Learning to Program in a Constructionist Way Mattia Monga, Michael Lodi, Dario Malchiodi, Anna Morpurgo, Bernadette Spieler

Total Page:16

File Type:pdf, Size:1020Kb

Learning to Program in a Constructionist Way Mattia Monga, Michael Lodi, Dario Malchiodi, Anna Morpurgo, Bernadette Spieler Learning to program in a constructionist way Mattia Monga, Michael Lodi, Dario Malchiodi, Anna Morpurgo, Bernadette Spieler To cite this version: Mattia Monga, Michael Lodi, Dario Malchiodi, Anna Morpurgo, Bernadette Spieler. Learning to program in a constructionist way. Proceedings of Constructionism 2018, Aug 2018, Vilnius, Lithuania. hal-01913065 HAL Id: hal-01913065 https://hal.inria.fr/hal-01913065 Submitted on 6 Nov 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Learning to program in a constructionist way Constructionism Working Group 6 Michael Lodi∗ Dario Malchiodi Bernadette Spieler Alma Mater Studiorum - Mattia Monga Technische Universität Graz Università di Bologna Anna Morpurgo Austria Italy [email protected] [email protected] [email protected] [email protected] [email protected] Università degli Studi di Milano Italy ABSTRACT skills, as is recognizing how a relatively low number of abstract Although programming is often seen as a key element of construc- patterns can be applied to a potentially infinite spectrum of specific tionist approaches, the research on learning to program through situations.Programming languages and environments can either a constructionist strategy is somewhat limited, mostly focusing help or distract novices, thus the choice is not neutral and their on how to bring the abstract and formal nature of programming characteristics should be analyzed carefully to foster a good learn- languages into “concrete” or even tangible objects, graspable even ing context. The mastery of the notional machine, however, is just by children with limited abstraction power. However, in order to the beginning of the game: to develop a real competence one must enable constructionism in programming several challenges must be be able to think about problems in a way suitable to automatic addressed. One of the crucial difficulties for novice programmers elaboration; to devise, analyse, and compare solutions, being able is to understand the complex relationship between the program to adapt them to unexpected hurdles and needs. Moreover, it is itself (the text of the code) and the actions that take place when important to learn to work productively in a team, in an “organized” the program is run by the interpreter. A good command of the way: agile methods seem based on common philosophical grounds notional machine is a necessary condition to build programming with constructionism. ∗Also with INRIA Focus, Italy. 1 INTRODUCTION Permission to make digital or hard copies of part or all of this work for personal or Educators, generals, dieticians, psychologists, and parents program. Armies, students, classroom use is granted without fee provided that copies are not made or distributed and some societies are programmed. [Alan Perlis] for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. Constructionism [Papert and Harel 1991] is a strategy of educa- For all other uses, contact the owner/author(s). tion which has its roots in Piaget’s constructivist theory of learning Constructionism, August 20–25, 2018, Vilnius, Lithuania © 2018 Copyright held by the owner/author(s). as an active process, in which people actively construct knowledge from their personal experience of the world. In general, students 1 Constructionism, August 20–25, 2018, Vilnius, Lithuania Lodi et al. do not just receive pre-built ideas from teachers: they have to make them up by engaging themselves with problems, projects, and other people (instructors, but also peers). Papert’s constructionism indeed emphasizes the importance of having personally-meaningful goals and “public artifacts” (not necessarily concrete ones: either “a sand castle on the beach or a theory of the universe” [Papert and Harel 1991]) that can be shared and discussed with others interested in the same (learning) enterprise [Resnick 1996]. This is sometimes summarized with the four P-words: Projects, Peers, Passion, Play and this motto indeed inspired successful educational initiatives such as the Scratch programming language [Resnick 2014]. 1.1 Constructionism and programming However, while programming is often seen as a key element of constructionist approaches (starting from Papert’s LOGO, a pro- gramming language designed to enable the learning of geometry), the research on learning to program through a constructionist strat- egy is somewhat limited, mostly focusing on how to bring the Figure 1: Creative learning spiral [Resnick 2017] abstract and formal nature of programming languages into “con- crete” or even tangible objects, graspable even by children with limited abstraction power [Hauswirth et al. 2017; Horn and Jacob (2) the actions that take place when the program is run by the 2007; Resnick et al. 2009]. Notwithstanding this, constructionist interpreter. ideas are floating around mainstream programming practice and We thus need to know the interpreter in order to program, in they are even codified in some software engineering approaches: ag- particular we need to know: ile methods like eXtreme Programming [Beck and Andres 2004], for • the set of basic actions it is able to perform, example, suggest several techniques that can be easily connected • a language it is able to understand, with rules on how to to the constructionist word of advice about discussing, sharing, compose basic actions, and productively collaborating to successfully build knowledge • the relation between syntax and semantics, that is what ac- together [Resnick 1996]; moreover the incremental and iterative tions it will perform given a description, and, conversely, process of creative thinking and learning [Resnick 2007] fits well how to describe a given sequence of actions so that it will with the agile preference to “responding to change over following perform them. a plan” [Beck et al. 2001]. The first aspect, that is the program source code, is explicit, visible. The iterative process described by Resnick in [Resnick 2007] The second one instead, that is the actions that take place when the originated by observing how kindergarteners learn, and is now program is run, is somewhat implicit, hidden in the execution time called "creative learning spiral" (Figure1), that describes MIT’s world, and not so immediate to grasp for novices. Moreover, this view on how to learn creatively [Resnick 2017]. When you learn by aspect is sometimes underestimated by both teachers and learners: creating something (e.g. a computer program) you imagine what teachers, as experts, give it for granted; learners tend to construct you want to do, create a project based on this idea, play with your personal intuitive, not necessarily coherent, ideas of what will creation, share your idea and your creation with others, reflect on happen. the experience and feedback received from others, and all this leads This dichotomy of programming — its static visible code and its you to imagine new ideas, new functionalities, new improvements implicit dynamics — emerges as a critical issue when learning to for your project, or new projects. The process is iterated many program, as shown by studies from different perspectives. To cite a times. few [Sorva 2013]: This spiral describes an iterative process, highly overlapping • Phenomenography studies show how novice programmers with iterative software development cycle (see 5.1). tend to perceive programming as no more than the produc- tion of code, missing to relating instructions in the program 2 WHAT DOES IT MEAN TO LEARN to what happens when the program is executed. PROGRAMMING? • Studies on programming misconceptions point out how most The basic assumption/premise behind programming — i.e., produc- of programming misconceptions have to do with aspects ing a precise description of how to carry out a task or to solve a that are not readily visible in the code but are related to the problem — is that an interpreter, different from the producer of the execution time, both in term of what will happen and of description, can understand it and effectively carry out the task as what will not unless explicitly specified in the code. • described. There are thus two distinct but tightly tied aspects in Threshold concept theory identifies program dynamics asa programming: candidate threshold concept in programming as it has many of the features that characterise threshold concepts; among (1) the program itself (the text of the code), others: it is a troublesome barrier to student understanding, 2 Learning to program in a constructionist way Constructionism, August 20–25, 2018, Vilnius, Lithuania it transforms how the student perceives the subject, it marks • syntax: novices should be introduced first to the logical as- a boundary between programmers and end users. pects of programming and only at a later stage to the syntax; To help novice programmers take into account also the dynamic • a constructivist approach: the construction of knowledge
Recommended publications
  • Little Languages for Little Robots
    Little Languages for Little Robots Matthew C. Jadud Brooke N. Chenoweth Jacob Schleter University of Kent Canterbury Indiana University Gibson High School Canterbury, UK Bloomington Fort Branch, IN [email protected] Bloomington, IN [email protected] ABSTRACT where students learn by building personally meaningful With serendipity as our muse, we have created tools that artifacts in the world. allow students to author languages of their own design for robots of their own construction. In developing a Scheme 2. JACKLL: A NEW LANGUAGE compiler for the LEGO Mindstorm we realized that there In building up to the evolution of Jackll and the philoso- is great educational potential in the design and creation phies its creation embodies, we feel it is appropriate to of new languages for small robotics kits. As a side effect first introduce the LEGO Mindstorm, the target for our of bringing Scheme and the Mindstorm together in a cre- Scheme compiler, and situate Jackll with respect to other ative context, we have begun an exploration of teaching languages intended for beginner programmers. language design that is fundamentally different from the treatment of the subject in traditional literature. 2.1 What is the LEGO Mindstorm? The LEGO Mindstorm Robotics Invention System is a 1. INTRODUCTION commercial product from the LEGO Group that provides Jacob Schleter, a rising senior at Gibson High School, Fort an inexpensive, reconfigurable platform for exploring robotics. Branch, Indiana, took part in the Indiana University Col- It comes standard with two motors, two touch sensors, one lege of Arts and Sciences Summer Research Experience for light sensor, and hundreds of pieces for assembling all sorts six weeks during the summer of 2002.
    [Show full text]
  • How to Design Co-Programs
    JFP, 15 pages, 2021. c Cambridge University Press 2021 1 doi:10.1017/xxxxx EDUCATIONMATTERS How to Design Co-Programs JEREMY GIBBONS Department of Computer Science, University of Oxford e-mail: [email protected] Abstract The observation that program structure follows data structure is a key lesson in introductory pro- gramming: good hints for possible program designs can be found by considering the structure of the data concerned. In particular, this lesson is a core message of the influential textbook “How to Design Programs” by Felleisen, Findler, Flatt, and Krishnamurthi. However, that book discusses using only the structure of input data for guiding program design, typically leading towards structurally recur- sive programs. We argue that novice programmers should also be taught to consider the structure of output data, leading them also towards structurally corecursive programs. 1 Introduction Where do programs come from? This mystery can be an obstacle to novice programmers, who can become overwhelmed by the design choices presented by a blank sheet of paper, or an empty editor window— where does one start? A good place to start, we tell them, is by analyzing the structure of the data that the program is to consume. For example, if the program h is to process a list of values, one may start by analyzing the structure of that list. Either the list is empty ([]), or it is non-empty (a : x) with a head (a) and a tail (x). This provides a candidate program structure: h [ ] = ::: h (a : x) = ::: a ::: x ::: where for the empty list some result must simply be chosen, and for a non-empty list the result depends on the head a and tail x.
    [Show full text]
  • Final Shift for Call/Cc: Direct Implementation of Shift and Reset
    Final Shift for Call/cc: Direct Implementation of Shift and Reset Martin Gasbichler Michael Sperber Universitat¨ Tubingen¨ fgasbichl,[email protected] Abstract JxKρ = λk:(k (ρ x)) 0 0 We present a direct implementation of the shift and reset con- Jλx:MKρ = λk:k (λv:λk :(JMK)(ρ[x 7! v]) k ) trol operators in the Scheme 48 system. The new implementation JE1 E2Kρ = λk:JE1Kρ (λ f :JE2Kρ (λa: f a k) improves upon the traditional technique of simulating shift and reset via call/cc. Typical applications of these operators exhibit Figure 1. Continuation semantics space savings and a significant overall performance gain. Our tech- nique is based upon the popular incremental stack/heap strategy for representing continuations. We present implementation details as well as some benchmark measurements for typical applications. this transformation has a direct counterpart as a semantic specifica- tion of the λ calculus; Figure 1 shows such a semantic specification for the bare λ calculus: each ρ is an environment mapping variables Categories and Subject Descriptors to values, and each k is a continuation—a function from values to values. An abstraction denotes a function from an environment to a D.3.3 [Programming Languages]: Language Constructs and Fea- function accepting an argument and a continuation. tures—Control structures In the context of the semantics, the rule for call/cc is this: General Terms Jcall=cc EKρ = λk:JEKρ (λ f : f (λv:λk0:k v) k) Languages, Performance Call=cc E evaluates E and calls the result f ; it then applies f to an Keywords escape function which discards the continuation k0 passed to it and replaces it by the continuation k of the call=cc expression.
    [Show full text]
  • Proceedings of the 8Th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (Ed.) Sponsors
    Proceedings of the 8th European Lisp Symposium Goldsmiths, University of London, April 20-21, 2015 Julian Padget (ed.) Sponsors We gratefully acknowledge the support given to the 8th European Lisp Symposium by the following sponsors: WWWLISPWORKSCOM i Organization Programme Committee Julian Padget – University of Bath, UK (chair) Giuseppe Attardi — University of Pisa, Italy Sacha Chua — Toronto, Canada Stephen Eglen — University of Cambridge, UK Marc Feeley — University of Montreal, Canada Matthew Flatt — University of Utah, USA Rainer Joswig — Hamburg, Germany Nick Levine — RavenPack, Spain Henry Lieberman — MIT, USA Christian Queinnec — University Pierre et Marie Curie, Paris 6, France Robert Strandh — University of Bordeaux, France Edmund Weitz — University of Applied Sciences, Hamburg, Germany Local Organization Christophe Rhodes – Goldsmiths, University of London, UK (chair) Richard Lewis – Goldsmiths, University of London, UK Shivi Hotwani – Goldsmiths, University of London, UK Didier Verna – EPITA Research and Development Laboratory, France ii Contents Acknowledgments i Messages from the chairs v Invited contributions Quicklisp: On Beyond Beta 2 Zach Beane µKanren: Running the Little Things Backwards 3 Bodil Stokke Escaping the Heap 4 Ahmon Dancy Unwanted Memory Retention 5 Martin Cracauer Peer-reviewed papers Efficient Applicative Programming Environments for Computer Vision Applications 7 Benjamin Seppke and Leonie Dreschler-Fischer Keyboard? How quaint. Visual Dataflow Implemented in Lisp 15 Donald Fisk P2R: Implementation of
    [Show full text]
  • Practical Ruby Projects: Practical Ruby Projects Ideas for the Eclectic Programmer
    CYAN YELLOW MAGENTA BLACK PANTONE 123 C BOOKS FOR PROFESSIONALS BY PROFESSIONALS® THE EXPERT’S VOICE® IN OPEN SOURCE Companion eBook Available Practical Ruby Projects: Projects Ruby Practical Ideas for the Eclectic Programmer Dear Reader, You’ve learned the basics of Ruby, and you’re ready to move on to the next level— trying out advanced techniques, mastering best practices, and exploring Ruby’s full potential. With this book you’ll learn by experience while you tackle an exciting series of varied but always practical programming projects. What is an eclectic programmer, you ask? He or she is an inquisitive thinker Practical who likes to play around with new concepts, a person who is project-oriented and enjoys coding, a person who doesn’t mind some technical depth folded in with creative excursions, and a person who is always looking for fresh ideas. This book is a little different from other computer books. It is meant to be entertaining, exciting, and intellectually challenging. Inside you’ll find a collec- tion of diverse projects, ranging from the creative to the practical, written as a nod to all the great Rubyists I’ve been privileged to know. Each chapter dives into Ruby Projects new topics and approaches meant to exercise your programming muscles. You’ll start by building a cross-platform music environment, progress to drawing animations using scalable vector graphics, and then move on to prac- tical problem solving using simulation. In addition, you’ll implement your own turn-based strategy game and build a Mac-native RubyCocoa interface to it.
    [Show full text]
  • Essentials of Compilation an Incremental Approach
    Essentials of Compilation An Incremental Approach Jeremy G. Siek, Ryan R. Newton Indiana University with contributions from: Carl Factora Andre Kuhlenschmidt Michael M. Vitousek Michael Vollmer Ryan Scott Cameron Swords April 2, 2019 ii This book is dedicated to the programming language wonks at Indiana University. iv Contents 1 Preliminaries 5 1.1 Abstract Syntax Trees and S-expressions . .5 1.2 Grammars . .7 1.3 Pattern Matching . .9 1.4 Recursion . 10 1.5 Interpreters . 12 1.6 Example Compiler: a Partial Evaluator . 14 2 Integers and Variables 17 2.1 The R1 Language . 17 2.2 The x86 Assembly Language . 20 2.3 Planning the trip to x86 via the C0 language . 24 2.3.1 The C0 Intermediate Language . 27 2.3.2 The dialects of x86 . 28 2.4 Uniquify Variables . 28 2.5 Remove Complex Operators and Operands . 30 2.6 Explicate Control . 31 2.7 Uncover Locals . 32 2.8 Select Instructions . 32 2.9 Assign Homes . 33 2.10 Patch Instructions . 34 2.11 Print x86 . 35 3 Register Allocation 37 3.1 Registers and Calling Conventions . 38 3.2 Liveness Analysis . 39 3.3 Building the Interference Graph . 40 3.4 Graph Coloring via Sudoku . 42 3.5 Print x86 and Conventions for Registers . 48 v vi CONTENTS 3.6 Challenge: Move Biasing∗ .................... 48 4 Booleans and Control Flow 53 4.1 The R2 Language . 54 4.2 Type Checking R2 Programs . 55 4.3 Shrink the R2 Language . 58 4.4 XOR, Comparisons, and Control Flow in x86 . 58 4.5 The C1 Intermediate Language .
    [Show full text]
  • A Python Implementation for Racket
    PyonR: A Python Implementation for Racket Pedro Alexandre Henriques Palma Ramos Thesis to obtain the Master of Science Degree in Information Systems and Computer Engineering Supervisor: António Paulo Teles de Menezes Correia Leitão Examination Committee Chairperson: Prof. Dr. José Manuel da Costa Alves Marques Supervisor: Prof. Dr. António Paulo Teles de Menezes Correia Leitão Member of the Committee: Prof. Dr. João Coelho Garcia October 2014 ii Agradecimentos Agradec¸o... Em primeiro lugar ao Prof. Antonio´ Leitao,˜ por me ter dado a oportunidade de participar no projecto Rosetta com esta tese de mestrado, por todos os sabios´ conselhos e pelos momentos de discussao˜ e elucidac¸ao˜ que se proporcionaram ao longo deste trabalho. Aos meus pais excepcionais e a` minha mana preferida, por me terem aturado e suportado ao longo destes quase 23 anos e sobretudo pelo incondicional apoio durante estes 5 anos de formac¸ao˜ superior. Ao pessoal do Grupo de Arquitectura e Computac¸ao˜ (Hugo Correia, Sara Proenc¸a, Francisco Freire, Pedro Alfaiate, Bruno Ferreira, Guilherme Ferreira, Inesˆ Caetano e Carmo Cardoso), por todas as sug- estoes˜ e pelo inestimavel´ feedback em artigos e apresentac¸oes.˜ Aos amigos em Tomar (Rodrigo Carrao,˜ Hugo Matos, Andre´ Marques e Rui Santos) e em Lisboa (Diogo da Silva, Nuno Silva, Pedro Engana, Kaguedes, Clara Paiva e Odemira), por terem estado pre- sentes, duma forma ou doutra, nos essenciais momentos de lazer. A` Fundac¸ao˜ para a Cienciaˆ e Tecnologia (FCT) e ao INESC-ID pelo financiamento e acolhimento atraves´ da atribuic¸ao˜ de uma bolsa de investigac¸ao˜ no ambitoˆ dos contratos Pest-OE/EEI/LA0021/2013 e PTDC/ATP-AQI/5224/2012.
    [Show full text]
  • Efficient Applicative Programming Environments for Computer Vision
    Efficient Applicative Programming Environments for Computer Vision Applications Integration and Use of the VIGRA Library in Racket Benjamin Seppke Leonie Dreschler-Fischer University of Hamburg University of Hamburg Dept. Informatics Dept. Informatics Vogt-Kölln-Str. 30 Vogt-Kölln-Str. 30 22527 Hamburg, Germany 22527 Hamburg, Germany [email protected] [email protected] ABSTRACT 1. INTRODUCTION Modern software development approaches, like agile soft- Although applicative programming languages have a long ware engineering, require adequate tools and languages to tradition, they still do not belong to the scrap heap. In- support the development in a clearly structured way. At stead, they have proven to support state-of-the-art devel- best, they shall provide a steep learning curve as well as opment approaches by means of an interactive development interactive development environments. In the field of com- cycle, genericity and simplicity. The influence of applicative puter vision, there is a major interest for both, general re- programming paradigms is even observable in modern lan- search and education e.g. of undergraduate students. Here, guages, like Python, Dart and Go. However, there are some one often has to choose between understandable but compa- research areas, which are computationally of high costs and rably slow applicative programming languages, like Racket are thus currently less supported by applicative program- and fast but unintuitive imperative languages, like C/C++. ming languages. In this paper we present a system, which combines the best of each approaches with respect to common tasks in com- In this paper, we select the research field of computer vision puter vision, the applicative language Racket and the VI- and show how to connect applicative languages to a generic GRA C++ library.
    [Show full text]
  • Kent Academic Repository Full Text Document (Pdf)
    Kent Academic Repository Full text document (pdf) Citation for published version Chitil, Olaf (2009) Functional Programming. In: Wah, Benjamin W., ed. Encyclopedia of Computer Science and Engineering. John Wiley & Sons, Hoboken, NJ, pp. 1334-1344. ISBN 978-0-471-38393-2. DOI Link to record in KAR https://kar.kent.ac.uk/24064/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html Functional Programming Olaf Chitil University of Kent, United Kingdom Abstract Functional programming is a programming paradigm like object-oriented pro- gramming and logic programming. Functional programming comprises both a spe- cific programming style and a class of programming languages that encourage and support this programming style. Functional programming enables the programmer to describe an algorithm on a high-level, in terms of the problem domain, without having to deal with machine-related details.
    [Show full text]
  • Introduction to the Literature on Programming Language Design Gary T
    Computer Science Technical Reports Computer Science 7-1999 Introduction to the Literature On Programming Language Design Gary T. Leavens Iowa State University Follow this and additional works at: http://lib.dr.iastate.edu/cs_techreports Part of the Programming Languages and Compilers Commons Recommended Citation Leavens, Gary T., "Introduction to the Literature On Programming Language Design" (1999). Computer Science Technical Reports. 59. http://lib.dr.iastate.edu/cs_techreports/59 This Article is brought to you for free and open access by the Computer Science at Iowa State University Digital Repository. It has been accepted for inclusion in Computer Science Technical Reports by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Introduction to the Literature On Programming Language Design Abstract This is an introduction to the literature on programming language design and related topics. It is intended to cite the most important work, and to provide a place for students to start a literature search. Keywords programming languages, semantics, type systems, polymorphism, type theory, data abstraction, functional programming, object-oriented programming, logic programming, declarative programming, parallel and distributed programming languages Disciplines Programming Languages and Compilers This article is available at Iowa State University Digital Repository: http://lib.dr.iastate.edu/cs_techreports/59 Intro duction to the Literature On Programming Language Design Gary T. Leavens TR 93-01c Jan. 1993, revised Jan. 1994, Feb. 1996, and July 1999 Keywords: programming languages, semantics, typ e systems, p olymorphism, typ e theory, data abstrac- tion, functional programming, ob ject-oriented programming, logic programming, declarative programming, parallel and distributed programming languages.
    [Show full text]
  • The Racket Manifesto∗
    The Racket Manifesto∗ Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi Eli Barzilay, Jay McCarthy, Sam Tobin-Hochstadt Abstract The creation of a programming language calls for guiding principles that point the developers to goals. This article spells out the three basic principles behind the 20-year development of Racket. First, programming is about stating and solving problems, and this activity normally takes place in a context with its own language of discourse; good programmers ought to for- mulate this language as a programming language. Hence, Racket is a programming language for creating new programming languages. Second, by following this language-oriented approach to programming, systems become multi-lingual collections of interconnected components. Each language and component must be able to protect its specific invariants. In support, Racket offers protection mechanisms to implement a full language spectrum, from C-level bit manipulation to soundly typed extensions. Third, because Racket considers programming as problem solving in the correct language, Racket also turns extra-linguistic mechanisms into linguistic constructs, especially mechanisms for managing resources and projects. The paper explains these principles and how Racket lives up to them, presents the evaluation framework behind the design process, and concludes with a sketch of Racket’s imperfections and opportunities for future improvements. 1998 ACM Subject Classification D.3.3 Language Constructs and Features Keywords and phrases design
    [Show full text]
  • Matthias Felleisen, Plt, Nuprl the Beginning (1992/95)
    DEVELOPING DEVELOPERS MATTHIAS FELLEISEN, PLT, NUPRL THE BEGINNING (1992/95) C++ SiCP CS I C, AP, high schools Pascal, Ratfor, the “better math” Fortran “computational” physics economics “come alive” THE BEGINNING (1992/95) ‣ Robby Findler Dist Sys Dev ‣ Kathi Fisler Sw Dev ~ just ‣ Matthew Flatt before students ‣ Shriram Krishnamurthi C++ study Sw Eng SiCP C++ ‣ Emmanuel Schanzer CS II: if CS I is about “Scheme”, what roles CS I does CS it serve? C, TeachScheme! Pascal, Ratfor, ‣ Robert Cartwright (Rice) Fortran Program By Design ‣ Robby Findler Bootstrap ‣ Peter Druschel (MPI-SWS) ‣ Mike Ernst (UW) THE BEGINNING (1992/95) Dist Sys Dev Sw Dev ~ just before students C++ study Sw Eng SiCP C++ CS II: if CS I is about “Scheme”, what roles CS I does CS it serve? C, Pascal, Ratfor, Fortran WHERE I AM TODAY TODAY’S WORLD @ NU CCIS: TECHNICAL SKILLS & COMMUNICATION SKILLS Sw Dev CO OP communication technical skills: skills: conversing systematic about code creation of code OOD CS II LiCS CS I TODAY’S WORLD @ NU CCIS: TECHNICAL SKILLS & COMMUNICATION SKILLS pair programming, scale problem panel/peer review, Sw Dev complexity and memos on code size; consolidate 6-month job-like setting, code in CO OP “the real world” pair programming, scale it up in Java, code review logic in interface OOD proving theorems about systematic design, CS II LiCS (functional) code, dual to typed & OOPL (Java) systematic design pair programming, pair programming code review CS I functional pair programming programming for systematic design TODAY’S WORLD @ NU CCIS: TECHNICAL
    [Show full text]