A Review of Archaeological Dating Efforts at Cave and Rockshelter Sites in the Indonesian Archipelago

Total Page:16

File Type:pdf, Size:1020Kb

A Review of Archaeological Dating Efforts at Cave and Rockshelter Sites in the Indonesian Archipelago A REVIEW OF ARCHAEOLOGICAL DATING EFFORTS AT CAVE AND ROCKSHELTER SITES IN THE INDONESIAN ARCHIPELAGO Hendri A. F. Kaharudin1,2, Alifah3, Lazuardi Ramadhan4 and Shimona Kealy2,5 1School of Archaeology and Anthropology, College of Arts and Social Sciences, The Australian National University, Canberra, ACT, 2600, Australia 2Archaeology and Natural History Department, College of Asia and the Pacific, Australian National University, Canberra, ACT, 2600 Australia 3Balai Arkeologi Yogyakarta, JL. Gedongkuning No. 174, Yogyakarta, Indonesia 4Departemen Arkeologi, Fakultas Ilmu Budaya, Universitas Gadjah Mada, Yogyakarta, 55281 Indonesia 5ARC Centre of Excellence for Australian Biodiversity and Heritage, College of Asia and the Pacific, Australian National University, Canberra, ACT, 2600 Australia Corresponding author: Hendri A. F. Kaharudin, [email protected] Keywords: initial occupation, Homo sapiens, Island Southeast Asia, Wallacea, absolute dating ABSTRACT ABSTRAK In the last 35 years Indonesia has seen a sub- Sejak 35 tahun terakhir, Indonesia mengalami stantial increase in the number of dated, cave peningkatan dalam usaha pertanggalan situs and rockshelter sites, from 10 to 99. Here we gua dan ceruk dari 10 ke 99. Di sini, kami review the published records of cave and meninjau ulang data gua dan ceruk yang telah rockshelter sites across the country to compile a dipublikasikan untuk menghimpun daftar yang complete list of dates for initial occupation at lengkap terkait jejak hunian tertua di setiap si- each site. All radiocarbon dates are calibrated tus. Kami melakukan kalibrasi terhadap setiap here for standardization, many of them for the pertanggalan radiocarbon sebagai bentuk first time in publication. Our results indicate a standardisasi. Beberapa di antaranya belum clear disparity in the distribution of dated ar- pernah dilakukan kalibrasi sebelumnya. chaeological sites across Indonesia, which seem Temuan kami mengindikasikan disparitas yang to be mostly influenced by ease of access, inter- jelas pada distribusi situs yang telah national collaboration focus, and the history of dipertanggali di seluruh Indonesia, yang prior research success in a region. In addition, sebagian besar kemungkinan dipengaruhi oleh our review of the literature revealed a clear kemudahan akses, fokus kolaborasi lack of standardization in the presentation of internasional, dan kesuksesan penelitian radiocarbon dates and their usage in publica- sebelumnya di area yang bersangkutan. Sebagai tions. Despite the impressive increase in dating tambahan, tinjauan pustaka kami menemukan across Indonesia, our review of the literature kurangnya standardisasi dalam suggests numerous excavated prehistoric sites mempresentasikan dan cara menggunakan data in Indonesia remain undated at this time. Stud- pertanggalan dalam publikasi. Meski terdapat ies such as this, and possible others focused on peningkatan yang sangat mengesankan dalam Indonesia’s other archaeological sites, are use- jumlah pertanggalan di Indonesia, masih ful for providing researchers with a dataset for banyak situs yang sudah diekskavasi namun investigations of some of the bigger questions in belum dipertanggali hingga saat ini. Studi archaeology in the region. seperti ini, dan beberapa yang lebih berfokus pada situs-situs arkeologi di Indonesia lainnya, sangat bermanfaat untuk menyediakan data yang lengkap demi menjawab pertanyaan yang lebih besar. JOURNAL OF INDO-PACIFIC ARCHAEOLOGY 44(2020):80–112 INTRODUCTION each site can potentially be accumulated to help Archaeology has benefited enormously from the answer larger, more generalized archaeological development of scientific dating methods. Most questions such as migration, trade, cultural dis- modern societies see time as a scale unit to tribution, and regional occupation trends. For measure events and determine their order, dura- instance, dating records in relation with pa- tion, and/or interval. In archaeology however, leoenvironmental or paleogeographical data al- time is most often used as a tool to conceptual- low us to estimate the type of landscapes which ize the development of human communities, Homo sapiens encountered as they migrated cultures, and technologies, based on their arti- from mainland East Asia into Sunda (continen- facts, unearthed remains, ruins, and other ar- tal Southeast Asia; Bird et al. 2005), or from chaeological data (Simonetti 2013). Archaeo- Sunda to Sahul (Australia-New Guinea; Kealy logical interpretation is very dependent on the et al. 2016). In terms of artifactual analysis, dat- context of the material data. Having the answer ing records allow us to see cultural and techno- for ‘what’ and ‘where’ is not enough to continue logical distribution among sites during the same to ‘how’ and ‘why’ questions without having period, and the possibility of trading activities the answer of ‘when’ already understood. With (Reepmeyer et al. 2019; Shipton et al. 2020a). knowledge of the temporal context related to An effort to make a list of absolute dating re- select archaeological data, we are able to meas- cords (i.e., radiocarbon) in Indonesia was made ure their lifespan and form inferences on the by Bronson and Glover in 1984. Thirty-five story behind it. For instance, an artifact has its years after the method was developed, they suc- own lifespan beginning from when it is being cessfully gathered 65 radiocarbon records from made, then transported, marketed, used, and fi- sites all over Indonesia. Even then this number nally discarded (Adams 2003). of dated sites was considered very few com- Two different dating methods are used by ar- pared to other countries. As they stated: “… chaeologists, both of which have been devel- [the] single site of Ban Chiang in north-east oped to serve the same purpose; providing the Thailand has more radiocarbon dates than the best temporal explanation about the archaeo- whole of Indonesia.” (Bronson and Glover logical materials in question. The earliest 1984:37). More than three decades after that method available to archaeologists was ‘rela- paper was published, the numbers of archaeo- tive’ dating, whereby the age of an object is in- logical sites, and sites for which there are corre- ferred based on its association with other mate- sponding dates, have increased substantially rials in a sequence from oldest to youngest; across Indonesia. However, large regions of the hence it is dated as older or younger relative to country remain largely unexplored by archae- the other material. Absolute dating on the other ologists and many sites have very limited or no hand refers to the direct, actual age of the object absolute dates (Mansyur 2007; Prasetyo 2014; in question in a quantitative rather than qualita- Kealy et al. 2018a). More recent attempts in tive manner (Michels 1972; Walker 2005). cataloguing archaeological dating records in In- Modern relative dating techniques rely heavily donesia have tended to focus on just a single on data obtained with absolute dating methods. island and/or temporal period, such as the list Absolute dating techniques have been ap- made by Bulbeck (2018) on Holocene sites in plied in archaeological research all over the Sulawesi. He compiled 73 known sites in Su- world in various degrees. Dating records in pre- lawesi with compatible radiometric determina- historic sites have a practical application to es- tions. By using the dating records, he was able tablish the period of occupation, changes in oc- to analyze the level of site use at 500 year inter- cupation intensity or site abandonment, changes vals (Bulbeck 2018). to subsistence strategies (technological and die- Here, we review published archaeological tary), and to mark the deposition of important dates from Indonesia, focusing on the dating discoveries such as a burial layer or unique arti- records of initial occupation by Homo sapiens fact. Furthermore, partial dating records from of cave and rockshelter sites. We focus on cave- 81 sand rockshelters not only because they repre- zontal deposition of sedimentary layers through sent a reliable source of shelter for prehistoric gravity; the Principle of Lateral Continuity, communities, but they also have a good chance which describes original sedimentary beds as for preserving archaeological materials. While continuous layers that extend laterally in all di- cave stratigraphies are often complex (see Suti- rections; and lastly, the Principle of Cross- kna et al. 2016; O’Connor et al. 2017), over- cutting Relationships, which states that a sedi- hangs and chambers offer greater protection to mentary feature which cuts across another must archaeological deposits, and enable a greater be younger than the sediment it cuts across degree of sediment build-up and maintenance of (Kravitz 2014). All four of these laws of strati- stratigraphic layers, than do open sites. Simi- graphy have been adapted to interpret strati- larly, dating of burial and shell midden sites of- graphic sequences in archaeology. ten only captures a brief moment in time and is In the early 1950s, the radiocarbon revolution at even greater risk of stratigraphic disturbances brought a new wave of dating methods into ar- or redeposited materials than most cave sites chaeology. Absolute (also known as chrono- (Attenbrow 1992; Bedford et al. 2011). This metric) quantitative measurement is now the ‘time capsule’ capacity makes cave and rock- favored method to estimate the age of archaeo- shelter sites ideal for prehistoric archaeological logical data. The moment Arnold
Recommended publications
  • Fall 2017 Vol
    International Bear News Tri-Annual Newsletter of the International Association for Bear Research and Management (IBA) and the IUCN/SSC Bear Specialist Group Fall 2017 Vol. 26 no. 3 Sun bear. (Photo: Free the Bears) Read about the first Sun Bear Symposium that took place in Malaysia on pages 34-35. IBA website: www.bearbiology.org Table of Contents INTERNATIONAL BEAR NEWS 3 International Bear News, ISSN #1064-1564 MANAGER’S CORNER IBA PRESIDENT/IUCN BSG CO-CHAIRS 4 President’s Column 29 A Discussion of Black Bear Management 5 The World’s Least Known Bear Species Gets 30 People are Building a Better Bear Trap its Day in the Sun 33 Florida Provides over $1 million in Incentive 7 Do You Have a Paper on Sun Bears in Your Grants to Reduce Human-Bear Conflicts Head? WORKSHOP REPORTS IBA GRANTS PROGRAM NEWS 34 Shining a Light on Sun Bears 8 Learning About Bears - An Experience and Exchange Opportunity in Sweden WORKSHOP ANNOUNCEMENTS 10 Spectacled Bears of the Dry Tropical Forest 36 5th International Human-Bear Conflict in North-Western Peru Workshop 12 IBA Experience and Exchange Grant Report: 36 13th Western Black Bear Workshop Sun Bear Research in Malaysia CONFERENCE ANNOUNCEMENTS CONSERVATION 37 26th International Conference on Bear 14 Revival of Handicraft Aides Survey for Research & Management Asiatic Black Bear Corridors in Hormozgan Province, Iran STUDENT FORUM 16 The Andean Bear in Manu Biosphere 38 Truman Listserv and Facebook Page Reserve, Rival or Ally for Communities? 39 Post-Conference Homework for Students HUMAN BEAR CONFLICTS PUBLICATIONS
    [Show full text]
  • When Humans First Plied the Deep Blue Sea
    NEWS FROM IN AND AROUND THE REGION When humans first plied the deep blue sea In a shallow cave on an island north of Australia, researchers have made a surprising discovery: the 42,000-year-old bones of tuna and sharks that were clearly brought there by human hands. The find, reported online in Science, provides the strongest evidence yet that people were deep-sea fishing so long ago. And those maritime skills may have allowed the inhabitants of this region to colonise lands far and wide. The earliest known boats, found in France and the Neth- erlands, are only 10,000 years old, but archaeologists know they don’t tell the whole story. Wood and other common boat-building materials don’t preserve well in the archaeological record. And the colonisation of Aus- tralia and the nearby islands of Southeast Asia, which began at least 45,000 years ago, required sea crossings of at least 30 kilometres. Yet whether these early migrants put out to sea deliberately in boats or simply drifted with the tides in rafts meant for near-shore exploration has been a matter of fierce debate.1 Indeed, direct evidence for early seafaring skills has been lacking. Although modern humans were exploit- ing near-shore resources2 such as mussels and abalone, by 165,000 years ago, only a few controversial sites suggest that our early ancestors fished deep waters by 45,000 years Archaeologists have found evidence of deep-sea fishing ago. (The earliest sure sites are only about 12,000 years 42,000 years ago at Jerimalai, a cave on the eastern end of East Timor (Images: Susan O’Connor).
    [Show full text]
  • 1. the Archaeology of Sulawesi: an Update 3 Points—And, Second, to Obtain Radiocarbon Dates for the Toalean
    1 The archaeology of Sulawesi: An update, 2016 Muhammad Irfan Mahmud Symposium overview The symposium on ‘The Archaeology of Sulawesi – An Update’ was held in Makassar between 31 January (registration day) and 3 February 2016 (field-trip day) as a joint initiative between the Balai Arkeologi Makassar (Balar Makassar, Makassar Archaeology Office) and The Australian National University (ANU). The main organisers were Sue O’Connor, David Bulbeck and Juliet Meyer from ANU, who are also the editors of this volume, and Budianto Hakim from Balar Makassar. Funding for the symposium was provided by an Australian Research Council Discovery Grant (DP110101357) to Sue O’Connor, Jack Fenner, Janelle Stevenson (ANU) and Ben Marwick (University of Washington) for the project ‘The archaeology of Sulawesi: A strategic island for understanding modern human colonization and interactions across our region’. Between 1 and 2 February, 30 papers were presented by contributors representing ANU, Balar Makassar, the National Research Centre for Archaeology (Jakarta), Balai Makassar Manado, Hasanuddin University (Makassar), Gadjah Mada University (Yogyakarta), Bandung Institute of Technology, Geology Museum in Bandung, Griffith University and James Cook University (Queensland), University of Wollongong and University of New England (New South Wales), University of Göttingen and Christian-Albrechts-Universität zu Kiel (Germany), the University of Leeds (United Kingdom), Brown University (United States of America) and Tokai University (Japan). Not all of the presenters
    [Show full text]
  • Two Modern Compositional Approaches
    Musical Aesthetics of the Natural World: Two Modern Compositional Approaches Eli Stine and Christopher Luna-Mega University of Virginia, McIntire Department of Music Throughout recorded human history, experiences and observations of the natural world have inspired the arts. Within the sonic arts, evocations of nature permeate a wide variety of acoustic and electronic composition strategies. These strategies artistically investigate diverse attributes of nature: tranquility, turbulence, abundance, scarcity, complexity, and purity, to name but a few. Within the 20th century, new technologies to understand these attributes, including media recording and scientific analysis, were developed. These technologies allow music composi- tion strategies to go beyond mere evocation and to allow for the construction of musical works that engage explicit models of nature (what has been called ‘biologically inspired music’). This paper explores two such deployments of these ‘natural sound models’ within music and music generation systems created by the authors: an electroacoustic composition using data derived from multi-channel recordings of forest insects (Luna-Mega) and an electronic music generation system that extracts musical events from the different layers of natural soundscapes, in particular oyster reef soundscapes (Stine). Together these works engage a diverse array of extra-musical disciplines: environmental science, acoustic ecology, entomology, and computer science. The works are contextualized with a brief history of natural sound models from pre- antiquity to the present in addition to reflections on the uses of technology within these projects and the potential experiences of audiences listening to these works. “Great art picks up where nature ends.” - Mark Chagall and aesthetics towards a more quantitative awareness of how The natural world has been a focal point for the arts since the natural world functions and evolves is present within a the Upper Paleolithic.
    [Show full text]
  • Language Evolution to Revolution: from a Slowly Developing Finite Communication System with Many Words to Infinite Modern Language
    bioRxiv preprint doi: https://doi.org/10.1101/166520; this version posted July 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Language evolution to revolution: from a slowly developing finite communication system with many words to infinite modern language Andrey Vyshedskiy1,2* 1Boston University, Boston, USA 2ImagiRation LLC, Boston, MA, USA Keywords: Language evolution, hominin evolution, human evolution, recursive language, flexible syntax, human language, syntactic language, modern language, Cognitive revolution, Great Leap Forward, Upper Paleolithic Revolution, Neanderthal language Abstract There is overwhelming archeological and genetic evidence that modern speech apparatus was acquired by hominins by 600,000 years ago. There is also widespread agreement that modern syntactic language arose with behavioral modernity around 100,000 years ago. We attempted to answer two crucial questions: (1) how different was the communication system of hominins before acquisition of modern language and (2) what triggered the acquisition of modern language 100,000 years ago. We conclude that the communication system of hominins prior to 100,000 years ago was finite and not- recursive. It may have had thousands of words but was lacking flexible syntax, spatial prepositions, verb tenses, and other features that enable modern human language to communicate an infinite number of ideas. We argue that a synergistic confluence of a genetic mutation that dramatically slowed down the prefrontal cortex (PFC) development in monozygotic twins and their spontaneous invention of spatial prepositions 100,000 years ago resulted in acquisition of PFC-driven constructive imagination (mental synthesis) and converted the finite communication system of their ancestors into infinite modern language.
    [Show full text]
  • Tentative Lists Submitted by States Parties As of 15 April 2021, in Conformity with the Operational Guidelines
    World Heritage 44 COM WHC/21/44.COM/8A Paris, 4 June 2021 Original: English UNITED NATIONS EDUCATIONAL, SCIENTIFIC AND CULTURAL ORGANIZATION CONVENTION CONCERNING THE PROTECTION OF THE WORLD CULTURAL AND NATURAL HERITAGE WORLD HERITAGE COMMITTEE Extended forty-fourth session Fuzhou (China) / Online meeting 16 – 31 July 2021 Item 8 of the Provisional Agenda: Establishment of the World Heritage List and of the List of World Heritage in Danger 8A. Tentative Lists submitted by States Parties as of 15 April 2021, in conformity with the Operational Guidelines SUMMARY This document presents the Tentative Lists of all States Parties submitted in conformity with the Operational Guidelines as of 15 April 2021. • Annex 1 presents a full list of States Parties indicating the date of the most recent Tentative List submission. • Annex 2 presents new Tentative Lists (or additions to Tentative Lists) submitted by States Parties since 16 April 2019. • Annex 3 presents a list of all sites included in the Tentative Lists of the States Parties to the Convention, in alphabetical order. Draft Decision: 44 COM 8A, see point II I. EXAMINATION OF TENTATIVE LISTS 1. The World Heritage Convention provides that each State Party to the Convention shall submit to the World Heritage Committee an inventory of the cultural and natural sites situated within its territory, which it considers suitable for inscription on the World Heritage List, and which it intends to nominate during the following five to ten years. Over the years, the Committee has repeatedly confirmed the importance of these Lists, also known as Tentative Lists, for planning purposes, comparative analyses of nominations and for facilitating the undertaking of global and thematic studies.
    [Show full text]
  • Human Evolution Timeline 1
    Name: Human Origins Web Inquiry 1. Got to the website: http://humanorigins.si.edu/evidence 2. Read the paragraph under “Evidence of Evolution.” 3. In the maroon box on the left, click on “Timeline Interactive” 4. Start by clicking on the red bands at the bottom of the timeline, beginning with Homo sapiens and the rest of the Hominids. Read the information boxes that pop up when you click. 5. When you come across a species you find particularly interesting, record that information (including dates) in the box below. Record facts of at least 5 interesting hominid species, including Homo sapiens. 6. Then begin to explore the rest of the timeline. As you go, record at least 5 other interesting species. 7. Use the magnifier tool at the bottom of the timeline. Click on “color key” to identify the different color dots. Each dot represents a specific piece of evidence scientists have discovered in their study of evolution. 8. Click on various colored dots to learn about tools, events, geology, climate information, behavior, and skeletal adaptations discovered by scientists that add to the evidence for human evolution. Record 7 pieces of evidence you find interesting or particularly important in the box on the back. Make sure to put down different types of evidence (different colors). 9. Take 15-20 minutes to explore the whole timeline and record interesting facts. 10. Build your own timeline on the next page, filling in the interesting species and evidence you recorded in their proper place in the timeline. Hominids Species Dates Interesting fact(s) Homo sapiens Name: Evidence Type of Date Interesting fact(s) Evidence Name: Human Evolution Timeline 1.
    [Show full text]
  • The Adaptive Significance of Human Language
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Senior Thesis Projects, 1993-2002 College Scholars 2000 The Adaptive Significance of Human Language Nathan Oesch Follow this and additional works at: https://trace.tennessee.edu/utk_interstp2 Recommended Citation Oesch, Nathan, "The Adaptive Significance of Human Language" (2000). Senior Thesis Projects, 1993-2002. https://trace.tennessee.edu/utk_interstp2/52 This Project is brought to you for free and open access by the College Scholars at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Senior Thesis Projects, 1993-2002 by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. The Adaptive Significance of Human Language Nathan Oesch Department of Psychology University of Tennessee, Knoxville noesch @ utk. edu Abstract Many experts have argued that human language is fundamentally incompatible with the principles of traditional Darwinian evolutionary theory. According to conventional Darwinian explanations, specific traits evolved among species according to gradual and incremental genetic changes, each of which that were in some way so favorable to the survival and reproduction of ancestral generations that they were ultimately preserved within successive generations of those species. Human language, it has been said, is simply to complex to be explained as a result of Darwinian explanations, since each successive step in the evolution of language would confer no obvious survival benefits to its recipients. According to this idea, language is such an "all-or­ none system," that it could not possibly have existed in any immediately beneficial intermediate forms and thus could not have evolved according to conventional Darwinian modes of explanation.
    [Show full text]
  • Chapter 2: Prehistoric People, 8000 BC
    0032-0047 CH02-846240 11/14/02 11:33 PM Page 32 CHAPTER Prehistoric People 2 8000 B.C.–3000 B.C. ᭡ Neolithic pottery Paleolithic carving ᭤ 8000 B.C. 6500 B.C. 4000 B.C. 3000 B.C. New Stone Age begins Catal Hüyük World population reaches Writing is established about 90 million invented 32 UNIT 1 PLACE AND TIME 0032-0047 CH02-846240 11/14/02 10:11 PM Page 33 Chapter Focus Read to Discover Chapter Overview Visit the Human Heritage Web site • How tools, language, clothing, and the discovery of fire at humanheritage.glencoe.com helped early people advance. and click on Chapter 2—Chapter • What Neanderthals and Cro-Magnons were like. Overviews to preview this chapter. • How people changed from food gatherers to food producers. • Why specialization, government, and religion were impor- tant in Neolithic societies. Terms to Learn People to Know Places to Locate prehistory Lucy Olduvai Gorge civilization Neanderthals Jericho migrate Cro-Magnons Catal Hüyük specialization Why It’s Important Most archaeologists believe people have lived on the earth for millions of years. The period of time before the invention of writing is called prehistory. It lasted Reading Check until about five thousand years ago, when people learned how When did to write. Through the use of artifacts, archaeologists have prehistory end? traced the milestones that paved the way from prehistory to What helped bring the rise of civilization—a time when people progressed cultur- about the rise of ally and began to live in cities. civilization? SECTION 1 The Paleolithic Age Although there were no written records during prehistory, scientists have learned a great deal about prehistoric people.
    [Show full text]
  • Symbolic Use of Marine Shells and Mineral Pigments by Iberian Neandertals
    Symbolic use of marine shells and mineral pigments by Iberian Neandertals João Zilhãoa,1, Diego E. Angeluccib, Ernestina Badal-Garcíac, Francesco d’Erricod,e, Floréal Danielf, Laure Dayetf, Katerina Doukag, Thomas F. G. Highamg, María José Martínez-Sánchezh, Ricardo Montes-Bernárdezi, Sonia Murcia-Mascarósj, Carmen Pérez-Sirventh, Clodoaldo Roldán-Garcíaj, Marian Vanhaerenk, Valentín Villaverdec, Rachel Woodg, and Josefina Zapatal aUniversity of Bristol, Department of Archaeology and Anthropology, Bristol BS8 1UU, United Kingdom; bUniversità degli Studi di Trento, Laboratorio di Preistoria B. Bagolini, Dipartimento di Filosofia, Storia e Beni Culturali, 38122 Trento, Italy; cUniversidad de Valencia, Departamento de Prehistoria y Arqueología, 46010 Valencia, Spain; dCentre National de la Recherche Scientifique, Unité Mixte de Recherche 5199, De la Préhistoire à l’Actuel: Culture, Environnement et Anthropologie, 33405 Talence, France; eUniversity of the Witwatersrand, Institute for Human Evolution, Johannesburg, 2050 Wits, South Africa; fUniversité de Bordeaux 3, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5060, Institut de Recherche sur les Archéomatériaux, Centre de recherche en physique appliquée à l’archéologie, 33607 Pessac, France; gUniversity of Oxford, Research Laboratory for Archaeology and the History of Art, Dyson Perrins Building, Oxford OX1 3QY, United Kingdom; hUniversidad de Murcia, Departamento de Química Agrícola, Geología y Edafología, Facultad de Química, Campus de Espinardo, 30100 Murcia, Spain; iFundación de Estudios Murcianos Marqués de Corvera, 30566 Las Torres de Cotillas (Murcia), Spain; jUniversidad de Valencia, Instituto de Ciencia de los Materiales, 46071 Valencia, Spain; kCentre National de la Recherche Scientifique, Unité Mixte de Recherche 7041, Archéologies et Sciences de l’Antiquité, 92023 Nanterre, France; and lUniversidad de Murcia, Área de Antropología Física, Facultad de Biología, Campus de Espinardo, 30100 Murcia, Spain Communicated by Erik Trinkaus, Washington University, St.
    [Show full text]
  • Krapina and Other Neanderthal Clavicles: a Peculiar Morphology?
    Krapina and Other Neanderthal Clavicles : A Peculiar Morphology? Jean-Luc Voisin To cite this version: Jean-Luc Voisin. Krapina and Other Neanderthal Clavicles : A Peculiar Morphology?. Periodicum Biologorum, 2006, 108 (3), pp.331-339. halshs-00352689 HAL Id: halshs-00352689 https://halshs.archives-ouvertes.fr/halshs-00352689 Submitted on 13 Jan 2009 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. PERIODICUM BIOLOGORUM UDC 57:61 VOL. 108, No 3, 331–339, 2006 CODEN PDBIAD ISSN 0031-5362 Original scientific paper Krapina and Other Neanderthal Clavicles: A Peculiar Morphology? Abstract JEAN-LUC VOISIN The clavicle is the less studied element of the shoulder girdle, even if it is USM 103 a very important bone for human evolution because it permits all move- Institut de Paléontologie Humaine ments outside the parasagittal plan. In this work, clavicle curvatures are 1 rue René Panhard 75013 Paris studied by projecting them on a cranial and a dorsal plan, which are perpen- E-mail: [email protected] dicular. In cranial view, there is no difference within the genus Homo, and [email protected] Neanderthal clavicles are not more S-shaped than modern human ones.
    [Show full text]
  • Bibliography
    Bibliography Many books were read and researched in the compilation of Binford, L. R, 1983, Working at Archaeology. Academic Press, The Encyclopedic Dictionary of Archaeology: New York. Binford, L. R, and Binford, S. R (eds.), 1968, New Perspectives in American Museum of Natural History, 1993, The First Humans. Archaeology. Aldine, Chicago. HarperSanFrancisco, San Francisco. Braidwood, R 1.,1960, Archaeologists and What They Do. Franklin American Museum of Natural History, 1993, People of the Stone Watts, New York. Age. HarperSanFrancisco, San Francisco. Branigan, Keith (ed.), 1982, The Atlas ofArchaeology. St. Martin's, American Museum of Natural History, 1994, New World and Pacific New York. Civilizations. HarperSanFrancisco, San Francisco. Bray, w., and Tump, D., 1972, Penguin Dictionary ofArchaeology. American Museum of Natural History, 1994, Old World Civiliza­ Penguin, New York. tions. HarperSanFrancisco, San Francisco. Brennan, L., 1973, Beginner's Guide to Archaeology. Stackpole Ashmore, w., and Sharer, R. J., 1988, Discovering Our Past: A Brief Books, Harrisburg, PA. Introduction to Archaeology. Mayfield, Mountain View, CA. Broderick, M., and Morton, A. A., 1924, A Concise Dictionary of Atkinson, R J. C., 1985, Field Archaeology, 2d ed. Hyperion, New Egyptian Archaeology. Ares Publishers, Chicago. York. Brothwell, D., 1963, Digging Up Bones: The Excavation, Treatment Bacon, E. (ed.), 1976, The Great Archaeologists. Bobbs-Merrill, and Study ofHuman Skeletal Remains. British Museum, London. New York. Brothwell, D., and Higgs, E. (eds.), 1969, Science in Archaeology, Bahn, P., 1993, Collins Dictionary of Archaeology. ABC-CLIO, 2d ed. Thames and Hudson, London. Santa Barbara, CA. Budge, E. A. Wallis, 1929, The Rosetta Stone. Dover, New York. Bahn, P.
    [Show full text]