Neanthes Limnicola Class: Polychaeta Order: Phyllodocida a Mussel Worm Family: Nereididae

Total Page:16

File Type:pdf, Size:1020Kb

Neanthes Limnicola Class: Polychaeta Order: Phyllodocida a Mussel Worm Family: Nereididae Phylum: Annelida Neanthes limnicola Class: Polychaeta Order: Phyllodocida A mussel worm Family: Nereididae Taxonomy: Depending on the author, Trunk: Very thick segments that are Neanthes is currently considered a separate wider than they are long, gently tapers or subspecies to the genus Nereis (Hilbig to posterior (Fig. 1). 1997). Nereis sensu stricto differs from the Posterior: Pygidium bears two, genus Neanthes because the latter genus styliform ventrolateral anal cirri that includes species with spinigerous notosetae are as long as last seven segments only. Furthermore, N. limnicola has most (Fig. 1) (Hartman 1938). recently been included in the genus (or Parapodia: The first two setigers are subgenus) Hediste due to the neuropodial uniramous. All other parapodia are biramous setal morphology (Sato 1999; Bakken and (Nereididae, Blake and Ruff 2007) where both Wilson 2005; Tusuji and Sato 2012). notopodia and neuropodia have acicular However, reproduction is markedly different in lobes and each lobe bears 1–3 additional, N. limnicola than other Hediste species (Sato medial and triangular lobes (above and 1999). Thus, synonyms of Neanthes below), called ligules (Blake and Ruff 2007) limnicola include Nereis limnicola (which was (Figs. 1, 5). The notopodial ligule is always synonymized with Neanthes lighti in 1959 smaller than the neuropodial one. The (Smith)), Nereis (Neanthes) limnicola, Nereis parapodial lobes are conical and not leaf-like (Hediste) limnicola and Hediste limnicola. or globular as in the family Phyllodocidae. (A The predominating name in current local parapodium should be removed and viewed intertidal guides (e.g. Blake and Ruff 2007) is at 100x for accurate identification). Neanthes limnicola. Notopodial lobes at posterior end of animal are normal, not elongate, but smaller than Description anterior lobes (Hartman 1938). Size: Individuals 25–45 mm in length, 2.5–4 Setae (chaetae): All setae are composite. mm in width (without parapodia) and have The notopodia (Fig. 5) bears only one kind of 45–82 segments (Hartman 1938). The seta – homogomph spinigers, which are long, illustrated specimen, from Coos Bay, was 25 sharp composite spines with basal prongs of mm long. equal length (Fig. 4a). The neuropodia (Fig. Color: The illustrated specimen was pale, 5) contain several each of three kinds of translucent to pale yellow green. setae – homogomph and heterogomph General Morphology: Very thick worms that spinigers, and heterogomph falcigers (with are rather wide for their length (Fig. 1). basal prongs of unequal length) (Fig. 4a, b, Body: Individuals are flattened dorso- c). They also have heterogorph and ventrally and extremely active. Nereids are homogomph falcigers with blunt, short and recognizable by their anterior appendages curved setae (Fig. 4c) (Fauchald 1977). N. including two prostomial palps and four limnicola has one special fused falciger in the peristomial tentacular cirri upper acicular neuropodium (Figs. 4d, 5) (see Anterior appendages) (Blake and Ruff (Johnson 1903). (Differentiation among these 2007). setae must be made with a compound Anterior: Prostomium trapezoidal, microscope after placing the parapodium in wider than long, with a longitudinal glycerin or mounting medium, on a slide.) depression (Fig. 2b). Acicula or heavy, black spines, are present at the base of each parapodial lobe (Fig. 5). Hiebert, T.C. 2015. Neanthes limnicola. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. A publication of the University of Oregon Libraries and the Oregon Institute of Marine Biology Individual species: http://hdl.handle.net/1794/12671 and full 3rd edition: http://hdl.handle.net/1794/18839 Email corrections to: [email protected] Eyes/Eyespots: Two pairs of eyes in shares with Hediste, but without the fused trapezoidal arrangement on prostomium (Fig. falcigers. Some authors currently place N. 2b) (Nereididae, Hartman 1968; Blake and limnicola in the genus Hediste (Sato 1999; Ruff 2007). The eyes of epitokous individuals Bakken and Wilson 2005; Tusuji and Sato are enlarged (Hilbig 1997). 2012). The genus Neanthes is further Anterior Appendages: One small pair of distinguished by having only conical frontal antennae, which are separated at their paragnaths on both proboscis rings, and bases, occurs on the prostomium (Fig. 2b). biramous parapodia with composite setae Also on the prostomium are a pair of palps, (Hartman and Reish 1950). Neanthes with cylindrical processes and small limnicola is distinct because individuals are hemispherical palpostyles at the distal ends usually pale and translucent, not dark green (Fig. 2b). Four pairs of tentacular cirri are and its posterior parapodial lobes are not found on the peristomium. The second of expanded like those of N. brandti. dorsal pairs longest (Fig. 2b) (Johnson 1903) Neanthes brandti has been at times and the others, including a more ventral pair, considered a subspecies or a synonym of are quite short for a nereid. N. virens, the large (50–50 cm in length), Branchiae: Absent (Blake and Ruff 2007). cold-water form (Breton et al. 2004). This Burrow/Tube: Individuals build thin, pale latter species, however, has only a few brown, loosely constructed tubes in vertical paragnaths on its proboscis rings, (i.e. 2–3 burrows that are Y-shaped and mucus lined rows in Areas VII, VIII), not many as in N. (Smith 1950). Newly hatched young build brandti (4–5 rows in Areas VII, VIII). The protective tubes of sand grains and mucus. prostomium of N. virens is small and Pharynx: The pharynx bears a distinct triangular, its eyes are small and on the eversible proboscis. The everted proboscis posterior half of the prostomium. It has short has two rings, oral (or proximal) and distal (or antennae and massive palps. These maxillary) and terminates with two fang- species exhibit overlapping geographic shaped jaws (Fig. 3). The oral ring is used distributions and it is possible that they are largely in burrowing, while the distal ring is the same species (Breton et al. 2004). used in feeding (Barnes and Head 1977). Neanthes succinea is one of the most Each ring is equipped with many papillae and common nereids in the NE Pacific but is conical paragnaths and their patterns are recognizable from N. brandti by its very taxonomically relevant. In this species Area I enlarged posterior notopodial lobes, with a usually has one tooth; Area II has the largest small distal dorsal cirrus attached at the end teeth and about 12 in a crescent; Area Ill has of the lobe (Blake and Ruff 2007). It has a a broad patch of 20–25; IV has broad heteronereid form and N. limnicola does crescents of 30–35; V usually has no not. N. succinea is thought to be a more paragnaths (Hartman 1938); VI has three southern form (although it has been small points and Areas VII and VllI have two reported from Netarts Bay). continuous rows (Figs. 3a,b). Neanthes species have spinigerous Genitalia: notosetae only (Hilbig 1997). The Nephridia: morphologically similar genus, Nereis sensu stricto, is characterized by species with Possible Misidentifications spinigerous notosetae in the anterior half of The prostomia of nereid worms are quite the body and falcigerous notosetae alike, with four eyes, a pair of frontal posteriorly (Pettibone 1963; Smith 1959). antennae and biarticulate palps, and 3–4 Common Nereis species include the very pairs of tentacular cirri. The genus abundant Nereis vexillosa, an olive green to Neanthes currently, includes 3–4 local brown worm found in many diverse marine species (Blake and Ruff 2007). Neanthes environments, especially in mussel beds. It species have only homogomph spinigerous has greatly elongated, strap-like notopodial setae in the posterior notopodia, a trait it lobes in the posterior parapodia. Nereis Hiebert, T.C. 2015. Neanthes limnicola. In: Oregon Estuarine Invertebrates: Rudys' Illustrated Guide to Common Species, 3rd ed. T.C. Hiebert, B.A. Butler and A.L. Shanks (eds.). University of Oregon Libraries and Oregon Institute of Marine Biology, Charleston, OR. eakini, from rocky habitats, has a long with Nereis vexillosa or Neanthes brandti prostomium and proboscis rings covered (Coos Bay, 1970 unpublished student report). with small round paragnaths. The bright Abundance: Abundant at Coos bay, green Nereis grubei has greatly expanded especially the east side of Coos Bay (L.C. posterior notopodial parapodial lobes and Oglesby, pers. com.). Populations are no paragnaths in Area V of the proboscis. irregularly distributed and tend to occur in Nereis procera is subtidal in sand, has tiny isolation in shallow water in Salinas River, eyes, a very long body, and unusually California (Smith 1950, 1958). inconspicuous paragnaths on its proboscis (Hartman 1968). The genus Nereis differs Life-History Information from Hediste because members of the latter Reproduction: The reproduction and genus has 1–3 fused falcigers on the supra- development of Neanthes limnicola acicular bunch of posterior neuropodial (=Neanthes lighti) was described by Smith setae (no local species are known, Blake (1950). N. limnicola is a unique nereid in that and Ruff 2007). individuals are viviparous, hermaphroditic and self-fertile. Although individuals are self- Ecological Information fertile, genetic evidence suggests that they Range: Type locality is Lake Merced, are capable of outcrossing to maintain genetic California (Johnson 1903). Known range diversity (Fong and Garthwaite 1994). includes Salinas River, California, north to Oocytes are approximately 120–170 µm in Vancouver Island, B.C. (Smith 1958). diameter (Sato 1999; Fernald et a. 1987) and Local Distribution: Coos Bay distribution develop within the adult coelom, by typical includes sites along the South Slough estuary spiral cleavage, until they are 4–8 mm in as well as Coos Bay, Kentuck Inlet and the length (20 setiger stage). Adults have been Coos River mouth. found with larvae within their coelom in July– Habitat: Isolated populations occur in loose August (Washington, Fernald et al.
Recommended publications
  • Annelida, Hesionidae), Described As New Based on Morphometry
    Contributions to Zoology, 86 (2) 181-211 (2017) Another brick in the wall: population dynamics of a symbiotic species of Oxydromus (Annelida, Hesionidae), described as new based on morphometry Daniel Martin1,*, Miguel A. Meca1, João Gil1, Pilar Drake2 & Arne Nygren3 1 Centre d’Estudis Avançats de Blanes (CEAB-CSIC) – Carrer d’Accés a la Cala Sant Francesc 14. 17300 Blanes, Girona, Catalunya, Spain 2 Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Avenida República Saharaui 2, Puerto Real 11519, Cádiz, Spain 3 Sjöfartsmuseet Akvariet, Karl Johansgatan 1-3, 41459, Göteborg, Sweden 1 E-mail: [email protected] Key words: Bivalvia, Cádiz Bay, Hesionidae, Iberian Peninsula, NE Atlantic Oxydromus, symbiosis, Tellinidae urn:lsid:zoobank.org:pub: D97B28C0-4BE9-4C1E-93F8-BD78F994A8D1 Abstract Results ............................................................................................. 186 Oxydromus humesi is an annelid polychaete living as a strict bi- Morphometry ........................................................................... 186 valve endosymbiont (likely parasitic) of Tellina nymphalis in Population size-structure ..................................................... 190 Congolese mangrove swamps and of Scrobicularia plana and Infestation characteristics .................................................... 190 Macomopsis pellucida in Iberian saltmarshes. The Congolese Discussion ....................................................................................... 193 and Iberian polychaete populations were previously
    [Show full text]
  • Blue Mussels (Mytilus Edulis Spp.) As Sentinel Organisms in Coastal Pollution Monitoring: a Review
    Accepted Manuscript Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review Jonny Beyer, Norman W. Green, Steven Brooks, Ian J. Allan, Anders Ruus, Tânia Gomes, Inger Lise N. Bråte, Merete Schøyen PII: S0141-1136(17)30266-0 DOI: 10.1016/j.marenvres.2017.07.024 Reference: MERE 4356 To appear in: Marine Environmental Research Received Date: 20 April 2017 Revised Date: 28 July 2017 Accepted Date: 31 July 2017 Please cite this article as: Beyer, J., Green, N.W., Brooks, S., Allan, I.J., Ruus, A., Gomes, Tâ., Bråte, I.L.N., Schøyen, M., Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution monitoring: A review, Marine Environmental Research (2017), doi: 10.1016/j.marenvres.2017.07.024. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Blue mussels (Mytilus edulis spp.) as sentinel organisms in coastal pollution 2 monitoring: A review 3 Jonny Beyer a,*, Norman W. Green a, Steven Brooks a, Ian J. Allan a, Anders Ruus a,b , Tânia Gomes a, 4 Inger Lise N. Bråte a, Merete Schøyen a 5 a Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway 6 b University of Oslo, Department of Biosciences, NO-0316 Oslo, Norway 7 *Corresponding author: Norwegian Institute for Water Research (NIVA), Gaustadallèen 21, NO-0349 OSLO, 8 Norway.
    [Show full text]
  • The Marine Life Information Network® for Britain and Ireland (Marlin)
    The Marine Life Information Network® for Britain and Ireland (MarLIN) Description, temporal variation, sensitivity and monitoring of important marine biotopes in Wales. Volume 1. Background to biotope research. Report to Cyngor Cefn Gwlad Cymru / Countryside Council for Wales Contract no. FC 73-023-255G Dr Harvey Tyler-Walters, Charlotte Marshall, & Dr Keith Hiscock With contributions from: Georgina Budd, Jacqueline Hill, Will Rayment and Angus Jackson DRAFT / FINAL REPORT January 2005 Reference: Tyler-Walters, H., Marshall, C., Hiscock, K., Hill, J.M., Budd, G.C., Rayment, W.J. & Jackson, A., 2005. Description, temporal variation, sensitivity and monitoring of important marine biotopes in Wales. Report to Cyngor Cefn Gwlad Cymru / Countryside Council for Wales from the Marine Life Information Network (MarLIN). Marine Biological Association of the UK, Plymouth. [CCW Contract no. FC 73-023-255G] Description, sensitivity and monitoring of important Welsh biotopes Background 2 Description, sensitivity and monitoring of important Welsh biotopes Background The Marine Life Information Network® for Britain and Ireland (MarLIN) Description, temporal variation, sensitivity and monitoring of important marine biotopes in Wales. Contents Executive summary ............................................................................................................................................5 Crynodeb gweithredol ........................................................................................................................................6
    [Show full text]
  • Download Full Article 2.4MB .Pdf File
    Memoirs of Museum Victoria 71: 217–236 (2014) Published December 2014 ISSN 1447-2546 (Print) 1447-2554 (On-line) http://museumvictoria.com.au/about/books-and-journals/journals/memoirs-of-museum-victoria/ Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars EIVIND OUG1,* (http://zoobank.org/urn:lsid:zoobank.org:author:EF42540F-7A9E-486F-96B7-FCE9F94DC54A), TORKILD BAKKEN2 (http://zoobank.org/urn:lsid:zoobank.org:author:FA79392C-048E-4421-BFF8-71A7D58A54C7) AND JON ANDERS KONGSRUD3 (http://zoobank.org/urn:lsid:zoobank.org:author:4AF3F49E-9406-4387-B282-73FA5982029E) 1 Norwegian Institute for Water Research, Region South, Jon Lilletuns vei 3, NO-4879 Grimstad, Norway ([email protected]) 2 Norwegian University of Science and Technology, University Museum, NO-7491 Trondheim, Norway ([email protected]) 3 University Museum of Bergen, University of Bergen, PO Box 7800, NO-5020 Bergen, Norway ([email protected]) * To whom correspondence and reprint requests should be addressed. E-mail: [email protected] Abstract Oug, E., Bakken, T. and Kongsrud, J.A. 2014. Original specimens and type localities of early described polychaete species (Annelida) from Norway, with particular attention to species described by O.F. Müller and M. Sars. Memoirs of Museum Victoria 71: 217–236. Early descriptions of species from Norwegian waters are reviewed, with a focus on the basic requirements for re- assessing their characteristics, in particular, by clarifying the status of the original material and locating sampling sites. A large number of polychaete species from the North Atlantic were described in the early period of zoological studies in the 18th and 19th centuries.
    [Show full text]
  • Neanthes Limnicola Class: Polychaeta, Errantia
    Phylum: Annelida Neanthes limnicola Class: Polychaeta, Errantia Order: Phyllodocida, Nereidiformia A mussel worm Family: Nereididae, Nereidinae Taxonomy: Depending on the author, Ne- wider than long, with a longitudinal depression anthes is currently considered a separate or (Fig. 2b). subspecies to the genus Nereis (Hilbig Trunk: Very thick segments that are 1997). Nereis sensu stricto differs from the wider than they are long, gently tapers to pos- genus Neanthes because the latter genus terior (Fig. 1). includes species with spinigerous notosetae Posterior: Pygidium bears two, styli- only. Furthermore, N. limnicola has most form ventrolateral anal cirri that are as long as recently been included in the genus (or sub- last seven segments (Fig. 1) (Hartman 1938). genus) Hediste due to the neuropodial setal Parapodia: The first two setigers are unira- morphology (Sato 1999; Bakken and Wilson mous. All other parapodia are biramous 2005; Tusuji and Sato 2012). However, re- (Nereididae, Blake and Ruff 2007) where both production is markedly different in N. limni- notopodia and neuropodia have acicular lobes cola than other Hediste species (Sato 1999). and each lobe bears 1–3 additional, medial Thus, synonyms of Neanthes limnicola in- and triangular lobes (above and below), called clude Nereis limnicola (which was synony- ligules (Blake and Ruff 2007) (Figs. 1, 5). The mized with Neanthes lighti in 1959 (Smith)), notopodial ligule is always smaller than the Nereis (Neanthes) limnicola, Nereis neuropodial one. The parapodial lobes are (Hediste) limnicola and Hediste limnicola. conical and not leaf-like or globular as in the The predominating name in current local in- family Phyllodocidae. (A parapodium should tertidal guides (e.g.
    [Show full text]
  • OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
    OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber .........................................................................
    [Show full text]
  • A New Cryptic Species of Neanthes (Annelida: Phyllodocida: Nereididae)
    RAFFLES BULLETIN OF ZOOLOGY 2015 RAFFLES BULLETIN OF ZOOLOGY Supplement No. 31: 75–95 Date of publication: 10 July 2015 http://zoobank.org/urn:lsid:zoobank.org:pub:A039A3A6-C05B-4F36-8D7F-D295FA236C6B A new cryptic species of Neanthes (Annelida: Phyllodocida: Nereididae) from Singapore confused with Neanthes glandicincta Southern, 1921 and Ceratonereis (Composetia) burmensis (Monro, 1937) Yen-Ling Lee1* & Christopher J. Glasby2 Abstract. A new cryptic species of Neanthes (Nereididae), N. wilsonchani, new species, is described from intertidal mudflats of eastern Singapore. The new species was confused with both Ceratonereis (Composetia) burmensis (Monro, 1937) and Neanthes glandicincta Southern, 1921, which were found to be conspecific with the latter name having priority. Neanthes glandicincta is newly recorded from Singapore, its reproductive forms (epitokes) are redescribed, and Singapore specimens are compared with topotype material from India. The new species can be distinguished from N. glandicincta by slight body colour differences and by having fewer pharyngeal paragnaths in Areas II (4–8 vs 7–21), III (11–28 vs 30–63) and IV (1–9 vs 7–20), and in the total number of paragnaths for all Areas (16–41 vs 70–113). No significant differences were found in the morphology of the epitokes between the two species. The two species have largely non-overlapping distributions in Singapore; the new species is restricted to Pleistocene coastal alluvium in eastern Singapore, while N. glandicinta occurs in western Singapore as well as in Malaysia and westward to India. Key words. polychaete, new species, taxonomy, ragworm INTRODUCTION Both species are atypical members of their respective nominative genera: N.
    [Show full text]
  • Family Nereididae Marine Sediment Monitoring
    Family Nereididae Marine Sediment Monitoring Puget Sound Polychaetes: Nereididae Family Nereididae Family-level characters (from Hilbig, 1994) Prostomium piriform (pear-shaped) or rounded, bearing 2 antennae, two biarticulate palps, and 2 pairs of eyes. Eversible pharynx with 2 sections, the proximal oral ring and the distal maxillary ring which possesses 2 fang-shaped, often serrated terminal jaws; both the oral and maxillary rings may bear groups of papillae or hardened paragnaths of various sizes, numbers, and distribution patterns. Peristomium without parapodia, with 4 pairs of tentacular cirri. Parapodia uniramous in the first 2 setigers and biramous thereafter; parapodia possess several ligules (strap-like lobes) and both a dorsal cirrus and ventral cirrus. Shape, size, location of ligules is distinctive. They are more developed posteriorly, so often need to see ones from median to posterior setigers. Setae generally compound in both noto- and neuropodia; some genera have simple falcigers (blunt-tipped setae)(e.g., Hediste and Platynereis); completely lacking simple capillary setae. Genus and species-level characters The kind and the distribution of the setae distinguish the genera and species. The number and distribution of paragnaths on the pharynx. Unique terminology for this family Setae (see Hilbig, 1994, page 294, for pictures of setae) o Homogomph – two prongs of even length where the two articles of the compound setae connect. o Heterogomph – two prongs of uneven length where the two articles of the compound setae connect. o Spinigers - long articles in the compound setae. o Falcigers – short articles in the compound setae. o So, there can be homogomph falcigers and homogomph spinigers, and heterogomph falcigers and heterogomph spinigers.
    [Show full text]
  • Download and Streaming), and Products (Analytics and Indexes)
    BOOK OF ABSTRACTS 53RD EUROPEAN MARINE BIOLOGY SYMPOSIUM OOSTENDE, BELGIUM 17-21 SEPTEMBER 2018 This publication should be quoted as follows: Mees, J.; Seys, J. (Eds.) (2018). Book of abstracts – 53rd European Marine Biology Symposium. Oostende, Belgium, 17-21 September 2018. VLIZ Special Publication, 82. Vlaams Instituut voor de Zee - Flanders Marine Institute (VLIZ): Oostende. 199 pp. Vlaams Instituut voor de Zee (VLIZ) – Flanders Marine Institute InnovOcean site, Wandelaarkaai 7, 8400 Oostende, Belgium Tel. +32-(0)59-34 21 30 – Fax +32-(0)59-34 21 31 E-mail: [email protected] – Website: http://www.vliz.be The abstracts in this book are published on the basis of the information submitted by the respective authors. The publisher and editors cannot be held responsible for errors or any consequences arising from the use of information contained in this book of abstracts. Reproduction is authorized, provided that appropriate mention is made of the source. ISSN 1377-0950 Table of Contents Keynote presentations Engelhard Georg - Science from a historical perspective: 175 years of change in the North Sea ............ 11 Pirlet Ruth - The history of marine science in Belgium ............................................................................... 12 Lindeboom Han - Title of the keynote presentation ................................................................................... 13 Obst Matthias - Title of the keynote presentation ...................................................................................... 14 Delaney Jane - Title
    [Show full text]
  • Biodiversity Action Plan
    CORRIB DEVELOPMENT BIODIVERSITY ACTION PLAN 2014-2019 Front Cover Images: Sruwaddacon Bay Evening Lady’s Bedstraw at Glengad Green-veined White Butterfly near Leenamore Common Dolphin Vegetation survey at Glengad CORRIB DEVELOPMENT BIODIVERSITY ACTION PLAN 1 Leenamore Inlet CORRIB DEVELOPMENT 2 BIODIVERSITY ACTION PLAN LIST OF CONTENTS 2.4 DATABASE OF BIODIVERSITY 39 3 THE BIODIVERSITY A CKNOWLEDGEMENTS 4 ACTION PLAN 41 FOREWORd 5 3.1 ESTABLISHING PRIORITIES FOR CONSERVATION 41 EXECUTIVE SUMMARY 6 3.1.1 HABITATS 41 1 INTRODUCTION 8 3.1.2 SPECIES 41 1.1 BIODIVERSITY 8 3.2 AIMS 41 1.1.1 WHAT is biodiversity? 8 3.3 OBJECTIVES AND acTIONS 42 1.1.2 WHY is biodiversity important? 8 3.4 MONITORING, EVALUATION 1.2 INTERNATIONAL AND NATIONAL CONTEXT 9 AND IMPROVEMENT 42 1.2.1 CONVENTION on BIODIVERSITY 9 3.4.1 MONITORING 42 1.2.2 NATIONAL and local implementation 9 3.4.2 EVALUATION and improvement 43 1.2.3 WHY A biodiversity action plan? 10 TABLE 5 SUMMARY of obJECTIVES and actions for THE conservation of habitats and species 43 3.4.3 Reporting, commUNICATING and 2 THE CORRIB DEVELOPMENT VERIFICATION 44 AND BIODIVERSITY 11 3.4.3.1 ACTIONS 44 2.1 AN OVERVIEW OF THE CORRIB 3.4.3.2 COMMUNICATION 44 DEVELOPMENT 11 3.5 STAKEHOLDER ENGAGEMENT AND FIG 1 LOCATION map 11 PARTNERSHIPS FOR BIODIVERSITY 44 FIG 2 Schematic CORRIB DEVELOPMENT 12 3.5.1 S TAKEHOLDER engagement and CONSULTATION 44 2.2 DESIGNATED CONSERVATION SITES AND THE CORRIB GaS DEVELOPMENT 13 3.5.2 PARTNERSHIPS for biodiversity 44 3.5.3 COMMUNITY staKEHOLDER engagement 45 2.2.1 DESIGNATED
    [Show full text]
  • Christina Pavloudi Biologist Scientific Assistant
    Christina Pavloudi Biologist Scientific assistant Contact address University of the Aegean Department of Marine Sciences University Hill Mytilene 81100, Greece Tel: Fax: e-mail: [email protected] Education 2017: PhD on Marine Sciences, University of Ghent, University of Bremen, Hellenic Centre for Marine Research (MARES Joint Doctoral Programme on Marine Ecosystem Health & Conservation) Thesis title: Microbial community functioning at hypoxic sediments revealed by targeted metagenomics and RNA stable isotope probing 2012: MSc on Environmental Biology – Management of Terrestrial and Marine Resources, University of Crete, Hellenic Centre for Marine Research, Natural History Museum of Crete Thesis title: Comparative analysis of geochemical variables, macrofaunal and microbial communities in lagoonal ecosystems 2009: BSc on Biology, Aristotle University of Thessaloniki Thesis title: Comparative study of the organismic assemblages associated with the demosponge Sarcotragus foetidus Schmidt, 1862 in the coasts of Cyprus and Greece Professional Scientific Experience 2018-present: Scientific assistant at the Department of Marine Sciences, University of the Aegean 2017-present: Post-Doc Researcher (RECONNECT project), Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece 2016-2017: Research assistant (JERICO-NEXT project), Institute of Marine Biology, Biotechnology and Aquaculture, Hellenic Centre for Marine Research, Greece 2013-2015: Research assistant (LifeWatchGreece project), Institute
    [Show full text]
  • Length–Weight Relationships of 216 North Sea Benthic Invertebrates
    Journal o f the Marine Biological Association o f the United 2010, Kingdom, 90(1), 95-104. © Marine Biological Association of the United Kingdom, 2010 doi:io.ioi7/Soo25 315409991408 Length-weight relationships of 216 North Sea benthic invertebrates and fish L.A. ROBINSON1, S.P.R. GREENSTREET2, H. REISS3, R. CALLAWAY4, J. CRAEYMEERSCH5, I. DE BOOIS5, S. DEGRAER6, S. EHRICH7, H.M. FRASER2, A. GOFFIN6, I. KRÖNCKE3, L. LINDAL JORGENSON8, M.R. ROBERTSON2 AND J. LANCASTER4 School of Biological Sciences, Ecosystem Dynamics Group, University of Liverpool, Liverpool, L69 7ZB, UK, fish eries Research Services, Marine Laboratory, PO Box 101, Aberdeen, AB11 9DB, UK, 3Senckenberg Institute, Department of Marine Science, Südstrand 40,26382 Wilhelmshaven, Germany, 4University of Wales, Swansea, Singleton Park, Swansea, SA2 8PP, UK, Netherlands Institute for Fisheries Research (IMARES), PO Box 77, 4400 AB Yerseke, The Netherlands, sGhent University, Department of Biology, Marine Biology Section, K.L. Ledeganckstraat 35, B 9000, Gent, Belgium, 7Federal Research Institute for Rural Areas, Forestry and Fisheries, Institute of Sea Fisheries, Palmaille 9, 22767 Hamburg, Germany, institute of Marine Research, Box 1870, 5817 Bergen, Norway Size-based analyses of marine animals are increasingly used to improve understanding of community structure and function. However, the resources required to record individual body weights for benthic animals, where the number of individuals can reach several thousand in a square metre, are often prohibitive. Here we present morphometric (length-weight) relationships for 216 benthic species from the North Sea to permit weight estimation from length measurements. These relationships were calculated using data collected over two years from 283 stations.
    [Show full text]