Patient Report

Total Page:16

File Type:pdf, Size:1020Kb

Patient Report 1 Patient Report Specimen ID: 331-883-9001-0 Acct #: 90071835 Phone: (818) 880-8040 Rte: 00 Control ID: ESOTERIX IN-HOUSE TESTING SAMPLE REPORT, NORMAL 4301 LOST HILLS RD CALABASAS CA 91301 Patient Details Specimen Details Physician Details DOB: 01/01/2010 Date collected: 11/27/2019 0000 Local Ordering: Age(y/m/d): 009/10/26 Date received: 11/27/2019 Referring: Gender: F SSN: Date entered: 11/27/2019 ID: Patient ID: Date reported: 12/04/2019 0000 ET NPI: Ordered Items MODY Genetic Profile TESTS RESULT FLAG UNITS REFERENCE INTERVAL LAB MODY Genetic Profile MODY Genetic Profile 01 Maturity onset diabetes of the young (MODY) is a suspected diagnosis in young non-obese patients who lack an auto-immune cause for diabetes and who have a family history of diabetes in successive generations. The majority of MODY cases are due to pathogenic variants in one of four genes (ADA Guidelines 2019, PMID 30559228). Identifying a pathogenic variant in one of these MODY genes can lead to improved treatment, increased surveillance for related symptoms, and earlier detection in currently asymptomatic family members. GCK encodes the enzyme glucokinase, a key regulator of glucose metabolism in pancreatic beta cells. The three HNF (hepatic nuclear factor) genes encode transcription factors that regulate gene expression in the pancreas. MODY # Gene Chromosome RefSeq Transcript location (Gene) MODY 3 HNF1A 12q24.31 NG_011731.2 NM_000545.6 MODY 1 HNF4A 20q13.12 NG_009818.1 NM_175914.4 MODY 5 HNF1B 17q12 NG_013019.2 NM_000458.3 MODY 2 GCK 7p13 NG_008847.2 NM_000162.5 Preauthorization 01 Result 01 No clinically significant sequence or copy number variants were detected. Interpretation 01 No pathogenic variants or variants of uncertain clinical significance were detected by full gene sequencing or deletion/duplication analysis for any of the genes tested in this panel. Comments 01 This result decreases the likelihood that this individual has a mutation in one of the four MODY genes tested in this assay, but does not exclude the possibility that this individual has a pathogenic variant in another gene or gene region not analyzed in this assay. This result should be Date Issued: 12/04/19 1919 ET FINAL REPORT Page 1 of 3 This document contains private and confidential health information protected by state and federal law. © 1995-2019 Laboratory Corporation of America® Holdings If you have received this document in error, please call 800-859-6046 All Rights Reserved - Enterprise Report Version: 1.00 1 Patient Report Patient: SAMPLE REPORT, NORMAL Specimen ID: 331-883-9001-0 DOB: 01/01/2010 Patient ID: Control ID: Date collected: 11/27/2019 0000 Local TESTS RESULT FLAG UNITS REFERENCE INTERVAL LAB interpreted in the context of clinical findings, family history, and other laboratory testing. As with all PCR tests, the possibility cannot be ruled out that a rare polymorphism or unusual variant alters amplification and leads to a false negative result. Genetic counseling is recommended. Additional Comments 01 If testing was performed due to a family history of MODY, genetic testing of an affected family member could allow more accurate risk assessment. Methods and Limitations 01 Analysis is performed using bidirectional Sanger sequencing of the exons and splice junctions for each gene analyzed. Copy number variants (CNVs) are detected by semi-quantitative PCR. Analytical sensitivity is estimated to be >99% for single nucleotide variants and small insertions/deletions, while clinical sensitivity can vary with the selection criteria and is predicted to be at least 85% (Colclough, PMID 24518839; Ellard, PMID 17828387). Variant classification is consistent with ACMG standards and guidelines (Richards, PMID 25741868). A variant of uncertain significance (VUS) is a classification based on inadequate or conflicting evidence and should not be used in clinical decision making. This assay reports pathogenic or likely pathogenic variants and VUS©s, and benign or likely benign variants are not reported. Numbering and nomenclature use the recommendations of the Human Genome Variation Society (http://www.hgvs.org) and the transcript versions listed above. This analysis does not detect germline mosaicism, large chromosomal rearrangements that do not alter copy number, and regions or genes not included in this test. Variant classification and/or interpretation may change over time if more information becomes available. False positive or negative results may occur for reasons that include: genetic variants that affect the assay, blood transfusions, mosaicism, mislabeled samples, or erroneous representation of family relationships. This test was developed and its performance characteristics determined by LabCorp. It has not been cleared or approved by the Food and Drug Administration. References 01 1. Bellanne-Chantelot C et al. Large genomic rearrangements in the hepatocyte nuclear factor-1beta (TCF2) gene are the most frequent cause of maturity-onset diabetes of the young type 5. Diabetes 54(11): 3126-32, 2005. PMID 16249435 2. Ellard S et al. Partial and whole gene deletion mutations of the GCK and HNF1A genes in maturity-onset diabetes of the young. Diabetologia 50(11) : 2313-17, 2007. Date Issued: 12/04/19 1919 ET FINAL REPORT Page 2 of 3 This document contains private and confidential health information protected by state and federal law. © 1995-2019 Laboratory Corporation of America® Holdings If you have received this document in error, please call 800-859-6046 All Rights Reserved - Enterprise Report Version: 1.00 1 Patient Report Patient: SAMPLE REPORT, NORMAL Specimen ID: 331-883-9001-0 DOB: 01/01/2010 Patient ID: Control ID: Date collected: 11/27/2019 0000 Local TESTS RESULT FLAG UNITS REFERENCE INTERVAL LAB PMID 17828387 3. Ellard S and Colclough K. Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 27(9): 854-69, 2006. PMID 16917892 4. Gloyn AL. Glucokinase (GCK) mutations in hyper- and hypoglycemia: maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemia of infancy. Hum Mutat 22(5): 353-62, 2003. PMID 14517946 5. Hattersley AT and Patel KA. Precision diabetes: learning from monogenic diabetes. Diabetologia 60(5): 769-77, 2017. PMID 28314945 6. Osbak KK et al. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum Mutat 30(11): 1512-26, 2009. PMID 19790256 This case has been reviewed, approved, interpreted and electronically signed by Toni R. Prezant, PhD. 01 ES Esoterix Inc Dir: Samuel Pepkowitz, MD 4301 Lost Hills Road, Calabasas Hills, CA 91301-5358 For inquiries, the physician may contact Branch: 800-859-6046 Lab: 888-690-3935 Date Issued: 12/04/19 1919 ET FINAL REPORT Page 3 of 3 This document contains private and confidential health information protected by state and federal law. © 1995-2019 Laboratory Corporation of America® Holdings If you have received this document in error, please call 800-859-6046 All Rights Reserved - Enterprise Report Version: 1.00 1 Patient Report Specimen ID: 331-883-9002-0 Acct #: 90071835 Phone: (818) 880-8040 Rte: 00 Control ID: ESOTERIX IN-HOUSE TESTING SAMPLE REPORT, ABNORMAL 4301 LOST HILLS RD CALABASAS CA 91301 Patient Details Specimen Details Physician Details DOB: 01/01/2010 Date collected: 11/27/2019 0000 Local Ordering: Age(y/m/d): 009/10/26 Date received: 11/27/2019 Referring: Gender: M SSN: Date entered: 11/27/2019 ID: Patient ID: Date reported: 12/04/2019 0000 ET NPI: Ordered Items MODY Genetic Profile TESTS RESULT FLAG UNITS REFERENCE INTERVAL LAB MODY Genetic Profile MODY Genetic Profile 01 Maturity onset diabetes of the young (MODY) is a suspected diagnosis in young non-obese patients who lack an auto-immune cause for diabetes and who have a family history of diabetes in successive generations. The majority of MODY cases are due to pathogenic variants in one of four genes (ADA Guidelines 2019, PMID 30559228). Identifying a pathogenic variant in one of these MODY genes can lead to improved treatment, increased surveillance for related symptoms, and earlier detection in currently asymptomatic family members. GCK encodes the enzyme glucokinase, a key regulator of glucose metabolism in pancreatic beta cells. The three HNF (hepatic nuclear factor) genes encode transcription factors that regulate gene expression in the pancreas. MODY # Gene Chromosome RefSeq Transcript location (Gene) MODY 3 HNF1A 12q24.31 NG_011731.2 NM_000545.6 MODY 1 HNF4A 20q13.12 NG_009818.1 NM_175914.4 MODY 5 HNF1B 17q12 NG_013019.2 NM_000458.3 MODY 2 GCK 7p13 NG_008847.2 NM_000162.5 Preauthorization 01 Result 01 Pathogenic variant detected GENE: HNF1A VARIANT: c.872dupC (p.G292fs, legacy nomenclature: P291fs) No additional sequence or copy number variants of clinical significance were detected for any of the genes tested in this panel. Interpretation 01 A heterozygous DNA sequence change (present in one copy) was detected in this individual. The insertion of a C nucleotide at position c.872 in exon 4 of the HNF1A gene (c.872dupC) is the most common pathogenic mutation in Date Issued: 12/04/19 1921 ET FINAL REPORT Page 1 of 4 This document contains private and confidential health information protected by state and federal law. © 1995-2019 Laboratory Corporation of America® Holdings If you have received this document in error, please call 800-859-6046 All Rights Reserved - Enterprise Report Version: 1.00 1 Patient Report Patient: SAMPLE REPORT, ABNORMAL Specimen ID: 331-883-9002-0 DOB: 01/01/2010 Patient ID: Control ID: Date collected: 11/27/2019 0000 Local TESTS RESULT FLAG UNITS REFERENCE INTERVAL LAB HNF1A-MODY and is expected to result in a frameshift beginning after the proline (P) at codon 291 of the HNF1-alpha protein. Although the first altered amino acid is glycine (G) in codon 292 (p.G292fs), the variant is historically referred to as P291fs or P291fsinsC.
Recommended publications
  • Abstracts from the 9Th Biennial Scientific Meeting of The
    International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):15 DOI 10.1186/s13633-017-0054-x MEETING ABSTRACTS Open Access Abstracts from the 9th Biennial Scientific Meeting of the Asia Pacific Paediatric Endocrine Society (APPES) and the 50th Annual Meeting of the Japanese Society for Pediatric Endocrinology (JSPE) Tokyo, Japan. 17-20 November 2016 Published: 28 Dec 2017 PS1 Heritable forms of primary bone fragility in children typically lead to Fat fate and disease - from science to global policy a clinical diagnosis of either osteogenesis imperfecta (OI) or juvenile Peter Gluckman osteoporosis (JO). OI is usually caused by dominant mutations affect- Office of Chief Science Advsor to the Prime Minister ing one of the two genes that code for two collagen type I, but a re- International Journal of Pediatric Endocrinology 2017, 2017(Suppl 1):PS1 cessive form of OI is present in 5-10% of individuals with a clinical diagnosis of OI. Most of the involved genes code for proteins that Attempts to deal with the obesity epidemic based solely on adult be- play a role in the processing of collagen type I protein (BMP1, havioural change have been rather disappointing. Indeed the evidence CREB3L1, CRTAP, LEPRE1, P4HB, PPIB, FKBP10, PLOD2, SERPINF1, that biological, developmental and contextual factors are operating SERPINH1, SEC24D, SPARC, from the earliest stages in development and indeed across generations TMEM38B), or interfere with osteoblast function (SP7, WNT1). Specific is compelling. The marked individual differences in the sensitivity to the phenotypes are caused by mutations in SERPINF1 (recessive OI type obesogenic environment need to be understood at both the individual VI), P4HB (Cole-Carpenter syndrome) and SEC24D (‘Cole-Carpenter and population level.
    [Show full text]
  • Abstracts from the 50Th European Society of Human Genetics Conference: Electronic Posters
    European Journal of Human Genetics (2019) 26:820–1023 https://doi.org/10.1038/s41431-018-0248-6 ABSTRACT Abstracts from the 50th European Society of Human Genetics Conference: Electronic Posters Copenhagen, Denmark, May 27–30, 2017 Published online: 1 October 2018 © European Society of Human Genetics 2018 The ESHG 2017 marks the 50th Anniversary of the first ESHG Conference which took place in Copenhagen in 1967. Additional information about the event may be found on the conference website: https://2017.eshg.org/ Sponsorship: Publication of this supplement is sponsored by the European Society of Human Genetics. All authors were asked to address any potential bias in their abstract and to declare any competing financial interests. These disclosures are listed at the end of each abstract. Contributions of up to EUR 10 000 (ten thousand euros, or equivalent value in kind) per year per company are considered "modest". Contributions above EUR 10 000 per year are considered "significant". 1234567890();,: 1234567890();,: E-P01 Reproductive Genetics/Prenatal and fetal echocardiography. The molecular karyotyping Genetics revealed a gain in 8p11.22-p23.1 region with a size of 27.2 Mb containing 122 OMIM gene and a loss in 8p23.1- E-P01.02 p23.3 region with a size of 6.8 Mb containing 15 OMIM Prenatal diagnosis in a case of 8p inverted gene. The findings were correlated with 8p inverted dupli- duplication deletion syndrome cation deletion syndrome. Conclusion: Our study empha- sizes the importance of using additional molecular O¨. Kırbıyık, K. M. Erdog˘an, O¨.O¨zer Kaya, B. O¨zyılmaz, cytogenetic methods in clinical follow-up of complex Y.
    [Show full text]
  • UNSCEAR 2001 Report to the General Assembly, with Scientific Annex
    HEREDITARY EFFECTS OF RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2001 Report to the General Assembly, with Scientific Annex UNITED NATIONS HEREDITARY EFFECTS OF RADIATION United Nations Scientific Committee on the Effects of Atomic Radiation UNSCEAR 2001 Report to the General Assembly, with Scientific Annex UNITED NATIONS New York, 2001 NOTE The report of the Committee without its scientific annex appears as Official Records of the General Assembly. Fifty-sixth Session, Supplement No. 46 (N56146). The designation employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the pad of the Secretariat of the United Nationsconcerning the legal status of any country, temtory, city orarea, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The country names used in this document are, In most cases, those that were in use at the time the data were collected or the text prepared. In othercases, however, the names have been updated, where this was posslble and appropriate, to reflect political changes. UNITED NATIONS PUBLICATION Sales No. E.O1 .IX.2 ISBN 92-1-1 42244-2 Report of the United Nations Scientific Committee on the Effects of Atomic Radiation to the General Assembly 1. During the past few years, the United Nations 4. The Committee wishes to acknowledge the assistance Scientific Committee on the Effects of Atomic Radiation1 of the consultant, K. Sankaranarayanan, in the preparation has undertaken broad reviews of the sources and effects of of the scientific annex and the advice of the international ionizing radiation.
    [Show full text]
  • Genetic, Metabolic and Clinical Characteristics of Maturity Onset Diabetes of the Young
    European Journal of Endocrinology (1998) 138 233±239 ISSN 0804-4643 REVIEW Genetic, metabolic and clinical characteristics of maturity onset diabetes of the young Gilberto Velho and Philippe Froguel1 INSERM U-342, HoÃpital Saint Vincent de Paul, Paris, France and 1CNRS EP10, Institut Pasteur de Lille et CHU, Lille, France (Correspondence should be addressed to G Velho, INSERM U-342, HoÃpital Saint Vincent de Paul, 82 Avenue Denfert Rochereau, 75014 Paris, France) Abstract Maturity onset diabetes of the young (MODY) is a genetically and clinically heterogeneous subtype of non-insulin-dependent diabetes mellitus (NIDDM) characterised by early onset, autosomal dominant inheritance and a primary defect in insulin secretion. To date, three MODY genes have been identi®ed on chromosomes 20q (MODY1/hepatic nuclear factor (HNF)-4a), 7p (MODY2/glucokinase) and 12q (MODY3/HNF-1a). Mutations in MODY2/glucokinase result in mild chronic hyperglycaemia as a result of reduced pancreatic beta-cell responsiveness to glucose, and decreased net accumulation of hepatic glycogen and increased hepatic gluconeogenesis after meals. In contrast, MODY1 and MODY3 are characterised by severe insulin secretory defects, and by major hyperglycaemia associated with microvascular complications. The role of the three known MODY genes in susceptibility to the more common late-onset NIDDM remain uncertain. Genetic studies seem to exclude a role as major susceptibility genes, but leave unresolved whether they may have a minor role in a polygenic context or an important role in particular populations. European Journal of Endocrinology 138 233±239 MODY is a monogenic form of NIDDM MODY3/HNF-1a (11, 12) respectively, can cause this form of diabetes.
    [Show full text]
  • Mat Kadi Tora Tutti O Al Ut Hit Hitta Atuh
    MAT KADI TORA TUTTI USO AL20180235194A1 UT HIT HITTA ATUH ( 19) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2018 /0235194 A1 Fahrenkrug et al. (43 ) Pub . Date : Aug . 23, 2018 ( 54 ) MULTIPLEX GENE EDITING Publication Classification (51 ) Int. Ci. ( 71 ) Applicant: Recombinetics , Inc ., Saint Paul, MN A01K 67/ 027 (2006 . 01 ) (US ) C12N 15 / 90 ( 2006 .01 ) (72 ) Inventors : Scott C . Fahrenkrug, Minneapolis , (52 ) U . S . CI. MN (US ) ; Daniel F . Carlson , CPC .. .. A01K 67 / 0276 (2013 . 01 ) ; C12N 15 / 907 Woodbury , MN (US ) ( 2013 .01 ) ; A01K 67 /0275 ( 2013 .01 ) ; A01K 2267/ 02 (2013 .01 ) ; AOIK 2217 / 15 (2013 .01 ) ; AOIK 2227 / 108 ( 2013 .01 ) ; AOIK 2217 /07 (21 ) Appl. No. : 15 /923 , 951 ( 2013 .01 ) ; A01K 2227/ 101 (2013 .01 ) ; AOIK ( 22 ) Filed : Mar. 16 , 2018 2217 /075 ( 2013 .01 ) (57 ) ABSTRACT Related U . S . Application Data Materials and methods for making multiplex gene edits in (62 ) Division of application No . 14 /698 ,561 , filed on Apr. cells and are presented . Further methods include animals 28 , 2015, now abandoned . and methods of making the same . Methods of making ( 60 ) Provisional application No . 61/ 985, 327, filed on Apr. chimeric animals are presented , as well as chimeric animals . 28 , 2014 . Specification includes a Sequence Listing . Patent Application Publication Aug . 23 , 2018 Sheet 1 of 13 US 2018 / 0235194 A1 GENERATION OF HOMOZYGOUS CATTLE EDITED AT ONE ALLELE USING SINGLE EDITS Edit allele , Raise FO to Mate FO enough times Raise F1s to Mate F1 siblings Clone cell , sexual maturity , to produce enough F1 sexualmaturity , to make Implant, Gestate 2 years generation carrying 2 years homozygous KO , 9 months , birth edited allele to mate 9 months of FO with each other Generation Primary Fibroblasts ? ? ? Time, years FIG .
    [Show full text]
  • Genome-Wide Meta-Analysis Identifies Five New Susceptibility Loci for Pancreatic Cancer
    Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Klein, A. P., B. M. Wolpin, H. A. Risch, R. Z. Stolzenberg-Solomon, E. Mocci, M. Zhang, F. Canzian, et al. 2018. “Genome-wide meta- analysis identifies five new susceptibility loci for pancreatic cancer.” Nature Communications 9 (1): 556. doi:10.1038/ s41467-018-02942-5. http://dx.doi.org/10.1038/s41467-018-02942-5. Published Version doi:10.1038/s41467-018-02942-5 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:35015015 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ARTICLE DOI: 10.1038/s41467-018-02942-5 OPEN Genome-wide meta-analysis identifies five new susceptibility loci for pancreatic cancer Alison P. Klein et al.# In 2020, 146,063 deaths due to pancreatic cancer are estimated to occur in Europe and the United States combined. To identify common susceptibility alleles, we performed the largest pancreatic cancer GWAS to date, including 9040 patients and 12,496 controls of European 1234567890():,; ancestry from the Pancreatic Cancer Cohort Consortium (PanScan) and the Pancreatic Cancer Case-Control Consortium (PanC4). Here, we find significant evidence of a novel association at rs78417682 (7p12/TNS3, P = 4.35 × 10−8). Replication of 10 promising signals in up to 2737 patients and 4752 controls from the PANcreatic Disease ReseArch (PAN- DoRA) consortium yields new genome-wide significant loci: rs13303010 at 1p36.33 (NOC2L, P = 8.36 × 10−14), rs2941471 at 8q21.11 (HNF4G, P = 6.60 × 10−10), rs4795218 at 17q12 (HNF1B, P = 1.32 × 10−8), and rs1517037 at 18q21.32 (GRP, P = 3.28 × 10−8).
    [Show full text]
  • The Mutation Spectrum of Maturity Onset Diabetes of the Young (MODY)-Associated Genes Among Western Siberia Patients
    Journal of Personalized Medicine Article The Mutation Spectrum of Maturity Onset Diabetes of the Young (MODY)-Associated Genes among Western Siberia Patients Dinara E. Ivanoshchuk 1,2,* , Elena V. Shakhtshneider 1,2 , Oksana D. Rymar 2, Alla K. Ovsyannikova 2, Svetlana V. Mikhailova 1, Veniamin S. Fishman 1, Emil S. Valeev 1, Pavel S. Orlov 1,2 and Mikhail I. Voevoda 1 1 Federal Research Center Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; [email protected] (E.V.S.); [email protected] (S.V.M.); [email protected] (V.S.F.); [email protected] (E.S.V.); [email protected] (P.S.O.); [email protected] (M.I.V.) 2 Institute of Internal and Preventive Medicine—Branch of Institute of Cytology and Genetics, SB RAS, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia; [email protected] (O.D.R.); [email protected] (A.K.O.) * Correspondence: [email protected] or [email protected]; Tel.: +7-(383)-363-4963; Fax: +7-(383)-333-1278 Abstract: Maturity onset diabetes of the young (MODY) is a congenital form of diabetes characterized by onset at a young age and a primary defect in pancreatic-β-cell function. Currently, 14 subtypes of MODY are known, and each is associated with mutations in a specific gene: HNF4A, GCK, HNF1A, PDX1, HNF1B, NEUROD1, KLF11, CEL, PAX4, INS, BLK, KCNJ11, ABCC8, and APPL1. The most common subtypes of MODY are associated with mutations in the genes GCK, HNF1A, HNF4A, and HNF1B.
    [Show full text]
  • OZGROW DIAGNOSIS CODES H Growth Disorders
    OZGROW DIAGNOSIS CODES H Growth Disorders HA Short Stature (unspecified) HAA Endocrine HAAA Hypothyroid (Also code NA. Code JBBBEB if due to secondary hyperprolactinaemia) HAAB Cushings (Also code AABA + MAB). HAAC Genetic GH deficiency HAAD Growth Hormone Deficiency HAADA Isolated GH deficiency HAADAA Congenital idiopathic HAADAAA Partial GH deficiency HAADAAZ Other (Specify) HAADAB Pituitary hypoplasia and aplasia (also code JBAA) HAADAC Radiotherapy HAADACA Cranial > 24 Gy HAADACB Cranial >18Gy <=24Gy HAADACC Craniospinal HAADACZ Other (Specify) HAADAD Trauma HAADAE Malignancy HAADAEA Histiocytosis HAADAEB Leukaemia HAADAEC Glioma HAADAED Germinoma HAADAEE Astrocytoma HAADAEF Ependymona HAADAEG Medullablastoma HAADAEH Nasopharyngeal tumour HAADAEI Lymphoma HAADAEZ Other (Specify) HAADAF Neurosecretory HAADAG CNS malformation HAADAGA Septo optic dysplasia (Also code JAAA) HAADAGB Optic hypoplasia (Also code JAAB) HAADAGC Corpus callosum defect (Also Code JAAC) HAADAGD Midline palatal cleft HAADAGE Empty sella HAADAGZ Other (Specify) HAADAH Craniopharyngioma HAADAZ Other (Specify) 1 HAADB Multiple pituitary deficiencies HAADBA Congenital idiopathic HAADBB Pituitary hypoplasia and aplasia HAADBC Radiotherapy HAADBCA Cranial > 24 Gy HAADBCB Cranial >18Gy <=24Gy HAADBCC Craniospinal HAADBCZ Other (Specify) HAADBD Trauma HAADBE Malignancy HAADBEA Histiocytosis HAADBEB Leukaemia HAADBEC Glioma HAADBED Germinoma HAADBEE Astrocytoma HAADBEF Ependymona HAADBEG Medullablastoma HAADBEH Nasopharyngeal tumour HAADBEI Lymphoma HAADBEZ Other (Specify)
    [Show full text]
  • Of Analyses January 2019 Imprint
    Index of Analyses January 2019 Imprint We reserve the right for errors and alterations. Our laboratory is part of the SYNLAB group. © 3rd edition By SYNLAB Medizinisches Versorgungszentrum Humane Genetik Medical Practice and Laboratory for Human genetics 2 Medical Director Dr. med. Dr. rer. nat. Claudia Nevinny-Stickel-Hinzpeter Consultant Human geneticist Postal Address Lindwurmstrasse 23 D-80337 Munich / Germany Telephone and Fax Reception +49 (0)89. 54 86 29 -0 Invoicing -0 Fax -243 Molecular Genetics -554 Cytogenetics -559 Office hours Monday – Friday 8.30 – 18.00 [email protected] www.humane-genetik.de 3 Table of contents Preanalytics 5 Molecular genetic analyses 8 Cardiac diseases 8 Complex syndromes 13 Connective Tissue Disorders 23 Endocrinology 26 Eye diseases 29 Fertility disorders 30 Gastrointestinal diseases 32 Hematology 33 Hemophilia 35 Hereditary cancer syndromes 36 Immune disorders 44 Intersexuality 45 Kidney diseases 46 Liver diseases 48 Lung diseases 50 Metabolic diseases 51 Mitochondrial diseases 61 Neurodegenerative diseases 64 Neuromuscular diseases /Neuropathies 69 Nutrigenetics 74 Pancreatic diseases 75 Periodic fever 76 Pharmacogenetics 80 Short stature 82 Thrombophilia/Atherosclerosis 84 Uniparental disomies 90 Kinship Analyses 91 Cytogenetics and molecular cytogenetics 92 Prenatal chromosome diagnostics 92 Postnatal chromosome diagnostics 94 Molecular cytogenetics 96 Chromosomal microarray diagnostics 99 Quality assurance 100 Index 104 Index gene names 116 4 Preanalytics Testing Material For genetic testing nuclei-containing cells of the patient are required, which are either cultivated or subjected to DNA extraction. Cells can be harvested from peripheral blood, buccal swabs, amniotic fluid, chorionic villi (CVS), or tissue samples. In case of blood collection, no special preparation of the patient, e.g.
    [Show full text]
  • HNF1A Gene HNF1 Homeobox A
    HNF1A gene HNF1 homeobox A Normal Function The HNF1A gene provides instructions for making a protein called hepatocyte nuclear factor-1 alpha (HNF-1a ). The HNF-1a protein acts as a transcription factor, which means it attaches (binds) to specific regions of DNA and helps control the activity of certain genes. While this protein is found in several tissues and organs, it seems to be especially important in the pancreas and liver. Regulation of gene activity by the HNF-1a protein is critical for the growth and development of beta cells in the pancreas. Beta cells produce and release (secrete) the hormone insulin. Insulin helps regulate blood sugar levels by controlling how much sugar (in the form of glucose) is passed from the bloodstream into cells to be used as energy. The HNF-1a protein also controls genes involved in liver development. By controlling genes that regulate cell growth and survival, the HNF-1a protein is thought to act as a tumor suppressor, which means that it helps prevent cells from growing and dividing too rapidly or in an uncontrolled way. The structure of HNF-1a includes several important regions that help it carry out its functions. One of the regions, called the dimerization domain, is critical for protein interactions. This region allows HNF-1a proteins to interact with each other or with other proteins that have a similar structure, creating a two-protein unit (dimer) that functions as a transcription factor. Another region, known as the DNA binding domain, binds to specific areas of DNA, allowing the dimer to control gene activity.
    [Show full text]
  • Introduction to ISPAD Clinical Practice Consensus Guidelines 2014 Compendium
    Pediatric Diabetes 2014: 15(Suppl. 20): 1–3 © 2014 John Wiley & Sons A/S. doi: 10.1111/pedi.12182 Published by John Wiley & Sons Ltd. All rights reserved Pediatric Diabetes Editorial Introduction to ISPAD Clinical Practice Consensus Guidelines 2014 Compendium This supplement of Pediatric Diabetes is an update of diabetes care to India, Bangladesh, and a number of the guideline chapters that were originally individually countries in Africa. Additional initiatives by ISPAD published in the journal between 2006 and 2008, and as to improve diabetes care for children and adolescents a single compendium edition in 2009. The chapters have worldwide include its ‘science schools’ for physicians been modified and updated to reflect the significant and for other health care professions, its postgraduate advances in scientific knowledge and clinical care that courses and its Diabetes in Practice (DIP) programme, have occurred since then. These updated guidelines which have been held in a number of countries also are available on the International Society for around the world. ISPAD also provides tutoring in Pediatric and Adolescent Diabetes (ISPAD) website: collaboration with the European Society for Pediatric www.ispad.org. Endocrinology (ESPE) at Pediatric Endocrine and In 2007, the total child population of the world Diabetes Training Center in Africa (PETCA) in (0–14 yr) was estimated to be 1.8 billion, of whom Nairobi and at Pediatric Endocrine and Diabetes 0.02% had diabetes. This means that approximately Training Center in West Africa (PETCWA) in Lagos 497 000 children around the world have diabetes, for fellows from Africa in pediatric diabetology and with 79 000 new cases diagnosed each year (1).
    [Show full text]
  • Endocrine Test Selection and Interpretation
    The Quest Diagnostics Manual Endocrinology Test Selection and Interpretation Fourth Edition The Quest Diagnostics Manual Endocrinology Test Selection and Interpretation Fourth Edition Edited by: Delbert A. Fisher, MD Senior Science Officer Quest Diagnostics Nichols Institute Professor Emeritus, Pediatrics and Medicine UCLA School of Medicine Consulting Editors: Wael Salameh, MD, FACP Medical Director, Endocrinology/Metabolism Quest Diagnostics Nichols Institute San Juan Capistrano, CA Associate Clinical Professor of Medicine, David Geffen School of Medicine at UCLA Richard W. Furlanetto, MD, PhD Medical Director, Endocrinology/Metabolism Quest Diagnostics Nichols Institute Chantilly, VA ©2007 Quest Diagnostics Incorporated. All rights reserved. Fourth Edition Printed in the United States of America Quest, Quest Diagnostics, the associated logo, Nichols Institute, and all associated Quest Diagnostics marks are the trademarks of Quest Diagnostics. All third party marks − ®' and ™' − are the property of their respective owners. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, and information storage and retrieval system, without permission in writing from the publisher. Address inquiries to the Medical Information Department, Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92690-6130. Previous editions copyrighted in 1996, 1998, and 2004. Re-order # IG1984 Forward Quest Diagnostics Nichols Institute has been
    [Show full text]