Dynamics and Global Geometry of Manifolds Without Conjugate Points

Total Page:16

File Type:pdf, Size:1020Kb

Dynamics and Global Geometry of Manifolds Without Conjugate Points SOCIEDADE BRASILEIRA DE MATEMÁTICA ENSAIOS MATEMATICOS´ 2007, Volume 12, 1{181 Dynamics and global geometry of manifolds without conjugate points Rafael O. Ruggiero Abstract. Manifolds with no conjugate points are natural generaliza- tions of manifolds with nonpositive sectional curvatures. They have in common the fact that geodesics are global minimizers, a variational prop- erty of geodesics that is quite special. The restriction on the sign of the sectional curvatures of the manifold leads to a deep knowledge about the topology and the global geometry of the manifold, like the characterization of higher rank, nonpositively curved spaces as symmetric spaces. However, if we drop the assumptions concerning the local geometry of the manifold the study of geodesics becomes much harder. The purpose of this survey is to give an overview of the classical theory of manifolds without conju- gate points where no assumptions are made on the sign of the sectional curvatures, since the famous work of Morse about minimizing geodesics of surfaces and the works of Hopf about tori without conjugate points. We shall show important classical and recent applications of many tools of Riemannian geometry, topological dynamics, geometric group theory and topology to study the geodesic flow of manifolds without conjugate points and its connections with the global geometry of the manifold. Such appli- cations roughly show that manifolds without conjugate points are in many respects close to manifolds with nonpositive curvature from the topological point of view. Contents Introduction 7 1 Preliminaries on Riemannian geometry and geodesics 11 1 Riemannian manifolds as metric spaces . 11 2 The Levi-Civita connection . 12 3 The differential equation of geodesics . 13 4 The exponential map, curvature and Jacobi fields . 14 5 The geodesic flow . 17 5.1 Sasaki metric, Jacobi fields and the differential of the geodesic flow . 18 5.2 Transversal symplectic structure of the geodesic flow 20 6 The universal covering . 24 6.1 Homotopy classes . 25 6.2 Covering transformations and fundamental group . 26 6.3 Covering transformations as isometries . 27 2 Dynamical systems and stability 28 1 Limit set and non-wandering set . 28 2 Hyperbolic sets and Anosov dynamics . 30 3 Local product structure, expansiveness and stability . 34 4 The stability conjecture(s) . 45 3 C1 tools to study geometry and dynamics: Jacobi fields, hyperbolicity and global geometry 48 1 Negative curvature and Anosov dynamics . 49 1.1 Rauch's comparison theorem . 49 1.2 Asymptotic Jacobi fields and Riccati equation . 50 1.3 Green subbundles . 53 1.4 Proof of Anosov's theorem and the impact of hyper- bolicity in the global geometry of geodesics . 54 2 Characterization of Anosov geodesic flows in manifolds with- out conjugate points . 55 CONTENTS 2.1 On the divergence of Jacobi fields in manifolds with- out conjugate points . 56 2.2 Quasi-Anosov systems . 58 2.3 Quasi-convexity of Jacobi fields and continuity of Green subbundles . 59 2.4 Hyperbolic behavior of Green subbundles . 60 3 Anosov dynamics and globally minimizing properties of geodesics: hyperbolicity implies the absence of conjugate points . 63 3.1 Conclusions . 65 4 Further applications of the Riccati equation in ergodic theory 66 4 C0 tools to study global geometry of geodesics in the uni- versal covering of manifolds without conjugate points 69 1 Horospheres and Busemann flows in M~ . 70 2 Two-dimensional tori without conjugate points are flat . 75 3 Surfaces without conjugate points of higher genus, quasi- geodesics and quasi-convexity . 77 4 Divergence of geodesic rays and continuity of Hθ(0) with respect to θ . 84 4.1 Asymptoticity and quasi convexity . 84 4.2 Divergence of geodesic rays in surfaces without con- jugate points . 86 4.3 Divergence of geodesic rays in higher dimensions . 89 4.4 The continuity of horospheres . 90 5 Summary of results about the geodesic flow of compact sur- faces without conjugate points . 91 6 Higher dimensional manifolds without conjugate points: Con- vexity and flats in the universal covering . 93 5 Expansive geodesic flows in manifolds without conjugate points: an example of the application of C0 methods to study dynamics and global geometry 95 1 Expansiveness and no conjugate points . 96 2 Expansive geodesic flows without conjugate points in higher dimensions . 97 2.1 Expansiveness implies quasi-convexity and asymp- toticity . 98 2.2 Strong stable and unstable sets . 100 3 Divergence of geodesic rays in M~ . 104 4 Proof of Theorem 5.2 and applications . 104 CONTENTS 6 The fundamental group, global geometry and geometric group theory 108 1 Fundamental group, algebra and geometry . 108 2 Fundamental group in negative curvature, Preissmann's the- orem and Gromov hyperbolic groups . 113 3 Preissmann property implies Gromov hyperbolicity? . 117 4 Expansive dynamics, weak stability and Gromov hyperbolicity120 7 Weak hyperbolicity of the geodesic flow and global hyper- bolic geometry in nonpositive curvature 128 1 Homoclinic geodesics in the two torus and instability . 131 2 The closing lemma for flat planes in analytic manifolds with nonpositive curvature and the proof of the conjecture in this case . 134 3 Sharpening the shadowing result by means of Aubry-Mather theory . 135 8 Weak hyperbolicity of geodesics, global geometry and Poincar´e conjecture 141 1 Homoclinic geodesics in manifolds without conjugate points and variable curvature sign . 143 1.1 A generalization of Hedlund's tunnels . 144 1.2 On finding homoclinic, minimizing geodesics in per- turbed metrics . 146 1.3 Morse homoclinic geodesics and bounded asymptote . 155 2 Bounded asymptote and Preissmann's property . 157 2.1 Shadowing of geodesics and the Preissmann property in bounded asymptote . 158 2.2 Topological stability and Preissmann property . 159 3 Further results in certain manifolds without conjugate points . 160 3.1 Morse homoclinic geodesics in perturbations of met- rics without conjugate points . 161 3.2 On the nonexistence of Morse homoclinic geodesics in manifolds without conjugate points . 162 3.3 Proof of Theorem 8.2 . 164 3.4 Proof of Theorem 8.3 . 165 4 Weak stability and Thurston's geometrization conjecture . 166 4.1 The Poincar´e conjecture . 167 4.2 Thurston's geometrization conjecture . 167 4.3 Applications of the Thurston's geometrization con- jecture to weak stability problems . 169 CONTENTS 5 Further remarks and questions . 173 Bibliography 175 Introduction The theory of manifolds without conjugate points is one of the most chal- lenging research areas in geometry. A complete Riemannian manifold (M; g), where M is a C1 manifold and g is a C1 Riemannian metric in M, has no conjugate points if the exponential map at every point is non-singular. This is equivalent to the fact that every geodesic is glob- ally minimizing in the universal covering M~ endowed with the pullback of the metric g by the covering map. Namely, the distance between any two points in a geodesic in M~ is just the length of the subset of this geodesic bounded by these two points. Hyperbolic space and manifolds of nonposi- tive curvature are well known examples of such manifolds, but the question of knowing if a manifold without conjugate point admits a metric with non- positive curvature is very difficult and open. The absence of conjugate points is on the one hand, a strong condition from the topological point of view; but on the other hand it gives no hints about the local geometry of the manifold. So the usual way in geometry to get the global description of manifolds from local data - like in the theory of manifolds whose sectional curvatures have constant sign - does not pro- ceed in this theory. The geometric theory of manifolds without conjugate points is therefore the result of an exciting interplay between many areas in mathematics, from classical Riemannian geometry and dynamical systems to calculus of variations, classical mechanics and geometric group theory. The purpose of this survey is to give an overview of the main techniques and results about one of the main subjects of the theory: the relationships between the topological dynamics of the geodesic flow, the topology and the global geometry of the manifold. We shall focus on the aspects of the theory which are not part of the theory of manifolds with nonpositive curva- ture, where there are already fairly good, complete surveys and books (see for instance [34], [8], [5], [60]). The theory of manifolds with nonpositive curvature is much richer in results than the theory of manifolds without conjugate points, simply because the convexity of many geometric func- tions and objects determined by the nonpositive curvature is a powerful tool to study global geometry, topology and the dynamics of the geodesic 7 8 Rafael O. Ruggiero flow of the manifold. This is perhaps the reason why the theory of man- ifolds without conjugate points is not so popular: it is much harder and the results are quite often weaker than in the theory of manifolds with nonpositive curvature. The topics presented in the survey could be classified in two main sub- jects: first of all the application of smooth methods or C 1 methods to study the geometry and the dynamics of the geodesic flow in manifolds without conjugate points; and secondly the application of C 0 or variational methods to study geodesics and global geometry in such manifolds. The application of C1 methods concerns of course Jacobi fields and curvature, and such methods allow to study global structures from local data, like in the the- ory of manifolds with nonpositive curvature. We shall illustrate some of these methods, unfortunately we have to choose and many interesting ap- plications won't be considered. The variational or C 0 methods concern the use of the globally minimizing nature of geodesics in the universal covering regardless of the sign of sectional curvatures.
Recommended publications
  • Arxiv:Math/0701389V3 [Math.DG] 11 Apr 2007 Hoesadcnetrsi Hssbet E H Uvyb B by Survey the See Subject
    EXAMPLES OF RIEMANNIAN MANIFOLDS WITH NON-NEGATIVE SECTIONAL CURVATURE WOLFGANG ZILLER Manifolds with non-negative sectional curvature have been of interest since the beginning of global Riemannian geometry, as illustrated by the theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the oldest conjectures in global Riemannian geometry, as for example the Hopf conjecture on S2 S2, also fit into this subject. For non-negatively curved manifolds, there× are a number of obstruction theorems known, see Section 1 below and the survey by Burkhard Wilking in this volume. It is somewhat surprising that the only further obstructions to positive curvature are given by the classical Bonnet-Myers and Synge theorems on the fundamental group. Although there are many examples with non-negative curvature, they all come from two basic constructions, apart from taking products. One is taking an isometric quotient of a compact Lie group equipped with a biinvariant metric and another a gluing procedure due to Cheeger and recently significantly generalized by Grove-Ziller. The latter examples include a rich class of manifolds, and give rise to non-negative curvature on many exotic 7-spheres. On the other hand, known manifolds with positive sectional curvature are very rare, and are all given by quotients of compact Lie groups, and, apart from the classical rank one symmetric spaces, only exist in dimension below 25. Due to this lack of knowledge, it is therefore of importance to discuss and understand known examples and find new ones. In this survey we will concentrate on the description of known examples, although the last section also contains suggestions where to look for new ones.
    [Show full text]
  • Of the American Mathematical Society August 2017 Volume 64, Number 7
    ISSN 0002-9920 (print) ISSN 1088-9477 (online) of the American Mathematical Society August 2017 Volume 64, Number 7 The Mathematics of Gravitational Waves: A Two-Part Feature page 684 The Travel Ban: Affected Mathematicians Tell Their Stories page 678 The Global Math Project: Uplifting Mathematics for All page 712 2015–2016 Doctoral Degrees Conferred page 727 Gravitational waves are produced by black holes spiraling inward (see page 674). American Mathematical Society LEARNING ® MEDIA MATHSCINET ONLINE RESOURCES MATHEMATICS WASHINGTON, DC CONFERENCES MATHEMATICAL INCLUSION REVIEWS STUDENTS MENTORING PROFESSION GRAD PUBLISHING STUDENTS OUTREACH TOOLS EMPLOYMENT MATH VISUALIZATIONS EXCLUSION TEACHING CAREERS MATH STEM ART REVIEWS MEETINGS FUNDING WORKSHOPS BOOKS EDUCATION MATH ADVOCACY NETWORKING DIVERSITY blogs.ams.org Notices of the American Mathematical Society August 2017 FEATURED 684684 718 26 678 Gravitational Waves The Graduate Student The Travel Ban: Affected Introduction Section Mathematicians Tell Their by Christina Sormani Karen E. Smith Interview Stories How the Green Light was Given for by Laure Flapan Gravitational Wave Research by Alexander Diaz-Lopez, Allyn by C. Denson Hill and Paweł Nurowski WHAT IS...a CR Submanifold? Jackson, and Stephen Kennedy by Phillip S. Harrington and Andrew Gravitational Waves and Their Raich Mathematics by Lydia Bieri, David Garfinkle, and Nicolás Yunes This season of the Perseid meteor shower August 12 and the third sighting in June make our cover feature on the discovery of gravitational waves
    [Show full text]
  • A Gauss-Bonnet Theorem for Manifolds with Asymptotically Conical Ends and Manifolds with Conical Singularities
    A Gauss-Bonnet Theorem for Asymptotically Conical Manifolds and Manifolds with Conical Singularities. Thèse N° 9275 Présentée le 25 janvier 2019 à la Faculté des sciences de base Groupe Troyanov Programme doctoral en mathématiques pour l’obtention du grade de Docteur ès Sciences par ADRIEN GIULIANO MARCONE Acceptée sur proposition du jury Prof. K. Hess Bellwald, présidente du jury Prof. M. Troyanov, directeur de thèse Prof. A. Bernig, rapporteur Dr I. Izmestiev, rapporteur Prof. J. Krieger, rapporteur 2019 Remerciements En tout premier lieu je souhaite remercier mon directeur de thèse le professeur Marc Troyanov. Ses conseils avisés tout au long de ces quatre années ainsi que son soutien, tant moral que mathématique, ont été indispensables à la réalisation de ce travail. Cependant, réduire ce qu’il m’a appris au seul domaine scientifique serait inexact et je suis fier de dire qu’il est devenu pour moi aujourd’hui un ami. Secondly I want to express all my gratitude to the members of my committee: 1) the director: Professor K. Hess Bellwald, whom I know since the first day of my studies and who has always been a source of inspiration; 2) the internal expert: Professor J. Krieger, whose courses were among the best I took at EPFL; 3) the external experts: Professor A. Bernig (Goethe-Universität Frankfurt), who accepted to be part of this jury despite a truly busy schedule, and Dr I. Iz- mestiev (Université de Fribourg) who kindly invited me to the Oberseminar in Fribourg; for accepting to review my thesis. Merci au Professeur Dalang qui a eu la générosité de financer la fin de mon doc- torat.
    [Show full text]
  • On Index Expectation Curvature for Manifolds 11
    ON INDEX EXPECTATION CURVATURE FOR MANIFOLDS OLIVER KNILL Abstract. Index expectation curvature K(x) = E[if (x)] on a compact Riemannian 2d- manifold M is an expectation of Poincar´e-Hopfindices if (x) and so satisfies the Gauss-Bonnet R relation M K(x) dV (x) = χ(M). Unlike the Gauss-Bonnet-Chern integrand, these curvatures are in general non-local. We show that for small 2d-manifolds M with boundary embedded in a parallelizable 2d-manifold N of definite sectional curvature sign e, an index expectation K(x) d Q with definite sign e exists. The function K(x) is constructed as a product k Kk(x) of sec- tional index expectation curvature averages E[ik(x)] of a probability space of Morse functions Q f for which if (x) = ik(x), where the ik are independent and so uncorrelated. 1. Introduction 1.1. The Hopf sign conjecture [16, 5, 6] states that a compact Riemannian 2d-manifold M with definite sectional curvature sign e has Euler characteristic χ(M) with sign ed. The problem was stated first explicitly in talks of Hopf given in Switzerland and Germany in 1931 [16]. In the case of non-negative or non-positive curvature, it appeared in [6] and a talk of 1960 [9]. They appear as problems 8) and 10) in Yau's list of problems [25]. As mentioned in [5], earlier work of Hopf already was motivated by these line of questions. The answer is settled positively in the case d = 1 (Gauss-Bonnet) and d = 2 (Milnor), if M is a hypersurface in R2d+1 (Hopf) [15] or in R2d+2 (Weinstein) [23] or in the case of positively sufficiently pinched curvature, because of sphere theorems (Rauch,Klingenberg,Berger) [22, 10] spheres and projective spaces in even dimension have positive Euler characteristic.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Differential Geometry Proceedings of Symposia in Pure Mathematics
    http://dx.doi.org/10.1090/pspum/027.1 DIFFERENTIAL GEOMETRY PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS VOLUME XXVII, PART 1 DIFFERENTIAL GEOMETRY AMERICAN MATHEMATICAL SOCIETY PROVIDENCE, RHODE ISLAND 1975 PROCEEDINGS OF THE SYMPOSIUM IN PURE MATHEMATICS OF THE AMERICAN MATHEMATICAL SOCIETY HELD AT STANFORD UNIVERSITY STANFORD, CALIFORNIA JULY 30-AUGUST 17, 1973 EDITED BY S. S. CHERN and R. OSSERMAN Prepared by the American Mathematical Society with the partial support of National Science Foundation Grant GP-37243 Library of Congress Cataloging in Publication Data Symposium in Pure Mathematics, Stanford University, UE 1973. Differential geometry. (Proceedings of symposia in pure mathematics; v. 27, pt. 1-2) "Final versions of talks given at the AMS Summer Research Institute on Differential Geometry." Includes bibliographies and indexes. 1. Geometry, Differential-Congresses. I. Chern, Shiing-Shen, 1911- II. Osserman, Robert. III. American Mathematical Society. IV. Series. QA641.S88 1973 516'.36 75-6593 ISBN0-8218-0247-X(v. 1) Copyright © 1975 by the American Mathematical Society Printed in the United States of America All rights reserved except those granted to the United States Government. This book may not be reproduced in any form without the permission of the publishers. CONTENTS Preface ix Riemannian Geometry Deformations localement triviales des varietes Riemanniennes 3 By L. BERARD BERGERY, J. P. BOURGUIGNON AND J. LAFONTAINE Some constructions related to H. Hopf's conjecture on product manifolds ... 33 By JEAN PIERRE BOURGUIGNON Connections, holonomy and path space homology 39 By KUO-TSAI CHEN Spin fibrations over manifolds and generalised twistors 53 By A. CRUMEYROLLE Local convex deformations of Ricci and sectional curvature on compact manifolds 69 By PAUL EWING EHRLICH Transgressions, Chern-Simons invariants and the classical groups 72 By JAMES L.
    [Show full text]
  • Triangle and Beyond
    Outline Surfaces Riemmanian Manifolds Complete manifolds New Development Final Remark Triangle and Beyond Xingwang Xu Nanjing University October 10, 2018 Xingwang Xu Geometry, Analysis and Topology 2 Chern-Gaussian-Bonnet formula for Riemannian manifolds 3 Generalization to complete Riemann surfaces 4 Many attempts for higher dimensional complete manifolds 5 My observation 6 Final Remarks Outline Surfaces Riemmanian Manifolds Complete manifolds New Development Final Remark 1 A formula for compact surfaces Xingwang Xu Geometry, Analysis and Topology 3 Generalization to complete Riemann surfaces 4 Many attempts for higher dimensional complete manifolds 5 My observation 6 Final Remarks Outline Surfaces Riemmanian Manifolds Complete manifolds New Development Final Remark 1 A formula for compact surfaces 2 Chern-Gaussian-Bonnet formula for Riemannian manifolds Xingwang Xu Geometry, Analysis and Topology 4 Many attempts for higher dimensional complete manifolds 5 My observation 6 Final Remarks Outline Surfaces Riemmanian Manifolds Complete manifolds New Development Final Remark 1 A formula for compact surfaces 2 Chern-Gaussian-Bonnet formula for Riemannian manifolds 3 Generalization to complete Riemann surfaces Xingwang Xu Geometry, Analysis and Topology 5 My observation 6 Final Remarks Outline Surfaces Riemmanian Manifolds Complete manifolds New Development Final Remark 1 A formula for compact surfaces 2 Chern-Gaussian-Bonnet formula for Riemannian manifolds 3 Generalization to complete Riemann surfaces 4 Many attempts for higher dimensional
    [Show full text]
  • From Betti Numbers to 2-Betti Numbers
    Snapshots of modern mathematics № 1/2020 from Oberwolfach From Betti numbers to `2-Betti numbers Holger Kammeyer • Roman Sauer We provide a leisurely introduction to `2-Betti num- bers, which are topological invariants, by relating them to their much older cousins, Betti numbers. In the end we present an open research problem about `2-Betti numbers. 1 A geometric problem Large parts of mathematics are concerned with symmetries of various objects of interest. In topology, classical objects of interest are surfaces, like the one of a donut, which is also known as a torus and commonly denoted by T. An apparent symmetry consists in the possibility of rotating T by arbitrary angles without changing its appearance as is indicated in the following figure. In fact, if we follow the position of an arbitrary point on the torus while rotating it, we notice that the point travels along a circle. Any point not contained in 1 this circle moves around yet another circle parallel to the first one. All these circles are called the orbits of the rotation action. To say what this means in mathematical terms, let us first recall that the (standard) circle consists of all pairs of real numbers (x, y) such that x2 + y2 = 1. Any point (x, y) on the circle can equally be characterized by an angle α ∈ [0, 2π) in radian, meaning by the length of the arc between the points (0, 1) and (x, y). Now, the key observation is that the circle forms a group, which means that we can “add” two points by adding corresponding angles, forfeiting full turns: for π π 3π 3π π 1 example 2 + 4 = 4 , 2 + π = 2 , π + π = 0, and so forth.
    [Show full text]
  • Examples of Riemannian Manifolds with Non-Negative Sectional Curvature
    EXAMPLES OF RIEMANNIAN MANIFOLDS WITH NON-NEGATIVE SECTIONAL CURVATURE WOLFGANG ZILLER Manifolds with non-negative sectional curvature have been of interest since the beginning of global Riemannian geometry, as illustrated by the theorems of Bonnet-Myers, Synge, and the sphere theorem. Some of the oldest conjectures in global Riemannian geometry, as for example the Hopf conjecture on S2 £ S2, also ¯t into this subject. For non-negatively curved manifolds, there are a number of obstruction theorems known, see Section 1 below and the survey by Burkhard Wilking in this volume. It is somewhat surprising that the only further obstructions to positive curvature are given by the classical Bonnet-Myers and Synge theorems on the fundamental group. Although there are many examples with non-negative curvature, they all come from two basic constructions, apart from taking products. One is taking an isometric quotient of a compact Lie group equipped with a biinvariant metric and another a gluing procedure due to Cheeger and recently signi¯cantly generalized by Grove-Ziller. The latter examples include a rich class of manifolds, and give rise to non-negative curvature on many exotic 7-spheres. On the other hand, known manifolds with positive sectional curvature are very rare, and are all given by quotients of compact Lie groups, and, apart from the classical rank one symmetric spaces, only exist in dimension below 25. Due to this lack of knowledge, it is therefore of importance to discuss and understand known examples and ¯nd new ones. In this survey we will concentrate on the description of known examples, although the last section also contains suggestions where to look for new ones.
    [Show full text]
  • Guido's Book of Conjectures
    GUIDO’S BOOK OF CONJECTURES A GIFT TO GUIDO MISLIN ON THE OCCASION OF HIS RETIREMENT FROM ETHZ JUNE 2006 1 2 GUIDO’S BOOK OF CONJECTURES Edited by Indira Chatterji, with the help of Mike Davis, Henry Glover, Tadeusz Januszkiewicz, Ian Leary and tons of enthusiastic contributors. The contributors were first contacted on May 15th, 2006 and this ver- sion was printed June 16th, 2006. GUIDO’S BOOK OF CONJECTURES 3 Foreword This book containing conjectures is meant to occupy my husband, Guido Mislin, during the long years of his retirement. I view this project with appreciation, since I was wondering how that mission was to be accomplished. In the thirty-five years of our acquaintance, Guido has usually kept busy with his several jobs, our children and occasional, but highly successful projects that he has undertaken around the house. The prospect of a Guido unleashed from the ETH; unfettered by pro- fessional duties of any sort, wandering around the world as a free agent with, in fact, nothing to do, is a prospect that would frighten nations if they knew it was imminent. I find it a little scary myself, so I am in a position to appreciate the existence of this project from the bottom of my heart. Of course, the book is much more than the sum of its parts. It wouldn’t take Guido long to read a single page in a book, but a page containing a conjecture, particularly a good one, might take him years. This would, of course, be a very good thing.
    [Show full text]
  • Mathematical Congress of the Americas
    656 Mathematical Congress of the Americas First Mathematical Congress of the Americas August 5–9, 2013 Guanajuato, México José A. de la Peña J. Alfredo López-Mimbela Miguel Nakamura Jimmy Petean Editors American Mathematical Society Mathematical Congress of the Americas First Mathematical Congress of the Americas August 5–9, 2013 Guanajuato, México José A. de la Peña J. Alfredo López-Mimbela Miguel Nakamura Jimmy Petean Editors 656 Mathematical Congress of the Americas First Mathematical Congress of the Americas August 5–9, 2013 Guanajuato, México José A. de la Peña J. Alfredo López-Mimbela Miguel Nakamura Jimmy Petean Editors American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dennis DeTurck, Managing Editor Michael Loss Kailash Misra Martin J. Strauss 2000 Mathematics Subject Classification. Primary 00-02, 00A05, 00A99, 00B20, 00B25. Library of Congress Cataloging-in-Publication Data Library of Congress Cataloging-in-Publication (CIP) Data has been requested for this volume. Contemporary Mathematics ISSN: 0271-4132 (print); ISSN: 1098-3627 (online) DOI: http://dx.doi.org/10.1090/conm/656 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Permissions to reuse portions of AMS publication content are handled by Copyright Clearance Center’s RightsLink service.
    [Show full text]
  • Pacific Journal of Mathematics Vol. 249 (2011), No. 1
    Pacific Journal of Mathematics Volume 249 No. 1 January 2011 PACIFIC JOURNAL OF MATHEMATICS http://www.pjmath.org Founded in 1951 by E. F. Beckenbach (1906–1982) and F. Wolf (1904–1989) EDITORS V. S. Varadarajan (Managing Editor) Department of Mathematics University of California Los Angeles, CA 90095-1555 pacifi[email protected] Vyjayanthi Chari Darren Long Sorin Popa Department of Mathematics Department of Mathematics Department of Mathematics University of California University of California University of California Riverside, CA 92521-0135 Santa Barbara, CA 93106-3080 Los Angeles, CA 90095-1555 [email protected] [email protected] [email protected] Robert Finn Jiang-Hua Lu Jie Qing Department of Mathematics Department of Mathematics Department of Mathematics Stanford University The University of Hong Kong University of California Stanford, CA 94305-2125 Pokfulam Rd., Hong Kong Santa Cruz, CA 95064 fi[email protected] [email protected] [email protected] Kefeng Liu Alexander Merkurjev Jonathan Rogawski Department of Mathematics Department of Mathematics Department of Mathematics University of California University of California University of California Los Angeles, CA 90095-1555 Los Angeles, CA 90095-1555 Los Angeles, CA 90095-1555 [email protected] [email protected] [email protected] PRODUCTION pacifi[email protected] Silvio Levy, Scientific Editor Matthew Cargo, Senior Production Editor SUPPORTING INSTITUTIONS ACADEMIA SINICA, TAIPEI STANFORD UNIVERSITY UNIV. OF CALIF., SANTA CRUZ CALIFORNIA INST. OF TECHNOLOGY UNIV. OF BRITISH COLUMBIA UNIV. OF MONTANA INST. DE MATEMÁTICA PURA E APLICADA UNIV. OF CALIFORNIA, BERKELEY UNIV. OF OREGON KEIO UNIVERSITY UNIV. OF CALIFORNIA, DAVIS UNIV.
    [Show full text]