Species Limits and Distribution of the Malagasy Carnivoran Genus Eupleres (Family Eupleridae)

Total Page:16

File Type:pdf, Size:1020Kb

Species Limits and Distribution of the Malagasy Carnivoran Genus Eupleres (Family Eupleridae) Article inAuthor's press - uncorrected Copy proof Mammalia 74 (2010): 177–185 ᮊ 2010 by Walter de Gruyter • Berlin • New York. DOI 10.1515/MAMM.2010.018 Species limits and distribution of the Malagasy carnivoran genus Eupleres (Family Eupleridae) Steven M. Goodman1,2,* and Kristofer M. Helgen3 Eupleridae are becoming reasonably well established (Yoder 1 Field Museum of Natural History, 1400 South Lake Shore et al. 2003), the distribution and species limits of several Drive, Chicago, IL 60605, USA genera remain poorly studied. Herein we address these 2 Vahatra, BP 3972, Antananarivo 101, Madagascar, aspects for the enigmatic genus Eupleres (the falanouc), e-mail: [email protected]; which possesses a highly reduced dentition and other [email protected] remarkable anatomical features (Gray 1870, Carlsson 1902, 3 National Museum of Natural History, Smithsonian Pocock 1915, Scapino 1981, Popowics 2003, Gaubert et al. Institution, P.O. Box 37012, MRC 108, Washington, 2005) and for which little information is available regarding DC 20013-7012, USA natural history and geographical distribution (Albignac 1972, 1973a, 1974). *Corresponding author In his extensive review of the Carnivora of Madagascar, Albignac (1973a) considered Eupleres to be monospecific and represented by two subspecies: E. g. goudotii Doye`re, Abstract 1835, from the eastern wet forests and E. g. major Lavauden, 1929, from the transitional dry deciduous-humid forests of A review was conducted of members of the endemic Mala- the northwest. Albignac (1973a) presented several external gasy carnivoran genus Eupleres (family Eupleridae) based morphological characters to separate these two subspecies. on published and unpublished records and museum speci- In subsequent taxonomic reviews of the Carnivora of mens. Classically, one species has been recognized in this Madagascar, this monospecific arrangement for Eupleres has poorly known genus – E. goudotii, divided into two geo- been followed (Wozencraft 1993, 2005), although there has graphical forms with non-overlapping distributions: E. g. been some indication that these geographical forms could goudotii distributed in the mesic forests of the east and E. g. warrant specific recognition (Lavauden 1929, Albignac major found in the dry areas of the northwest. Drawing on 1973b). The purpose of this paper is to review morphological external and craniodental comparisons, we demonstrate that Author's Copy characters and measurements distinguishing these two forms, Author's Copy these two forms are highly distinctive morphologically and their geographical distribution, and to assess their specific can be readily distinguished from each another. Furthermore, status. there is some evidence that they both can occur on the slopes of Montagne d’Ambre in the far north of the island. On this basis, we recognize these taxa as distinct species, E. goudotii Methods and materials and E. major. Patterns of morphological variation Keywords: distribution; Eupleres; Madagascar; morphology; taxonomy. To assess patterns of morphological variation in the different recognized forms of Eupleres we examined and measured specimens in the following institutions: American Museum Introduction of Natural History (AMNH); Muse´um national d’Histoire naturelle (MNHN); Museum of Comparative Zoology, Har- Until recently it was assumed that the native Carnivora of vard University (MCZ); Natural History Museum, London Madagascar represented several deeply divergent lineages wBMNH; formerly The British Museum (Natural History)x; within the order, and hence that they arrived on the island Yale Peabody Museum (YPM), Yale University; Museum fu¨r via multiple colonization events (Gregory and Hellman 1939, Naturkunde, Humboldt Universita¨t, Berlin (ZMB). Some of Simpson 1945). However, recent molecular comparisons these specimens are incomplete, missing teeth or damaged have shown that all native Malagasy Carnivora genera in other ways. All craniodental measurements included here- (Cryptoprocta, Fossa, Eupleres, Galidia, Galidictis, Sala- in were taken by the second author, at an accuracy of 0.1 mm noia, and Mungotictis) form a monophyletic group repre- for cranial variables and 0.01 mm for dental variables. senting a single colonization event (Yoder et al. 2003) and The following measurements were taken for all adult (and all are now placed in an endemic family, Eupleridae (Wozen- nearly mature subadult) specimens – skulls: greatest length craft 2005). This family represents one of the more extra- of skull (GSL), condylobasal length (CBL), zygomatic ordinary adaptive radiations among the world’s Carnivora breadth (ZB), breadth of braincase at zygomatic roots (BB), (Goodman 2009). Although higher level systematics of the interorbital width (IOW), length of anterior palatal foramina 2010/201004 Author's Copy Article inAuthor's press - uncorrected Copy proof 178 S.M. Goodman and K.M. Helgen: Species limits of Eupleres (Eupleridae) (APFL), maximum length of nasal bones (NL), palatal length inflated structures, the fused interdigital pads form a large (PL), auditory bulla length (AUDL), auditory bulla width proportion of the foot-pad surface, and the metatarsal pads (AUDW), and mandible length (ML); teeth – length of upper (thenar and hypothenar) are more developed. Finally, a con- first molar (LM1); width of upper first molar (WM1); length siderable portion of the plantar surface posterior to the of upper second molar (LM2); width of upper second molar metatarsal pads is naked in major and largely covered with (WM2); external alveolar distance between upper first fur in goudotii. molars (M1–M1); external alveolar distance between upper canines (C–C); length of maxillary toothrow (C–M2); width Cranial measurements and morphology There are of lower first molar (wm1); length of second lower molar several cranial and mandibular measurements that distinguish (lm2); length of third lower premolar (lp3). goudotii and major (Table 2, Figure 1). In general, major has a distinctly more robust skull, both in cranial length (e.g., greatest length of skull) and breadth (e.g., zygomatic Results breadth), as well as a longer and more robust mandible. In fact, there is a large discrepancy, with no overlap, in condy- Morphology lobasal length between adults of goudotii (F87 mm) and major (G90 mm), offering a convenient single metric for External morphology External measurements tabulated discriminating adult skulls. Furthermore, major has a dis- both by Albignac (1973a) from non-cited sources and from tinctly longer palate, but shorter anterior palatal foramina museum study skins at MCZ (Table 1) demonstrate the con- than those of goudotii, an important cranioproportional dis- sistently larger body size of major relative to goudotii. tinction. One of the most noticeable diagnostic differences Another striking distinction between major and goudotii is between these two animals is the much more expansive audi- in pelage coloration; major is distinctly darker brown than tory bullae in major, as reflected both in average values for goudotii, which is paler and more fawn brown in overall length and width dimensions (tabulated in Table 2), but most coloration (both species are paler ventrally than dorsally). notably expressed by inflation of the bullae in the vertical Albignac (1973a) noted sexual dimorphism in both of these (dorsoventral) dimension (difficult to measure consistently forms, with males being slightly larger than females, but and not tabulated here). based on current limited sample sizes we are unable to test for these differences in a meaningful way. Dental measurements Many of the specimens available Another consistent difference between these two forms is for this study are missing teeth, so that there are numerous in the position and size of the foot-pads and fur cover on the dental variables for which few measurements are available, distal portions of the fore and hind feet (see Albignac 1973a, particularly for major. In general, the upper molar teeth in Figures 9–12). On the palmar surface of the forelimb of major are more robust in length (e.g., length first upper nominate goudotii the digital pads are only moderately Author's Copy molar, length second upper molar) and width (e.g., width first Author's Copy developed, and the interdigital and metacarpal pads are large- upper molar, width second upper molar) than in goudotii. ly fused and form a large central surface, whereas in major The length of the maxillary toothrow in major is notably the digital pads are markedly larger and inflated, and the longer than in goudotii. Furthermore, the distance across the hypothenar and thenar pads are notably separated from the rostrum (e.g., distance outer C–C) and palate (distance outer inflated interdigital pads (terminology follows Brown and M1–M1) are greater in major compared with goudotii. The Yalden 1973). Furthermore, in major the palmar surface pos- lower molar measurements in goudotii show little overlap in terior to the metacarpal pads is largely naked and furred in length and width to those measurements of major (e.g., sec- goudotii. On the plantar surface of goudotii, the digital pads ond to last lower width, second to last lower width, length are reduced, and the largely fused interdigital pads form a of fourth to last tooth in lower jaw) (Table 3). Hence, animals central rounded unit with a notable separation from the dig- assigned to nominate goudotii and major have conspicuously ital pads, whereas in major the digital pads are conspicuously different
Recommended publications
  • Table 7: Species Changing IUCN Red List Status (2014-2015)
    IUCN Red List version 2015.4: Table 7 Last Updated: 19 November 2015 Table 7: Species changing IUCN Red List Status (2014-2015) Published listings of a species' status may change for a variety of reasons (genuine improvement or deterioration in status; new information being available that was not known at the time of the previous assessment; taxonomic changes; corrections to mistakes made in previous assessments, etc. To help Red List users interpret the changes between the Red List updates, a summary of species that have changed category between 2014 (IUCN Red List version 2014.3) and 2015 (IUCN Red List version 2015-4) and the reasons for these changes is provided in the table below. IUCN Red List Categories: EX - Extinct, EW - Extinct in the Wild, CR - Critically Endangered, EN - Endangered, VU - Vulnerable, LR/cd - Lower Risk/conservation dependent, NT - Near Threatened (includes LR/nt - Lower Risk/near threatened), DD - Data Deficient, LC - Least Concern (includes LR/lc - Lower Risk, least concern). Reasons for change: G - Genuine status change (genuine improvement or deterioration in the species' status); N - Non-genuine status change (i.e., status changes due to new information, improved knowledge of the criteria, incorrect data used previously, taxonomic revision, etc.); E - Previous listing was an Error. IUCN Red List IUCN Red Reason for Red List Scientific name Common name (2014) List (2015) change version Category Category MAMMALS Aonyx capensis African Clawless Otter LC NT N 2015-2 Ailurus fulgens Red Panda VU EN N 2015-4
    [Show full text]
  • Comparative Ecomorphology and Biogeography of Herpestidae and Viverridae (Carnivora) in Africa and Asia
    Comparative Ecomorphology and Biogeography of Herpestidae and Viverridae (Carnivora) in Africa and Asia Gina D. Wesley-Hunt1, Reihaneh Dehghani2,3 and Lars Werdelin3 1Biology Department, Montgomery College, 51 Mannakee St. Rockville, Md. 20850, USA; 2Department of Zoology, Stockholm University, SE-106 91, Stockholm, Sweden; 3Department of Palaeozoology, Swedish Museum of Natural History, Box 50007, SE-104 05, Stockholm, Sweden INTRODUCTION Ecological morphology (ecomorphology) is a powerful tool for exploring diversity, ecology and evolution in concert (Wainwright, 1994, and references therein). Alpha taxonomy and diversity measures based on taxon counting are the most commonly used tools for understanding long-term evolutionary patterns and provide the foundation for all other biological studies above the organismal level. However, this provides insight into only a single dimension of a multidimensional system. As a complement, ecomorphology allows us to describe the diversification and evolution of organisms in terms of their morphology and ecological role. This is accomplished by using quantitative and semi-quantitative characterization of features of organisms that are important, for example, in niche partitioning or resource utilization. In this context, diversity is commonly referred to as disparity (Foote, 1993). The process of speciation, for example, can be better understood and hypotheses more rigorously tested, if it can be quantitatively demonstrated whether a new species looks very similar to the original taxon or whether its morphology has changed in a specific direction. For example, if a new species of herbivore evolves with increased grinding area in the cheek dentition, it can either occupy the same area of morphospace as previously existing species, suggesting increased resource competition, or it can occupy an area of morphospace that had previously been empty, suggesting evolution into a new niche.
    [Show full text]
  • The Impact of Forest Logging and Fragmentation on Carnivore Species Composition, Density and Occupancy in Madagascar’S Rainforests
    The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests B RIAN D. GERBER,SARAH M. KARPANTY and J OHNY R ANDRIANANTENAINA Abstract Forest carnivores are threatened globally by Introduction logging and forest fragmentation yet we know relatively little about how such change affects predator populations. arnivores are one of the most threatened groups of 2009 This is especially true in Madagascar, where carnivores Cterrestrial mammals (Karanth & Chellam, ). have not been extensively studied. To understand better the Declines of predators are often attributed to habitat loss effects of logging and fragmentation on Malagasy carnivores and fragmentation but few quantitative studies have we evaluated species composition, density of fossa examined how carnivore populations and communities 2002 Cryptoprocta ferox and Malagasy civet Fossa fossana, and change with habitat loss or fragmentation (Crooks, ; 2005 carnivore occupancy in central-eastern Madagascar. We Michalski & Peres, ). This is particularly true for ’ photographically-sampled carnivores in two contiguous Madagascar s carnivores, with knowledge lacking about ff (primary and selectively-logged) and two fragmented rain- their ecology and the e ects of anthropogenic disturbances 2010 forests (fragments , 2.5 and . 15 km from intact forest). (Irwin et al., ), especially in the eastern rainforest where Species composition varied, with more native carnivores in only short-term studies have been conducted (Gerber et al., 2010 16 the contiguous than fragmented rainforests. F. fossana was ). With only % of the original primary forests extant absent from fragmented rainforests and at a lower density in Madagascar and those remaining becoming smaller and 2007 in selectively-logged than in primary rainforest (mean more isolated over time (Harper et al., ), habitat loss −2 1.38 ± SE 0.22 and 3.19 ± SE 0.55 individuals km , respect- and fragmentation are serious threats to many endemic 2010 ively).
    [Show full text]
  • (Barbourofelinae, Nimravidae, Carnivora), from the Middle Miocene of China Suggests Barbourofelines Are Nimravids, Not Felids
    UCLA UCLA Previously Published Works Title A new genus and species of sabretooth, Oriensmilus liupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids Permalink https://escholarship.org/uc/item/0g62362j Journal JOURNAL OF SYSTEMATIC PALAEONTOLOGY, 18(9) ISSN 1477-2019 Authors Wang, Xiaoming White, Stuart C Guan, Jian Publication Date 2020-05-02 DOI 10.1080/14772019.2019.1691066 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Journal of Systematic Palaeontology ISSN: 1477-2019 (Print) 1478-0941 (Online) Journal homepage: https://www.tandfonline.com/loi/tjsp20 A new genus and species of sabretooth, Oriensmilus liupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids Xiaoming Wang, Stuart C. White & Jian Guan To cite this article: Xiaoming Wang, Stuart C. White & Jian Guan (2020): A new genus and species of sabretooth, Oriensmilusliupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids , Journal of Systematic Palaeontology, DOI: 10.1080/14772019.2019.1691066 To link to this article: https://doi.org/10.1080/14772019.2019.1691066 View supplementary material Published online: 08 Jan 2020. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at https://www.tandfonline.com/action/journalInformation?journalCode=tjsp20 Journal of Systematic Palaeontology, 2020 Vol. 0, No. 0, 1–21, http://dx.doi.org/10.1080/14772019.2019.1691066 A new genus and species of sabretooth, Oriensmilus liupanensis (Barbourofelinae, Nimravidae, Carnivora), from the middle Miocene of China suggests barbourofelines are nimravids, not felids a,bà c d Xiaoming Wang , Stuart C.
    [Show full text]
  • Redalyc.TRENDS in RESEARCH on TERRESTRIAL SPECIES of THE
    Mastozoología Neotropical ISSN: 0327-9383 [email protected] Sociedad Argentina para el Estudio de los Mamíferos Argentina Pérez-Irineo, Gabriela; Santos-Moreno, Antonio TRENDS IN RESEARCH ON TERRESTRIAL SPECIES OF THE ORDER CARNIVORA Mastozoología Neotropical, vol. 20, núm. 1, 2013, pp. 113-121 Sociedad Argentina para el Estudio de los Mamíferos Tucumán, Argentina Available in: http://www.redalyc.org/articulo.oa?id=45728549008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Mastozoología Neotropical, 20(1):113-121, Mendoza, 2013 Copyright ©SAREM, 2013 Versión impresa ISSN 0327-9383 http://www.sarem.org.ar Versión on-line ISSN 1666-0536 Artículo TRENDS IN RESEARCH ON TERRESTRIAL SPECIES OF THE ORDER CARNIVORA Gabriela Pérez-Irineo and Antonio Santos-Moreno Laboratorio de Ecología Animal, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Unidad Oaxaca, Instituto Politécnico Nacional, Hornos 1003, 71230 Santa Cruz Xoxocotlán, Oaxaca, México [Correspondence: Gabriela Pérez Irineo <[email protected]>]. ABSTRACT. Information regarding trends in research on terrestrial species of the order Carnivora can provide an understanding of the degree of knowledge of the order, or lack thereof, as well as help identifying areas on which to focus future research efforts. With the aim of providing information on these trends, this work presents a review of the thematic focuses of studies addressing this order published over the past three de- cades. Relevant works published in 16 scientific journals were analyzed globally and by continent with respect of topics, species, and families.
    [Show full text]
  • Guidelines for Wildlife and Traffic in the Carpathians
    Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Wildlife and Traffic in the Carpathians Guidelines how to minimize the impact of transport infrastructure development on nature in the Carpathian countries Part of Output 3.2 Planning Toolkit TRANSGREEN Project “Integrated Transport and Green Infrastructure Planning in the Danube-Carpathian Region for the Benefit of People and Nature” Danube Transnational Programme, DTP1-187-3.1 April 2019 Project co-funded by the European Regional Development Fund (ERDF) www.interreg-danube.eu/transgreen Authors Václav Hlaváč (Nature Conservation Agency of the Czech Republic, Member of the Carpathian Convention Work- ing Group for Sustainable Transport, co-author of “COST 341 Habitat Fragmentation due to Trans- portation Infrastructure, Wildlife and Traffic, A European Handbook for Identifying Conflicts and Designing Solutions” and “On the permeability of roads for wildlife: a handbook, 2002”) Petr Anděl (Consultant, EVERNIA s.r.o. Liberec, Czech Republic, co-author of “On the permeability of roads for wildlife: a handbook, 2002”) Jitka Matoušová (Nature Conservation Agency of the Czech Republic) Ivo Dostál (Transport Research Centre, Czech Republic) Martin Strnad (Nature Conservation Agency of the Czech Republic, specialist in ecological connectivity) Contributors Andriy-Taras Bashta (Biologist, Institute of Ecology of the Carpathians, National Academy of Science in Ukraine) Katarína Gáliková (National
    [Show full text]
  • The 2008 IUCN Red Listings of the World's Small Carnivores
    The 2008 IUCN red listings of the world’s small carnivores Jan SCHIPPER¹*, Michael HOFFMANN¹, J. W. DUCKWORTH² and James CONROY³ Abstract The global conservation status of all the world’s mammals was assessed for the 2008 IUCN Red List. Of the 165 species of small carni- vores recognised during the process, two are Extinct (EX), one is Critically Endangered (CR), ten are Endangered (EN), 22 Vulnerable (VU), ten Near Threatened (NT), 15 Data Deficient (DD) and 105 Least Concern. Thus, 22% of the species for which a category was assigned other than DD were assessed as threatened (i.e. CR, EN or VU), as against 25% for mammals as a whole. Among otters, seven (58%) of the 12 species for which a category was assigned were identified as threatened. This reflects their attachment to rivers and other waterbodies, and heavy trade-driven hunting. The IUCN Red List species accounts are living documents to be updated annually, and further information to refine listings is welcome. Keywords: conservation status, Critically Endangered, Data Deficient, Endangered, Extinct, global threat listing, Least Concern, Near Threatened, Vulnerable Introduction dae (skunks and stink-badgers; 12), Mustelidae (weasels, martens, otters, badgers and allies; 59), Nandiniidae (African Palm-civet The IUCN Red List of Threatened Species is the most authorita- Nandinia binotata; one), Prionodontidae ([Asian] linsangs; two), tive resource currently available on the conservation status of the Procyonidae (raccoons, coatis and allies; 14), and Viverridae (civ- world’s biodiversity. In recent years, the overall number of spe- ets, including oyans [= ‘African linsangs’]; 33). The data reported cies included on the IUCN Red List has grown rapidly, largely as on herein are freely and publicly available via the 2008 IUCN Red a result of ongoing global assessment initiatives that have helped List website (www.iucnredlist.org/mammals).
    [Show full text]
  • University of Florida Thesis Or Dissertation Formatting
    UNDERSTANDING CARNIVORAN ECOMORPHOLOGY THROUGH DEEP TIME, WITH A CASE STUDY DURING THE CAT-GAP OF FLORIDA By SHARON ELIZABETH HOLTE A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2018 © 2018 Sharon Elizabeth Holte To Dr. Larry, thank you ACKNOWLEDGMENTS I would like to thank my family for encouraging me to pursue my interests. They have always believed in me and never doubted that I would reach my goals. I am eternally grateful to my mentors, Dr. Jim Mead and the late Dr. Larry Agenbroad, who have shaped me as a paleontologist and have provided me to the strength and knowledge to continue to grow as a scientist. I would like to thank my colleagues from the Florida Museum of Natural History who provided insight and open discussion on my research. In particular, I would like to thank Dr. Aldo Rincon for his help in researching procyonids. I am so grateful to Dr. Anne-Claire Fabre; without her understanding of R and knowledge of 3D morphometrics this project would have been an immense struggle. I would also to thank Rachel Short for the late-night work sessions and discussions. I am extremely grateful to my advisor Dr. David Steadman for his comments, feedback, and guidance through my time here at the University of Florida. I also thank my committee, Dr. Bruce MacFadden, Dr. Jon Bloch, Dr. Elizabeth Screaton, for their feedback and encouragement. I am grateful to the geosciences department at East Tennessee State University, the American Museum of Natural History, and the Museum of Comparative Zoology at Harvard for the loans of specimens.
    [Show full text]
  • Evolutionary History of Carnivora (Mammalia, Laurasiatheria) Inferred
    bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available for use under a CC0 license. 1 Manuscript for review in PLOS One 2 3 Evolutionary history of Carnivora (Mammalia, Laurasiatheria) inferred 4 from mitochondrial genomes 5 6 Alexandre Hassanin1*, Géraldine Véron1, Anne Ropiquet2, Bettine Jansen van Vuuren3, 7 Alexis Lécu4, Steven M. Goodman5, Jibran Haider1,6,7, Trung Thanh Nguyen1 8 9 1 Institut de Systématique, Évolution, Biodiversité (ISYEB), Sorbonne Université, 10 MNHN, CNRS, EPHE, UA, Paris. 11 12 2 Department of Natural Sciences, Faculty of Science and Technology, Middlesex University, 13 United Kingdom. 14 15 3 Centre for Ecological Genomics and Wildlife Conservation, Department of Zoology, 16 University of Johannesburg, South Africa. 17 18 4 Parc zoologique de Paris, Muséum national d’Histoire naturelle, Paris. 19 20 5 Field Museum of Natural History, Chicago, IL, USA. 21 22 6 Department of Wildlife Management, Pir Mehr Ali Shah, Arid Agriculture University 23 Rawalpindi, Pakistan. 24 25 7 Forest Parks & Wildlife Department Gilgit-Baltistan, Pakistan. 26 27 28 * Corresponding author. E-mail address: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.10.05.326090; this version posted October 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. This article is a US Government work.
    [Show full text]
  • The Carnivora of Madagascar
    THE CARNIVORA OF MADAGASCAR 49 R. ALBIGNAC The Carizizrorn of Madagascar The carnivora of Madagascar are divided into 8 genera, 3 subfamilies and just one family, that of the Viverridae. All are peculiar to Madagascar except for the genus Viverricula, which is represented by a single species, Viverricula rasse (HORSFIELD),which is also found throughout southern Asia and was probably introduced to the island with man. Palaeontology shows that this fauna is an ancient one comprising many forms, which appear to be mainly of European origin but with very occasional kinships with the Indian region. For instance, Cvptofiroctaferox, although perhaps not directly related to Proailurus lenianensis (a species found in the phosphorites of the Quercy region of France and in the Aquitanian formations of Saint Gérand-le- Puy) , nevertheless appears to be the descendant of this line. Similarly, the origin of the Fossa and Galidiinae lines would seem to be close to that of the holarctic region. Only Eupleres raises a problem, having affinities with Chrotogale, known at present in Indochina. The likely springboard for these northern species is the continent of Africa. This archaic fauna has survived because of the conservative influence of the island, which has preserved it into modern times. In the classification of mammals G. G. SIMPSONputs the 7 genera of Madagascan carnivora in the Viverridae family and divides them into 3 subfamilies, as shown in the following table : VIVERRIDAE FAMILY Fossinae subfamily (Peculiar to Madagascar) Fossa fossa (Schreber) Eupleres goudotii Doyère Galidiinae subfamily (peculiar to Madagascar) Galidia elegans Is. Geoffroy Calidictis striata E. Geoffroy Mungotictis lineatus Pocock Salanoia concolor (I.
    [Show full text]
  • Small Carnivore CAMP 1993.Pdf
    SMALL CARNIVORE CONSERVATION ASSESSMENT AND MANAGEMENT PLAN Final Review Draft Report 1G May 1994 Edited and compiled by Roland Wirth, Angela Glatston, Onnie Byers, Susie Ellis, Pat Foster-Turley, Paul Robinson, Harry Van Rompaey, Don Moore, Ajith Kumar, Roland Melisch, and Ulysses Seal Prepared by the participants of a workshop held in Rotterdam, The Netherlands 11-14 February 1993 A Collaborative Workshop IUCN/SSC MUSTELID, VIVERRID, AND PROCYONID SPECIALIST GROUP IUCN/SSC OTTER SPECIALIST GROUP IUCN/SSC CAPTIVE BREEDING SPECIALIST GROUP Sponsored by The Rotterdam Zoo IUCN/SSC Sir Peter Scott Fund United Kingdom Small Carnivore Taxon Advisory Group A contribution of the IUCN/SSC Captive Breeding Specialist Group, IUCN/SSC Mustelid, Viverrid, and Procyonid Specialist Group and the IUCN/SSC Otter Specialist Group. The Primary Sponsors of the Workshop were: The Rotterdam Zoo, IUCN/SSC Peter Scott Fund, United Kingdom Small Carnivore Taxon Advisory Group. Cover Photo: Malayan Civet, Viverra tangalunga by Roland Wirth. Wirth, R., A Glatston, 0. Byers, S. Ellis, P. Foster-Turley, P. Robinson, H. Van Rompaey, D. Moore, A Kumar, R. Melisch, U.Seal. (eds.). 1994. Small Carnivore Conservation Assessment and Management Plan. IUCN/SSC Captive Breeding Specialist Group: Apple Valley, MN. Additional copies of this publication can be ordered through the IUCN/SSC Captive Breeding Specialist Group, 12101 Johnny Cake Ridge Road, Apple Valley, MN 55124. Send checks for US $35.00 (for printing and shipping costs) payable to CBSG; checks must be drawn on a US Bank. Funds may be wired to First Bank NA ABA No. 091000022, for credit to CBSG Account No.
    [Show full text]
  • Global Conservation Translocation Perspectives: 2021. Case Studies from Around the Globe
    Global conservation Global conservation translocation perspectives: 2021 translocation perspectives: 2021 IUCN SSC Conservation Translocation Specialist Group Global conservation translocation perspectives: 2021 Case studies from around the globe Edited by Pritpal S. Soorae IUCN SSC Conservation Translocation Specialist Group (CTSG) i The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN or any of the funding organizations concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily reflect those of IUCN. IUCN is pleased to acknowledge the support of its Framework Partners who provide core funding: Ministry of Foreign Affairs of Denmark; Ministry for Foreign Affairs of Finland; Government of France and the French Development Agency (AFD); the Ministry of Environment, Republic of Korea; the Norwegian Agency for Development Cooperation (Norad); the Swedish International Development Cooperation Agency (Sida); the Swiss Agency for Development and Cooperation (SDC) and the United States Department of State. Published by: IUCN SSC Conservation Translocation Specialist Group, Environment Agency - Abu Dhabi & Calgary Zoo, Canada. Copyright: © 2021 IUCN, International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non- commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Soorae, P. S.
    [Show full text]