Improved Arithmetic in the Ideal Class Group of Imaginary Quadratic Number Fields with an Application to Integer Factoring

Total Page:16

File Type:pdf, Size:1020Kb

Improved Arithmetic in the Ideal Class Group of Imaginary Quadratic Number Fields with an Application to Integer Factoring University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2013-06-14 Improved Arithmetic in the Ideal Class Group of Imaginary Quadratic Number Fields with an Application to Integer Factoring Sayles, Maxwell Sayles, M. (2013). Improved Arithmetic in the Ideal Class Group of Imaginary Quadratic Number Fields with an Application to Integer Factoring (Unpublished master's thesis). University of Calgary, Calgary, AB. doi:10.11575/PRISM/26473 http://hdl.handle.net/11023/752 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Improved Arithmetic in the Ideal Class Group of Imaginary Quadratic Number Fields With an Application to Integer Factoring by Maxwell Sayles A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE DEPARTMENT OF COMPUTER SCIENCE CALGARY, ALBERTA May, 2013 c Maxwell Sayles 2013 Abstract This thesis proposes practical improvements to arithmetic and exponentiation in the ideal class group of imaginary quadratic number fields for the Intel x64 architecture. This is useful in tabulating the class number and class group structure, but also as an application to a novel integer factoring algorithm called \SuperSPAR". SuperSPAR builds upon SPAR using an idea from Sutherland, namely a bounded primorial steps search, as well as by using optimized double-based representations of exponents, and general improvements to arithmetic in the ideal class group. Since the target architecture has 64 bit machine words, we specialize two implementations of ideal class arithmetic: one using 64 bit arithmetic, and the other using 128 bit arithmetic. In each case, our results show an improvement in the average performance of ideal class arithmetic over reference implementations. Since much of the effort of ideal class arithmetic is in computing the extended greatest common divisor, this thesis studies the average perfor- mance of several implementations of this and shows an improvement for some over reference implementations. Dimitrov and Cooklev propose the double base number system, and Im- bert, Jacobson, and Schmidt propose a method of ideal class cubing. Using these ideas, we explore several techniques for exponentiation using 2,3 number systems and demonstrate an improvement in the average performance of exponentiation in the ideal class group over that of binary exponentiation. Lastly, each of these improvements are applied to our implemen- tation of the SuperSPAR factoring algorithm, and our results show an improvement in the average time to factor integers 49 bits to 62 bits in size. i Acknowledgements I would like to thank my supervisor, Dr. Michael J. Jacobson, Jr., for all of his great advice. I am certain that without his patience I would not have finished. I would also like to thank Dr. Andrew Sutherland for his reference implementation of SuperSPAR, and his polite willingness to answer all my questions. I would like to thank Dr. Arthur Schmidt for the idea of exploring a left-to-right binary extended GCD { this may be one of the most critical sub-algorithms in our implementation of SuperSPAR. Furthermore, I would like to thank Dr. Laurent Imbert for pointing out the variety of techniques to compute 2,3 representations, and for reviewing my reading list. In addition, I would like to thank my examining committee, Dr. Renate Scheidler and Dr. Kristine E. Bauer, for taking the time to read this thesis and for their valuable comments. Finally, I would like to thank my wife, Faye, for being by my side, and for her kind understanding, especially during \crunch time". Thank you all. ii Table of Contents Abstract ........................................ i Acknowledgements .................................. ii Table of Contents . iii List of Tables . vi List of Figures . vii 1 Motivation . 1 1.1 Organization and Contributions of this Thesis . 3 2 Ideal Arithmetic . 6 2.1 Quadratic Number Fields . 6 2.2 Ideals and the Class Group . 8 2.3 Ideal Arithmetic . 12 2.3.1 Reduced Representatives . 13 2.3.2 Ideal Class Multiplication . 14 2.3.3 Fast Ideal Multiplication (NUCOMP) . 17 2.3.4 Fast Ideal Squaring (NUDUPL) . 20 2.3.5 Fast Ideal Cubing (NUCUBE) . 21 3 Exponentiation . 24 3.1 Binary Exponentiation . 25 3.2 Non-Adjacent Form Exponentiation . 25 3.3 Double-Base Number Systems . 28 3.3.1 Chained 2,3 Representations . 29 3.3.2 Unchained 2,3 Representations . 30 3.4 Methods for Computing 2,3 Chains/Representations . 34 3.4.1 Right-to-Left Chains (from low-order to high-order) . 34 3.4.2 Left-to-Right Representations (from high-order to low-order) . 36 3.4.3 Pruned Tree of ±1 Nodes . 38 3.4.4 Shortest Additive 2,3 Chains . 39 3.5 Summary . 40 4 SuperSPAR . 42 4.1 SPAR . 42 4.1.1 Ambiguous Classes and the Factorization of the Discriminant . 43 4.1.2 SPAR Algorithm . 44 4.1.3 SPAR Complexity . 45 4.2 SuperSPAR . 46 4.2.1 Bounded Primorial Steps . 47 4.2.2 Primorial Steps for a Set . 49 4.2.3 SuperSPAR Algorithm . 50 4.3 Summary . 53 5 Extended Greatest Common Divisor Experiments . 54 5.1 The Euclidean Algorithm . 55 5.2 Right-to-Left Binary Extended GCD . 56 5.2.1 Windowed Right-to-Left Binary Extended GCD . 59 iii 5.3 Left-to-Right Binary Extended GCD . 61 5.4 Lehmer's Extended GCD . 63 5.5 Partial Extended GCD . 65 5.6 Specialized Implementations of the Extended GCD . 68 5.7 Experimental Results . 71 5.7.1 32-bit Extended GCDs . 73 5.7.2 64-bit Extended GCDs . 81 5.7.3 128-bit Extended GCDs . 88 5.8 Summary . 91 6 Ideal Arithmetic Experiments . 93 6.1 Specialized Implementations of Ideal Arithmetic . 95 6.2 Average Time for Operations . 100 6.3 Summary . 110 7 Exponentiation Experiments . 111 7.1 Binary and Non-Adjacent Form . 113 7.2 Right-to-Left 2,3 Chains . 113 7.3 Windowed Right-to-Left Chains . 115 7.4 Left-to-Right 2,3 Representations . 116 7.5 Pruned Trees . 118 7.6 Left-to-Right Best Approximations . 121 7.7 Additive 2,3 Chains . 123 7.8 Incremental Searching . 125 7.9 Big Exponents from Small Exponents . 126 7.10 Experimental Results . 127 7.11 Summary . 139 8 SuperSPAR Experiments . 140 8.1 Coprime Finding . 145 8.1.1 Coprime Sieve . 146 8.1.2 Coprime Wheel . 146 8.1.3 Comparison . 148 8.2 Lookup Tables . 149 8.2.1 Chaining with List Heads . 152 8.2.2 Open Addressing . 153 8.2.3 Chaining vs. Open Addressing . 153 8.3 Factorization of the Order of Ideal Classes . 153 8.3.1 Prime Power Bound . 155 8.3.2 Difference between the Order of Two Ideal Classes . 157 8.3.3 Best Multipliers . 159 8.3.4 Expected Number of Ideal Classes . 160 8.4 SuperSPAR Algorithm in Practice . 162 8.5 Search Bounds . 168 8.6 Empirical Search for Exponent and Step Count . 174 8.6.1 Two-Dimensional Ternary Search of a Noisy Surface . 179 8.7 Reference Implementation of SPAR . 184 8.8 Comparison to Other Factoring Implementations . 190 iv 9 Conclusions and Future Work . 196 9.1 Ideal Arithmetic . 197 9.2 Exponentiation . 198 9.3 Super2SPAR . 200 Bibliography . 202 v List of Tables 6.1 Relative Average Cost of Ideal Arithmetic. 103 7.1 Best 16 bit exponentiation techniques. 128 7.2 Average time (microseconds) to exponentiate 16 bit exponents. 129 8.1 The first 12 primorials. 149 e pi i 8.2 The probability.
Recommended publications
  • On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function
    mathematics Article On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function ŠtˇepánHubálovský 1,* and Eva Trojovská 2 1 Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic 2 Department of Mathematics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +420-49-333-2704 Received: 3 October 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Let Fn be the nth Fibonacci number. The order of appearance z(n) of a natural number n is defined as the smallest positive integer k such that Fk ≡ 0 (mod n). In this paper, we shall find all positive solutions of the Diophantine equation z(j(n)) = n, where j is the Euler totient function. Keywords: Fibonacci numbers; order of appearance; Euler totient function; fixed points; Diophantine equations MSC: 11B39; 11DXX 1. Introduction Let (Fn)n≥0 be the sequence of Fibonacci numbers which is defined by 2nd order recurrence Fn+2 = Fn+1 + Fn, with initial conditions Fi = i, for i 2 f0, 1g. These numbers (together with the sequence of prime numbers) form a very important sequence in mathematics (mainly because its unexpectedly and often appearance in many branches of mathematics as well as in another disciplines). We refer the reader to [1–3] and their very extensive bibliography. We recall that an arithmetic function is any function f : Z>0 ! C (i.e., a complex-valued function which is defined for all positive integer).
    [Show full text]
  • Lecture 3: Chinese Remainder Theorem 25/07/08 to Further
    Department of Mathematics MATHS 714 Number Theory: Lecture 3: Chinese Remainder Theorem 25/07/08 To further reduce the amount of computations in solving congruences it is important to realise that if m = m1m2 ...ms where the mi are pairwise coprime, then a ≡ b (mod m) if and only if a ≡ b (mod mi) for every i, 1 ≤ i ≤ s. This leads to the question of simultaneous solution of a system of congruences. Theorem 1 (Chinese Remainder Theorem). Let m1,m2,...,ms be pairwise coprime integers ≥ 2, and b1, b2,...,bs arbitrary integers. Then, the s congruences x ≡ bi (mod mi) have a simultaneous solution that is unique modulo m = m1m2 ...ms. Proof. Let ni = m/mi; note that (mi, ni) = 1. Every ni has an inversen ¯i mod mi (lecture 2). We show that x0 = P1≤j≤s nj n¯j bj is a solution of our system of s congruences. Since mi divides each nj except for ni, we have x0 = P1≤j≤s njn¯j bj ≡ nin¯ibj (mod mi) ≡ bi (mod mi). Uniqueness: If x is any solution of the system, then x − x0 ≡ 0 (mod mi) for all i. This implies that m|(x − x0) i.e. x ≡ x0 (mod m). Exercise 1. Find all solutions of the system 4x ≡ 2 (mod 6), 3x ≡ 5 (mod 7), 2x ≡ 4 (mod 11). Exercise 2. Using the Chinese Remainder Theorem (CRT), solve 3x ≡ 11 (mod 2275). Systems of linear congruences in one variable can often be solved efficiently by combining inspection (I) and Euclid’s algorithm (EA) with the Chinese Remainder Theorem (CRT).
    [Show full text]
  • Sequences of Primes Obtained by the Method of Concatenation
    SEQUENCES OF PRIMES OBTAINED BY THE METHOD OF CONCATENATION (COLLECTED PAPERS) Copyright 2016 by Marius Coman Education Publishing 1313 Chesapeake Avenue Columbus, Ohio 43212 USA Tel. (614) 485-0721 Peer-Reviewers: Dr. A. A. Salama, Faculty of Science, Port Said University, Egypt. Said Broumi, Univ. of Hassan II Mohammedia, Casablanca, Morocco. Pabitra Kumar Maji, Math Department, K. N. University, WB, India. S. A. Albolwi, King Abdulaziz Univ., Jeddah, Saudi Arabia. Mohamed Eisa, Dept. of Computer Science, Port Said Univ., Egypt. EAN: 9781599734668 ISBN: 978-1-59973-466-8 1 INTRODUCTION The definition of “concatenation” in mathematics is, according to Wikipedia, “the joining of two numbers by their numerals. That is, the concatenation of 69 and 420 is 69420”. Though the method of concatenation is widely considered as a part of so called “recreational mathematics”, in fact this method can often lead to very “serious” results, and even more than that, to really amazing results. This is the purpose of this book: to show that this method, unfairly neglected, can be a powerful tool in number theory. In particular, as revealed by the title, I used the method of concatenation in this book to obtain possible infinite sequences of primes. Part One of this book, “Primes in Smarandache concatenated sequences and Smarandache-Coman sequences”, contains 12 papers on various sequences of primes that are distinguished among the terms of the well known Smarandache concatenated sequences (as, for instance, the prime terms in Smarandache concatenated odd
    [Show full text]
  • Number Theory Course Notes for MA 341, Spring 2018
    Number Theory Course notes for MA 341, Spring 2018 Jared Weinstein May 2, 2018 Contents 1 Basic properties of the integers 3 1.1 Definitions: Z and Q .......................3 1.2 The well-ordering principle . .5 1.3 The division algorithm . .5 1.4 Running times . .6 1.5 The Euclidean algorithm . .8 1.6 The extended Euclidean algorithm . 10 1.7 Exercises due February 2. 11 2 The unique factorization theorem 12 2.1 Factorization into primes . 12 2.2 The proof that prime factorization is unique . 13 2.3 Valuations . 13 2.4 The rational root theorem . 15 2.5 Pythagorean triples . 16 2.6 Exercises due February 9 . 17 3 Congruences 17 3.1 Definition and basic properties . 17 3.2 Solving Linear Congruences . 18 3.3 The Chinese Remainder Theorem . 19 3.4 Modular Exponentiation . 20 3.5 Exercises due February 16 . 21 1 4 Units modulo m: Fermat's theorem and Euler's theorem 22 4.1 Units . 22 4.2 Powers modulo m ......................... 23 4.3 Fermat's theorem . 24 4.4 The φ function . 25 4.5 Euler's theorem . 26 4.6 Exercises due February 23 . 27 5 Orders and primitive elements 27 5.1 Basic properties of the function ordm .............. 27 5.2 Primitive roots . 28 5.3 The discrete logarithm . 30 5.4 Existence of primitive roots for a prime modulus . 30 5.5 Exercises due March 2 . 32 6 Some cryptographic applications 33 6.1 The basic problem of cryptography . 33 6.2 Ciphers, keys, and one-time pads .
    [Show full text]
  • Introduction to Number Theory CS1800 Discrete Math; Notes by Virgil Pavlu; Updated November 5, 2018
    Introduction to Number Theory CS1800 Discrete Math; notes by Virgil Pavlu; updated November 5, 2018 1 modulo arithmetic All numbers here are integers. The integer division of a at n > 1 means finding the unique quotient q and remainder r 2 Zn such that a = nq + r where Zn is the set of all possible remainders at n : Zn = f0; 1; 2; 3; :::; n−1g. \mod n" = remainder at division with n for n > 1 (n it has to be at least 2) \a mod n = r" means mathematically all of the following : · r is the remainder of integer division a to n · a = n ∗ q + r for some integer q · a; r have same remainder when divided by n · a − r = nq is a multiple of n · n j a − r, a.k.a n divides a − r EXAMPLES 21 mod 5 = 1, because 21 = 5*4 +1 same as saying 5 j (21 − 1) 24 = 10 = 3 = -39 mod 7 , because 24 = 7*3 +3; 10=7*1+3; 3=7*0 +3; -39=7*(-6)+3. Same as saying 7 j (24 − 10) or 7 j (3 − 10) or 7 j (10 − (−39)) etc LEMMA two numbers a; b have the same remainder mod n if and only if n divides their difference. We can write this in several equivalent ways: · a mod n = b mod n, saying a; b have the same remainder (or modulo) · a = b( mod n) · n j a − b saying n divides a − b · a − b = nk saying a − b is a multiple of n (k is integer but its value doesnt matter) 1 EXAMPLES 21 = 11 (mod 5) = 1 , 5 j (21 − 11) , 21 mod 5 = 11 mod 5 86 mod 10 = 1126 mod 10 , 10 j (86 − 1126) , 86 − 1126 = 10k proof: EXERCISE.
    [Show full text]
  • On Sets of Coprime Integers in Intervals Paul Erdös, András Sárközy
    On sets of coprime integers in intervals Paul Erdös, András Sárközy To cite this version: Paul Erdös, András Sárközy. On sets of coprime integers in intervals. Hardy-Ramanujan Journal, Hardy-Ramanujan Society, 1993, 16, pp.1 - 20. hal-01108688 HAL Id: hal-01108688 https://hal.archives-ouvertes.fr/hal-01108688 Submitted on 23 Jan 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Hardy-Ramanujan Joumal Vol.l6 (1993) 1-20 On sets of coprime integers in intervals P. Erdos and Sarkozy 1 1. Throughout this paper we use the following notations : ~ denotes the set of the integers. N denotes the set of the positive integers. For A C N,m E N,u E ~we write .A(m,u) ={f.£; a E A, a= u(mod m)}. IP(n) denotes Euler';; function. Pk dznotcs the kth prime: P1 = 2,p2 = 3,· ··and k we put Pk = IJP•· If k E N and k ~ 2, then .PA:(A) denotes the number of i=l the k-tuples (at,···, ak) such that at E A,·· · , ak E A,ai < a2 < · · · < ak and (at,aj = 1) for 1::; i < j::; k.
    [Show full text]
  • Dynamical Systems and Infinite Sequences of Coprime Integers
    Dynamical systems and infinite sequences of coprime integers Max van Spengler 3935892 Supervisor: Damaris Schindler Departement Wiskunde Universiteit Utrecht Nederland 31-05-2018 Contents 1 Introduction 2 1.1 Goldbach's proof . 3 1.2 Erd}os'proof . 4 1.3 Furstenberg's proof . 5 2 Theoretical background 7 2.1 Number theory . 7 2.2 Dynamical systems . 10 2.3 Additional theory . 10 3 Constructing infinitely many primes 16 3.1 A general method when 0 is strictly periodic . 17 3.2 General methods when 0 is periodic . 21 3.3 The case where 0 has a wandering orbit . 25 4 New results 29 4.1 A restriction on the weak abc-conjecture . 29 4.2 Applying the exponential bound . 30 5 Summary 32 1 1 Introduction Since the Hellenistic period, prime numbers and their properties have been a fundamental object of interest in mathematics [MB11]. The defining property of such a number is that it is only divisible by 1 and itself. Their counterparts are the composite numbers. These are numbers defined as being divisible by at least one number other than 1 or themselves. One of the earliest results obtained from research into these numbers is now known as the fundamental theorem of arithmetic. Fundamental theorem of arithmetic. Every natural number > 1 is either prime or can be written, up to the order of factors, as a unique product of primes. Proof. We will give a proof by induction. First, note that 2 and 3 are prime. Now assume the theorem to be true for all numbers between 1 and n + 1 for some n 2 N, so each number in between can be written as a unique product of primes.
    [Show full text]
  • Download This PDF File
    International Journal of Electrical and Computer Engineering (IJECE) Vol. 10, No. 2, April 2020, pp. 1469~1476 ISSN: 2088-8708, DOI: 10.11591/ijece.v10i2.pp1469-1476 1469 The new integer factorization algorithm based on fermat’s factorization algorithm and euler’s theorem Kritsanapong Somsuk Department of Computer and Communication Engineering, Faculty of Technology, Udon Thani Rajabhat University, Udon Thani, 41000, Thailand Article Info ABSTRACT Article history: Although, Integer Factorization is one of the hard problems to break RSA, many factoring techniques are still developed. Fermat’s Factorization Received Apr 7, 2019 Algorithm (FFA) which has very high performance when prime factors are Revised Oct 7, 2019 close to each other is a type of integer factorization algorithms. In fact, there Accepted Oct 20, 2019 are two ways to implement FFA. The first is called FFA-1, it is a process to find the integer from square root computing. Because this operation takes high computation cost, it consumes high computation time to find the result. Keywords: The other method is called FFA-2 which is the different technique to find prime factors. Although the computation loops are quite large, there is no Computation loops square root computing included into the computation. In this paper, Euler’s theorem the new efficient factorization algorithm is introduced. Euler’s theorem is Fermat’s factorization chosen to apply with FFA to find the addition result between two prime Integer factorization factors. The advantage of the proposed method is that almost of square root Prime factors operations are left out from the computation while loops are not increased, they are equal to the first method.
    [Show full text]
  • Theory of Numbers
    Unit 1 Theory of Numbers Natural Numbers Thenumbers1,2,3,…,whichareusedincountingarecalled naturalnumbers or positiveintegers. Basic Properties of Natural Numbers In the system of natural numbers, we have two ‘operations’ addition and multiplication with the followingproperties. Let x,, y z denotearbitrarynaturalnumbers,then 1. x+ y isanaturalnumber i.e., thesumoftwonaturalnumberisagainanaturalnumber. 2. Commutative law of addition x+ y = y + x 3. Associative law of addition x+()() y + z = x + y + z 4. x⋅ y isanaturalnumber i.e., productoftwonaturalnumbersisanaturalnumber. 5. Commutative law of multiplication x⋅ y = y ⋅ x 6. Associative law of multiplication x⋅()() y ⋅ z = x ⋅ y ⋅ z 7. Existence of multiplicative identity a⋅1 = a 8. Distributive law x() y+ z = xy + xz Divisibility of Integers An integerx ≠ 0 divides y, if there exists an integer a such that y= ax and thus we write as x| y ( x divides y). If x doesnotdivides y,wewriteas x\| y (x doesnotdivides y ) [Thiscanalsobestatedas y isdivisibleby x or x isadivisorof y or y isamultipleof x]. Properties of Divisibility 1. x | y and y | z ⇒ x | z 2. x | y and x | z ⇒x| ( ky± lz ) forall k, l∈ z. z = setofallintegers. 3. x | y and y | x ⇒ x= ± y 4. x | y,where x>0, y > 0 ⇒x≤ y 5. x | y ⇒ x | yz foranyinteger z. 6. x | y iff nx | ny,where n ≠ 0. 2 IndianNational MathematicsOlympiad Test of Divisibility Divisibility by certain special numbers can be determined without actually carrying out the process of division.Thefollowingtheoremsummarizestheresult: ApositiveintegerNisdivisibleby • 2ifandonlyifthelastdigit(unit'sdigit)iseven.
    [Show full text]
  • Number Theory
    Chapter 3 Number Theory Part of G12ALN Contents Algebra and Number Theory G12ALN cw '17 0 Review of basic concepts and theorems The contents of this first section { well zeroth section, really { is mostly repetition of material from last year. Notations: N = f1; 2; 3;::: g, Z = f:::; −2; −1; 0; 1; 2;::: g. If A is a finite set, I write #A for the number of elements in A. Theorem 0.1 (Long division). If a; b 2 Z and b > 0, then there are unique integers q and r such that a = q b + r with 0 6 r < b: Proof. Theorem 3.2 in G11MSS. The integer q is called the quotient and r the remainder. We say that b divides a if the remainder is zero. It will be denoted by b j a. There is an interesting variant to this: There are unique integers q0 and 0 0 0 b 0 b 0 r with a = q b + r and − 2 < r 6 2 . Instead of remainder, r is called the least residue of a modulo b. Example. Take a = 62 and b = 9. Then the quotient is q = 6 and the remainder is r = 8. The least residue is r0 = −1. 0.1 The greatest common divisor §Definition. Let a and b be integers not both equal to 0. The greatest ¤ common divisor of a and b is the largest integer dividing both a and b. We will denote it by (a; b). For convenience, we set (0; 0) = 0. ¦ ¥ Let a; b 2 Z.
    [Show full text]
  • The Probability That Two Random Integers Are Coprime Julien Bureaux, Nathanaël Enriquez
    The probability that two random integers are coprime Julien Bureaux, Nathanaël Enriquez To cite this version: Julien Bureaux, Nathanaël Enriquez. The probability that two random integers are coprime. 2016. hal-01413829 HAL Id: hal-01413829 https://hal.archives-ouvertes.fr/hal-01413829 Preprint submitted on 11 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THE PROBABILITY THAT TWO RANDOM INTEGERS ARE COPRIME JULIEN BUREAUX AND NATHANAEL¨ ENRIQUEZ Abstract. An equivalence is proven between the Riemann Hypothesis and the speed of con- vergence to 6/π2 of the probability that two independent random variables following the same geometric distribution are coprime integers, when the parameter of the distribution goes to 0. What is the probability that two random integers are coprime? Since there is no uniform probability distribution on N, this question must be made more precise. Before going into probabilistic considerations, we would like to remind a seminal result of Dirichlet [1]: the set of ordered pairs of coprime integers has an asymptotic density in N2 which is equal to 6/π2 0.P608. The proof is not trivial and can be found in the book of Hardy and Wright ([2], Theorem≈ 332), but if one admits the existence of a density δ, its value can be easily obtained.
    [Show full text]
  • Using Dynamical Systems to Construct Infinitely Many Primes
    Mathematical Assoc. of America American Mathematical Monthly 121:1 August 24, 2017 12:20 a.m. MonthlyArticleDynamicsOnly.v5.tex page 1 Using Dynamical Systems to Construct Infinitely Many Primes Andrew Granville Abstract. Euclid’s proof can be reworked to construct infinitely many primes, in many differ- ent ways, using ideas from arithmetic dynamics. 1. CONSTRUCTING INFINITELY MANY PRIMES. The first known proof that there are infinitely many primes, which appears in Euclid’s Elements, is a proof by contradiction. This proof does not indicate how to find primes, despite establishing that there are infinitely many of them. However a minor variant does do so. The key to either proof is the theorem that Every integer q > 1 has a prime factor. (This was first formally proved by Euclid on the way to establishing the fundamental theorem of arithmetic.) The idea is to Construct an infinite sequence of distinct, pairwise coprime, integers a0, a1,..., that is, a sequence for which gcd(am, an) = 1 whenever m 6= n. We then obtain infinitely many primes, the prime factors of the an, as proved in the following result. Proposition 1. Suppose that a0, a1,... is an infinite sequence of distinct, pairwise coprime, integers. Let pn be a prime divisor of an whenever |an| > 1. Then the pn form an infinite sequence of distinct primes. Proof. The pn are distinct for if not, then pm = pn for some m 6= n and so pm = gcd(pm,pn) divides gcd(am, an) = 1, a contradiction. As the an are distinct, any given value (in particular, −1, 0 and 1) can be attained at most once, and therefore all but at most three of the an have absolute value > 1, and so have a prime factor pn.
    [Show full text]