bioRxiv preprint doi: https://doi.org/10.1101/578690; this version posted March 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Kindlin-3 Mutation in Mesenchymal Stem Cells Results in Enhanced Chondrogenesis Bethany A. Kerr1,2,3, Lihong Shi2, Alexander H. Jinnah3, Jeffrey S. Willey3,4, Donald P. Lennon5, Arnold I. Caplan5, Tatiana V. Byzova1 1 Department of Molecular Cardiology, Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, 44195 2 Department of Cancer Biology and Comprehensive Cancer Center, Wake Forest School of Medicine, Winston-Salem, NC 27157 3 Department of Orthopaedic Surgery, Wake Forest School of Medicine, Winston-Salem, NC 27157 4 Department of Radiation Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157 5 Skeletal Research Center, Department of Biology, Case Western Reserve University, Cleveland, Ohio, 44106 Running Title: Kindlin-3 regulates chondrogenesis Address correspondence to: Bethany Kerr, Ph.D., Wake Forest School of Medicine, 1 Medical Center Blvd, Winston-Salem, NC, 27157. Telephone: 336-716-0320; Twitter: @BethanyKerrLab; e-mail:
[email protected]; ORCID: 0000-0002-2995-7549 Number of Figures: 7 Number of Tables: 1 bioRxiv preprint doi: https://doi.org/10.1101/578690; this version posted March 15, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.