Receiver Side Control for Efficient Inductive Power Transfer for Vehicle Recharging
Total Page:16
File Type:pdf, Size:1020Kb
Receiver Side Control for Efficient Inductive Power Transfer for Vehicle Recharging Mohammadhossein Afshin A Thesis In the Department of Electrical and Computer Engineering Presented in Partial Fulfillment of the Requirements For the Degree of Master of Applied Science (Electrical & Computer Engineering) at Concordia University Montreal, Quebec, Canada. February 2018 © Mohammadhossein Afshin, 2018 CONCORDIA UNIVERSITY SCHOOL OF GRADUATE STUDIES This is to certify that the thesis prepared By: Mohammadhossein Afshin Entitled: Receiver Side Control for Efficient Inductive Power Transfer for Vehicle Recharging and submitted in partial fulfillment of the requirements for the degree of Master of Applied Science Complies with the regulations of this University and meets the accepted standards with respect to originality and quality. Signed by the final examining committee: Chair Dr. D. Qiu Examiner, External Dr. C. Alecsandru To the Program Examiner Dr. M.Z. Kabir Supervisor Dr. A.Rathore Approved by: Dr. W. E. Lynch, Chair Department of Electrical and Computer Engineering 20 Dr. Amir Asif, Dean Faculty of Engineering and Computer Science ABSTRACT This thesis presents a new wireless inductive power transfer topology using half bridge current fed converter and a full bridge active single phase rectifier. Generally, the efficiency of inductive power transfer system is lower than the wired system due to higher power loss in inductive power transfer coils. The proposed converter reduces these limitations and shows more than 4% overall efficiency improvement comparing with such system in battery charging of low-voltage light-load electrical vehicles such as passenger cars, golf carts etc. This is realized by synchronous rectification technique of the vehicle side converter. Simulation results obtained from Matlab Simulink are included to validate the analysis and performance of the proposed converter. A scale-down 250 W lab prototype is developed and experimental results are presented to verify the comparative study results. i I Dedicated to My Grandparents and Their Children. ii AKNOWLEDGEMENT I would like to sincerely thank my supervisor Prof. Akshay Kumar Rathore for his support and guidance in completion of my MASc. studies. The expertise and knowledge that he shared, helped me immensely in my research goals. Also I would like to express my sincere gratitude to Suvendu Samanta as he shared a lot of his knowledge with me during my Masters study. Last but not least, I would like to express my graduate to my amazing office mates, Karin, Luccas, Deepak and Mohammad who made the past year, as one of the best years of my life with their company. I was lucky to be a part of S3.306 research lab and make life time friends with these amazing people. Also I would like to take this opportunity to thank my family, who supported me and trusted me in any step of my life. I would never forget, how much they believed in me and trusted me with decisions I made. I could never ask for a better family to grow up in. iii Table of Contents 1. INTRODUCTION................................................................................................................ 1 1.1 Introduction ...................................................................................................................... 1 1.2 Motivation ........................................................................................................................ 2 1.3 Research Objectives ......................................................................................................... 3 1.4 Contributions .................................................................................................................... 3 1.5 Outline of the Thesis ........................................................................................................ 4 1.6 Concluding Remarks ........................................................................................................ 4 2. LITERATURE REVIEW ................................................................................................... 5 2.1 Wireless Charging Technology ........................................................................................ 5 2.2 Stationary Wireless Charging ........................................................................................... 5 2.2.1 Inductive Power Transfer...................................................................................... 6 2.2.2 Magnetic Resonance Coupling Transfer ............................................................... 7 2.2.3 Permanent Magnet Coupling ................................................................................ 7 2.3 Dynamic/In Motion Wireless Charging ........................................................................... 7 2.4 Wireless Pads ................................................................................................................... 8 2.5 Diode Rectifiers .............................................................................................................. 10 2.6 Active Rectifiers ............................................................................................................. 11 2.7 Matrix Converter ............................................................................................................ 13 2.8 Safety .............................................................................................................................. 13 2.9 Concluding Remarks ...................................................................................................... 14 3. WIRELESS POWER TRANSFER WITH DIODE RECTIFICATION ...................... 15 3.1 Introduction .................................................................................................................... 15 3.2 Fundamental Theory of Wireless Charging ................................................................... 15 3.2.1 Wireless Pads ...................................................................................................... 16 3.2.2 Compensation Network ...................................................................................... 21 3.2.3 Analysis and study approach .............................................................................. 23 iv 3.2.4 Safety Concerns .................................................................................................. 23 3.3 Wireless Power Transfer with Diode Rectification ........................................................ 23 3.3.1 Analysis of Wireless Power Transfer Using a Diode Rectifier .......................... 24 3.3.2 Simulation Results .............................................................................................. 30 3.3.3 Experimental Results .......................................................................................... 35 3.3.3.1 Wireless Pads Implementation......................................................................... 36 3.4 Concluding Remarks.............................................................................................. 39 4. WIRELESS POWER TRANSFER USING AN ACTIVE SINGLE PHASE RECTIFIER ........................................................................................................................... 41 4.1 Introduction .................................................................................................................... 41 4.2 Proposed Wireless IPT Topology with an Active Single Phase Rectifier ..................... 41 4.2.1 Steady State Operation........................................................................................ 42 4.2.2 AC Circuit Analysis ............................................................................................ 44 4.2.3 Equivalent Impedance Calculation ..................................................................... 45 4.3 Simulation Results .......................................................................................................... 48 4.4 Experimental Results ...................................................................................................... 51 4.5 Efficiency Analysis and Comparison with Diode Rectifier ........................................... 54 4.5.1 Conduction Losses of A Power MOSFET .......................................................... 55 4.5.2 Switching Losses of a Power MOSFET ............................................................. 55 4.5.3 Diode Losses ....................................................................................................... 59 4.5.4 Comparison of Diode and MOSFET Conduction Losses ................................... 60 4.5.5 Overall Efficiency Analysis ................................................................................ 61 4.5.6 Other Common Power Losses of an IPT System ............................................... 62 4.6 Concluding remarks ....................................................................................................... 63 5. CONCLUSION and FUTURE WORK ........................................................................... 64 5.1 Contribution and Conclusion ......................................................................................... 64 5.2 Future Work ................................................................................................................... 64 v BIBILIOGRAPHY ................................................................................................................ 66 vi List of Figures