GeoScienceWorld Lithosphere Volume 2020, Article ID 7282037, 22 pages https://doi.org/10.2113/2020/7282037 Research Article Triassic-Jurassic Granitoids and Pegmatites from Western Kunlun-Pamir Syntax: Implications for the Paleo-Tethys Evolution at the Northern Margin of the Tibetan Plateau 1,2 1 3,4 1 1 Xiao-Qiang Liu , Chuan-Lin Zhang , Haibo Zou, Qian Wang, Xiao-Shu Hao, 5 1 Hai-Xiang Zhao, and Xian-Tao Ye 1College of Oceanography, Hohai University, Nanjing 210098, China 2School of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China 3Department of Geosciences, Auburn University, Auburn, AL 36849, USA 4State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi’an 710069, China 5School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China Correspondence should be addressed to Chuan-Lin Zhang;
[email protected] Received 7 March 2020; Accepted 5 December 2020; Published 31 December 2020 Academic Editor: Alexander R. Simms Copyright © 2020 Xiao-Qiang Liu et al. Exclusive Licensee GeoScienceWorld. Distributed under a Creative Commons Attribution License (CC BY 4.0). The Western Kunlun-Pamir-Karakorum (WKPK) at the northwestern Tibetan Plateau underwent long-term terrane accretion from the Paleozoic to the Cenozoic. Within this time span, four phases of magmatism occurred in WKPK during the Early Paleozoic, Triassic-Jurassic, Early Cretaceous, and Cenozoic. These voluminous magmatic rocks contain critical information on the evolution of the Tethys Oceans. In this contribution, we provide field observations, petrography, ages, whole-rock elemental and Sr-Nd isotopic compositions, and zircon in situ Lu-Hf isotopes of the Triassic-Jurassic granitoids and pegmatites from the Dahongliutan in Western Kunlun and Turuke area at the Pamir Plateau, in an attempt to constrain their petrogenesis and to decipher a more detailed Paleo-Tethys evolution process.