlands, sGhent University, Department of Biology, Marine Biology Section, K.L. Ledeganckstraat 35, B 9000, Gent, Belgium, 7Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute of Sea Fisheries, Palmaille 9, 22767 Hamburg, Germany, institute of Marine Research, Box 1870, 5817 Bergen, Norway Size-based analyses of marine animals are increasingly used to improve understanding of community structure and function. However, the resources required to record individual body weights for benthic animals, where the number of individuals can reach several thousand in a square metre, are often prohibitive. Here we present morphometric (length-weight) relationships for 216 benthic species from the North Sea to permit weight estimation from length measurements. These relationships were calculated using data collected over two years from 283 stations.
    [Show full text]
  • Fasciolariidae
    WMSDB - Worldwide Mollusc Species Data Base Family: FASCIOLARIIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: CAENOGASTROPODA-HYPSOGASTROPODA-NEOGASTROPODA-BUCCINOIDEA ------ Family: FASCIOLARIIDAE Gray, 1853 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=1523, Genus=128, Subgenus=5, Species=558, Subspecies=42, Synonyms=789, Images=454 abbotti , Polygona abbotti (M.A. Snyder, 2003) abnormis , Fusus abnormis E.A. Smith, 1878 - syn of: Coralliophila abnormis (E.A. Smith, 1878) abnormis , Latirus abnormis G.B. III Sowerby, 1894 abyssorum , Fusinus abyssorum P. Fischer, 1883 - syn of: Mohnia abyssorum (P. Fischer, 1884) achatina , Fasciolaria achatina P.F. Röding, 1798 - syn of: Fasciolaria tulipa (C. Linnaeus, 1758) achatinus , Fasciolaria achatinus P.F. Röding, 1798 - syn of: Fasciolaria tulipa (C. Linnaeus, 1758) acherusius , Chryseofusus acherusius R. Hadorn & K. Fraussen, 2003 aciculatus , Fusus aciculatus S. Delle Chiaje in G.S. Poli, 1826 - syn of: Fusinus rostratus (A.G. Olivi, 1792) acleiformis , Dolicholatirus acleiformis G.B. I Sowerby, 1830 - syn of: Dolicholatirus lancea (J.F. Gmelin, 1791) acmensis , Pleuroploca acmensis M. Smith, 1940 - syn of: Triplofusus giganteus (L.C. Kiener, 1840) acrisius , Fusus acrisius G.D. Nardo, 1847 - syn of: Ocinebrina aciculata (J.B.P.A. Lamarck, 1822) aculeiformis , Dolicholatirus aculeiformis G.B. I Sowerby, 1833 - syn of: Dolicholatirus lancea (J.F. Gmelin, 1791) aculeiformis , Fusus aculeiformis J.B.P.A. Lamarck, 1816 - syn of: Perrona aculeiformis (J.B.P.A. Lamarck, 1816) acuminatus, Latirus acuminatus (L.C. Kiener, 1840) acus , Dolicholatirus acus (A. Adams & L.A. Reeve, 1848) acuticostatus, Fusinus hartvigii acuticostatus (G.B. II Sowerby, 1880) acuticostatus, Fusinus acuticostatus G.B.
    [Show full text]
  • In the Southern North Sea
    NOTES ON THE OCCURRENCE OF SOME POORLY KNOWN DECAPODA (CRUSTACEA) IN THE SOUTHERN NORTH SEA by J. P. H. M. ADEMA Rijksmuseum van Natuurlijke Historie, Leiden, The Netherlands F. CREUTZBERG & G. J. VAN NOORT Netherlands Institute for Sea Research, Texel, The Netherlands With 9 text-figures, 6 tables, 5 maps INTRODUCTION Since April 1972 an ecological trawl-survey programme has been undertaken by the Netherlands Institute for Sea Research (NIOZ), Texel, in the southern North Sea with the R. V. "Aurelia". The main object is to obtain information on distribution, density, biomass and fluctuations of crawling or swimming demersal (epibenthic) fauna such as small fishes, shrimps, prawns, crabs, asteroids, ophiuroids and some gastropods, for the evaluation of the role of these carnivores in the benthic ecosystem of the southern North Sea. Sedimentological aspects of the area are described by Creutzberg & Postma (1979). Within the context of the present paper the most important feature is the mesh of 5 x 5 mm2 of the cod end of the 51/2 m beam-trawl used and the extensive area of 5000-10,000 m2 covered during each haul. These exceptional circumstances resulted into faunistically interesting catches which gave rise to a cooperation with taxonomic specialists of the Rijksmuseum van Natuurlijke Historie (RMNH), Leiden. The present paper deals with decapod crustaceans, collected during "Aurelia"-cruises, which are considered to be scarce or rare in the southern North Sea, completed with data from bottom-samples and other sources. The species in question are: Pandalina brevirostris, Spirontocaris lilljeborgii, Alpheus macrocheles, Pontophilus spinosus, Pontophilus bispinosus, Galathea dispersa, Ebalia tuberosa, Ebalia tumefacta, Ebalia cranchii, Atelecyclus rotundatus, Monodaeus couchii, Callianassa subterranea, Callianassa tyrrhena, Upogeb ia stellata and Upogebia deltaura.
    [Show full text]