Haemosporina: Garniidae

Total Page:16

File Type:pdf, Size:1020Kb

Haemosporina: Garniidae 513 Progarnia archosauriae nov. gen., nov. sp. (Haemosporina: Garniidae), a blood parasite of Caiman crocodilus crocodilus (Archosauria: Crocodilia), and comments on the evolution of reptilian and avian haemosporines R. LAINSON Departamentode Parasitologia, Instituto Evandro Chagas,Caixa Postal 691, 66017-970 Belém, Pará, Brasil (Received27 July 1994,. revised5 October 1994,. accepted8 November 1994) SUMMARY Progarnia archosauriaenovo gen., novosp. (Haemosporina: Garniidae) is described in the blood of the South American caiman, Caiman crocodilus crocodilus (Archosauria: Crocodilia). The parasite undergoes merogony and gametogony principally in leucocytes and thrombocytes, but algo invades erythrocytes in which it produces no 'malarial' pigmento It thus sharesfeatures of Fallisia and Garnia which are, respectively, intra-leucocytic and intra-erythrocytic haemosporines of the family Garniidae in present-day lizards. This, and the antiquity of the order Crocodilia, suggeststhat it was from such a parasite that the existing reptilian and avian haemosporinesevolved. An overall evolutionary pattern is suggested. Key words: Haemosporina, Garniidae, Progarnia archosauriaenov. gen., nov. sp., Caiman c. crocodilus,crocodile, Brazil. described further examples in Old World lizards. INTRODUCTION Telford (1988) finally accepted Fallisia as a valid Lainson, Landau & Shaw (1971) erected the family genus, and suggested that Garnia be regarded as a Garniidae, within the suborder Haemosporina (Api-complexa:subgenus of Plasmodium. He maintained his opinion, Eucoccidiida) to house certain 'malaria however, that both parasites should be included in parasites' of lizards which undergo merogony and the family Plasmodiidae -a view with which the dimorphic gametogony in erythrocytes, without the present author, and some others, do not agree production of malarial pigmento By these characters, (Lainson, 1992). the species of the new gentiS Garnia were Until now members of the Garniidae have been differentiated from those of the existing three described only in lizards among the reptiles (Table families of the Haemosporina: from the 1). The following description of an undoubted Plasmodiidae and the Haemoproteidae by the ab- garniid in the South American caiman, Caiman sence of pigment, and from the Leucocytozoidae and crocodilus crocodilus has necessitated the allocation of the Haemoproteidae by the asexual cycle in the blood. a further generic name within the family, and The new family and gentis wer.e: not accepted by stimulates new speculations as to the origin and some workers, notably Telford (1973) who, while evolution of both reptilian and avian haemosporines. acknowledging that the absence of pigment did not accord with the current definitions of the family Plasmodiidae and the gentis Plasmodium, suggested MATERIALS ANO METHOOS that these definitions be modified in arder to allow the inclusion of the new parasites. Young caimans were captured in their riverine Lainson, Landau & Shaw (1974) added a second habitat on the Island of Marajó when they measured gentis, Fallisia, to the family Garniidae when they approximately 20 cm flOro snout to tail tipo Their described other blood parasites of Brazilian lizards age remains doubtful, but is likely to have been only which differed from Garnia in that their merogony a few months. They were maintained .in an insect- and gametogony were restricted to the leucocytes screened animal house, in large aquaria which offered and thrombocytes. lnitially, like Garnia, such the option of wet or dry conditions, and fed largely parasites were thought to be limited to neotropical on new-born laboratory-bred mice. lizards, but Gabaldon, Ulloa & Zerpa (1985) dis- Weekly blood samples were obtained by lightly covered anotherFallisia species in Venezuelan birds, clipping a claw, and thin blood films were rapidly and Telford (1986) and Paperna & Landau (1990) air-dried and fixed either in absolute methyl alcohol Parasitology (1995),110,513-519 Copyright @ 1995 Cambridge University Press R. Lainson 514 Table 1. Recorded speciesof genera within the family Garniidae (Haemosporina)* Genus Garnia Genus Fallisia G. telfordi Lainson, Landau & Shaw 1971 in Ameiva F. effusa Lainson, Landau & Shaw 1974 in Neusticurus ameiva (Teiidae) bicarinatus (Teiidae) G. utingensisLainson, Landau & Shaw 1971 in Anolis TYPE SPECIES punctatus (lguanidae) F. modestaLainson, Landau & Shaw 1974 in Tropidurus G. multiformis Lainson, Shaw & Landau 1975 in Plica torquatus (lguanidae) umbra (lguanidae) F. audaciosaLainson, Shaw & Landau 1975 in Plica G. uranoscodoniLainson, Shaw & Landau 1975 in umbra (lguanidae) Uranoscodonsuperciliosa (lguanidae) F. simplex Lainson, Shaw & Landau 1975 in Plica umbra G. gonatodi (Telford, 1970) Lainson, Landau & Shaw F. copemaniPaperna & Landau 1990 in Carlia rhomboida- (1971) in Gonotodeshumeralis (Sphaerodactylidae) tis (Scincidae) TYPE SPECIES F. siamense(Telford, 1986)Paperna & Landau 1990 in G. morula (Telford, 1970) Lainson, Làndau & Shaw Draco maculatus (Agamidae) (1971) in Mabuya mabouya (Scincidae) F. (Plasmodoides)neotropicalis Gabaldon, Ulloa & Zerpa G. azurophilum (Telford, 1975) Garnharn & Duggan 1985 in various Venezuelan birds (1986) in Anolis lineatopis (lguanidae) Genus Progarnia G. lainsoni (Telford, 1986) Garnham & Duggan 1986 in P. archosauriaeLainson, this paper in Caiman crocodilus Phylodactylus ventralis (Gekkonidae) crocodilus (Crocodilia) G. marginata (Telford, 1979) Garnham & Duggan 1986 in Anolis frenatus (lguanidae) G. scorzai (Telford, 1978) Garnham & Duggan 1986 in P. ventralis (Gekkonidae) * Modified from Lainson (1992). for 3 min or in aqueous Bouin's fixative for 20 mino characters of the family Garniidae Lainson, Landau Methyl alcohol-fixed smears were immediately & Shaw, 1971. Differentiated from the gentiSGarnia stained in Giemsa stain (30 drops to 15 ml of (located only in erythrocytes) and Fallisia (only in distilled water buffered to pH 704)for 90 mino Bouin- thrombocytes and lymphocytes) by its development fixed blood films were washed in 70 % ethyl alcohol in erythrocytes, thromboycytes and a variety of until colourless, and then stained by a modified leucocytes. Giemsa method (Lainson, 1958)0 Photo-micrographs were prepared using a Zeiss Photomicroscope III and Kodak TMX 402 filmo Progarnia archosauriaenovo gen., novosp. Merogony RESULTS The length of the initial merogony cycle remains Of 19 young caimans examined, 7 were infected with undetermined, but the impression gained was that a non-pigmented haemosporine in the leucocytes, severalweeks elapsebefore gametocytes first appear thrombocytes and erythrocytes. Infected animaIs in the blood. In alI of the infected animaIs, meronts appeared unaffected by the presence of the parasite. were most frequent in lymphocytes and monocytes Development of the organism in alI three lines of (Figs 1 A-C and 2A-E), in which the parasite may blood cells precludes its i~lusion in the genera produce from 8 to 22 merozoites of approximately Fallisia and Garnia, and it is consequently given new 3,0 x 1.7pm (Figs 1 D and 2F, G). generic and specific names within the family Merogony in the thrombocytes (Fig. 21) was Garniidae. somewhat less frequent and produced smaller numbers of merozoites. Parasites in the red blood cells were infrequent, and predominantly in the pro- DEFINITION AND DESCRIPTION erythrocytes (Figs 1 F, G and 2J-L). Twenty Progarnia nov. gen. A non-pigmented haemosporine developing erythrocytic meronts were carefully (Apicomplexa: Haemosporina: Garniidae) with the examined under polarized light illumination and no Fig. 1. (A-M) Progarnia archosauriaenovo gen., novosp. in the blood of Caiman crocodilus crocodilus,as seen in Giemsa-stained blood films. (A) Young 2-nucleated meront in a lymphocyte; (B, C) developing meronts in monocytes; (D) 'smear-cell' (disintegrated lymphocyte or monocyte) with liberated merozoites; (E) trophozoite in a thrombocyte; (F, G) developing meronts in pró-erythrocytes; (H, J) young macrogamonts in a thrombocyte and a monocyte; (I, K, L) mature macrogamonts in a monocyte, basophil and a throtnbocyte; (M) mature microgamont in a thrombocyte. Parasitology Vai. 110Part 5 Figo 1 LAlNSON (Facingp.514) Haemosporina of crocodiles 515 ~ o Fig. 2. (A-R) Photo-micrographs of Progarnia archosauriaenovo gen., novo sp., in Giemsa-stained blood films of Caiman crocodiluscrocodilus. (A, B) Early meronts in lymphocytes; (C-E) meronts in monocytes; (F, G) groups of merozoites from ruptured leucocytes (note the azurophilic granules, conspicuous in (D) and (F)); (H, I) young trophozoite and early meront in thrombocytes; a-L) early meronts in pro-erythrocytes; (M-P) developing macrogamonts in thrombocytes, monocytes and lymphocytes; (Q, R) mature macrogamont and microgamont in monocytes. evidence of pigment was detected in any of the speciesof Garnia and Fallisia, occur in the cytoplasm parasites. The only mature erythrocytic meront seen flOro the earliest stagesof division and persist in the produced 8 merozoites. merozoites, where they resemble the kinetoplast of a Azurophilic granules, similar to those described in leishmanial amastigote (Figs 1 D and 2 F). These ~ R. Lainson 516 granules, which are algo very conspicuous in the gamonts, are much less obvious in Bouin-fixed Type locality material. The meronts usually possess abundant Island of Marajó, Pará, north Brazil. vacuoles in their cytoplasm, which stains extremely delicately. This, and the frequent absence of an obvious patasitophórous vacuole makes the
Recommended publications
  • University of Malaya Kuala Lumpur
    GENETIC DIVERSITY STUDY, EXPRESSION AND IMMUNOCHARACTERIZATION OF PLASMODIUM KNOWLESI MEROZOITE SURFACE PROTEIN-3 (MSP-3) IN ESCHERICHIA COLI JEREMY RYAN DE SILVA THESIS SUBMITTED IN FULLFILMENT OF THE REQUIREMENTSMalaya FOR THE DEGREE OF DOCTOR OF PHILOSOPHY of FACULTY OF MEDICINE UNIVERSITY OF MALAYA KUALA LUMPUR University 2017 UNIVERSITI MALAYA ORIGINAL LITERARY WORK DECLARATION Name of Candidate : Jeremy Ryan De Silva Registration / Matric No : MHA120057 Name of Degree : Doctor Of Philosophy (Ph.D) Title of Project Paper / Research Report / Dissertation / Thesis (“this Work”): Genetic diversity study, expression and immunocharacterization of Plasmodium Knowlesi Merozoite Surface Protein-3 (MSP-3) in Escherichia Coli Field of Study : Medical Parasitology I do solemnly and sincerely declare that: [1] I am the sole author / writer of this Work; [2] This Work is original; [3] Any use of any work in which copyright exists was done by way of fair dealing and for permitted purposes and any excerpt or extract from, or reference to or reproduction of any copyright work has been disclosed expressly and sufficiently and the title ofMalaya the Work and its authorship have been acknowledged in this Work; [4] I do not have any actual knowledge nor do I ought reasonably to know that the making of this work constitutes an infringement of any copyright work; [5] I hereby assign all and every rights in the copyrightof to this Work to the University of Malaya (“UM”), who henceforth shall be owner of the copyright in this Work and that any reproduction or use in any form or by any means whatsoever is prohibited without the written consent of UM having been first had and obtained; [6] I am fully aware that if in the course of making this Work I have infringed any copyright whether intentionally or otherwise, I may be subject to legal action or any other action as may be determined by UM.
    [Show full text]
  • Introduction
    Rev. Inst. Med. top. São Paulo UDC 616.936 23(l) :12-17, ianeiro-fevereiro, l98I MALARIA INFECTION IN ANOLIS LIZARDS ON MARTINIQUE. LESSER ANTITLES Stephen C. AYALA (1) and Paul E HERTZ (2) SUMMARY Plasmodia (Protozoa: Haemosporidiidae) identified as Plasmodium azurophilum Telford 1975 were found in 11 of 89 Anolis roquet from Martinique in the southern Lesser Antilles. Ten lizards frorn intermediate elevations had parâsites in their ery- throcytes, whereas the single infected lizard from a higher elevation rain forest site had parasites only in its leucocytes. Two parasite species could be involved: a garnia-group (pigmentless) plasmodium in the erythrocytes, and a fallisia-group (leu- cocyte invading) species. If this is the case, then a fallisia-group species is widespre- ad in the Caribbean region as part of the P. azurophilum complex. Otherwise, if looth stages are part of a single species, the fallisia-group species from other regions in the Neotropios might be expected to show erythrocyte phases at some stage of their life cycle. INTRODUCTION Some workers on malaria in South and Cen- western Caribbean islands 1,2,e (Table I). \Me tral American reptiles have preferred to retain report here the finding of P. azurophilum in all the 39 currenfly accepted Neotropical para- anoles of a completely different phylogenetic site species in the single genus Plasmodium 1.2, and geographic origin Anolis roquet on the while others have proposed using several differ- island of Martinique (FiSs.- 1-3). This finding ent genera: Plasmodium only for pigmented considerably extends the known distribution of plasmodia using erythrocytes as host cells; Gar- malaria in rffest Indean reptiles, and raises se- nia for non-pigmented parasites in erythrocy- verâl'questiöns about its systematics, origin and tes; and Fallisia for plasmodia found in leuco- dispersal.
    [Show full text]
  • Costs of Avian Malaria in Austral-Papuan Avifauna
    Association of Avian Veterinarians Australasian Committee Ltd. Annual Conference 2016 pp 67-71 Costs of Avian Malaria in Australo-Papuan Avifauna Lee Peacock BSc (Vet) BVSc (Hons)1, Anders Gonçalves da Silva PhD2, Rohan Clarke PhD3 1. PhD Candidate Monash University 2. University of Melbourne 3. Monash University Clayton VIC 3800 Parkville. VIC. 2010. Wellington Rd. And Blackburn Rd. [email protected] Clayton. VIC. 3800 Introduction factors. These parasites are thus not detected evenly throughout their distribution; instead a mosaic pat- Avian malarial parasites are represented by a large tern nested within a general trend of higher diversity diversity of haemosporida within Plasmodiidae and and prevalence at lower altitudes and latitudes is ob- Haemoproteidae families. Other closely related hae- served (Mendes et al., 2005; Wood et al., 2007; Clark mosporida from Leukocytozoidae and Garniidae also et al., 2016). Large-scale migratory movements of infect birds and are often discussed under the um- avian hosts and near life-long infections mean these brella of avian malaria. Each family differs in life-cy- parasites can move within their avian hosts well be- cle, host and vector specificity, distribution, and yond current transmission zones, effectively expand- pathogenicity. ing their distribution. Avian malarial infections are described as acute, Avian malaria is associated with island bird extinc- chronic and abortive (Valkiunas 2004b; Valkiunas tions and can impose significant restrictions to avi- 2011). The acute phase is distinguished by a rising an distributions ( Warner 1968; van Riper III et al., parasitaemia, occurring after a latent or prepatent 1982). This is in stark contrast to evidence reveal- period following inoculation.
    [Show full text]
  • Reconstruction of the Evolutionary History of Haemosporida
    Parasitology International 65 (2016) 5–11 Contents lists available at ScienceDirect Parasitology International journal homepage: www.elsevier.com/locate/parint Reconstruction of the evolutionary history of Haemosporida (Apicomplexa) based on the cyt b gene with characterization of Haemocystidium in geckos (Squamata: Gekkota) from Oman João P. Maia a,b,c,⁎, D. James Harris a,b, Salvador Carranza c a CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, N° 7, 4485-661 Vairão, Vila do Conde, Portugal b Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre FC4 4169-007 Porto, Portugal c Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Maritím de la Barceloneta, 37-49, 08003 Barcelona, Spain article info abstract Article history: The order Haemosporida (Apicomplexa) includes many medically important parasites. Knowledge on the diver- Received 4 April 2015 sity and distribution of Haemosporida has increased in recent years, but remains less known in reptiles and their Received in revised form 7 September 2015 taxonomy is still uncertain. Further, estimates of evolutionary relationships of this order tend to change when Accepted 10 September 2015 new genes, taxa, outgroups or alternative methodologies are used. We inferred an updated phylogeny for the Available online 12 September 2015 Cytochrome b gene (cyt b) of Haemosporida and screened a total of 80 blood smears from 17 lizard species from Oman belonging to 11 genera. The inclusion of previously underrepresented genera resulted in an alterna- Keywords: Haemoproteus tive estimate of phylogeny for Haemosporida based on the cyt b gene.
    [Show full text]
  • Wildlife Parasitology in Australia: Past, Present and Future
    CSIRO PUBLISHING Australian Journal of Zoology, 2018, 66, 286–305 Review https://doi.org/10.1071/ZO19017 Wildlife parasitology in Australia: past, present and future David M. Spratt A,C and Ian Beveridge B AAustralian National Wildlife Collection, National Research Collections Australia, CSIRO, GPO Box 1700, Canberra, ACT 2601, Australia. BVeterinary Clinical Centre, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Werribee, Vic. 3030, Australia. CCorresponding author. Email: [email protected] Abstract. Wildlife parasitology is a highly diverse area of research encompassing many fields including taxonomy, ecology, pathology and epidemiology, and with participants from extremely disparate scientific fields. In addition, the organisms studied are highly dissimilar, ranging from platyhelminths, nematodes and acanthocephalans to insects, arachnids, crustaceans and protists. This review of the parasites of wildlife in Australia highlights the advances made to date, focussing on the work, interests and major findings of researchers over the years and identifies current significant gaps that exist in our understanding. The review is divided into three sections covering protist, helminth and arthropod parasites. The challenge to document the diversity of parasites in Australia continues at a traditional level but the advent of molecular methods has heightened the significance of this issue. Modern methods are providing an avenue for major advances in documenting and restructuring the phylogeny of protistan parasites in particular, while facilitating the recognition of species complexes in helminth taxa previously defined by traditional morphological methods. The life cycles, ecology and general biology of most parasites of wildlife in Australia are extremely poorly understood. While the phylogenetic origins of the Australian vertebrate fauna are complex, so too are the likely origins of their parasites, which do not necessarily mirror those of their hosts.
    [Show full text]
  • Studies on Blood Parasites of Birds in Coles County, Illinois Edward G
    Eastern Illinois University The Keep Masters Theses Student Theses & Publications 1968 Studies on Blood Parasites of Birds in Coles County, Illinois Edward G. Fox Eastern Illinois University This research is a product of the graduate program in Zoology at Eastern Illinois University. Find out more about the program. Recommended Citation Fox, Edward G., "Studies on Blood Parasites of Birds in Coles County, Illinois" (1968). Masters Theses. 4148. https://thekeep.eiu.edu/theses/4148 This is brought to you for free and open access by the Student Theses & Publications at The Keep. It has been accepted for inclusion in Masters Theses by an authorized administrator of The Keep. For more information, please contact [email protected]. PAPER CERTIFICATE #3 To: Graduate Degree Candidates who have written formal theses. Subject: Permission to reproduce theses. The University Library is receiving a number of requests from other institutions asking permission to reproduce dissertations for inclusion in their library holdings. Although no copyright laws are involved, we feel that professional courtesy demands that permission be obtained from the author before we allow theses to be copied. Please sign one of the following statements. Booth Library of Eastern Illinois University has my permission to lend my thesis to a reputable college or university for the purpose of copying it for inclusion in that institution's library or research holdings. I respectfully request Booth Library of Eastern Illinois University not allow my thesis be reproduced because------------- Date Author STUDIES CB BLOOD PARA.SIDS 0, BlRDS Xlf COLES COUIITY, tI,JJJIOXI (TITLE) BY Bdward G. iox B. s.
    [Show full text]
  • The Apicoplast: a Review of the Derived Plastid of Apicomplexan Parasites
    Curr. Issues Mol. Biol. 7: 57-80. Online journalThe Apicoplastat www.cimb.org 57 The Apicoplast: A Review of the Derived Plastid of Apicomplexan Parasites Ross F. Waller1 and Geoffrey I. McFadden2,* way to apicoplast discovery with studies of extra- chromosomal DNAs recovered from isopycnic density 1Botany, University of British Columbia, 3529-6270 gradient fractionation of total Plasmodium DNA. This University Boulevard, Vancouver, BC, V6T 1Z4, Canada group recovered two DNA forms; one a 6kb tandemly 2Plant Cell Biology Research Centre, Botany, University repeated element that was later identifed as the of Melbourne, 3010, Australia mitochondrial genome, and a second, 35kb circle that was supposed to represent the DNA circles previously observed by microscopists (Wilson et al., 1996b; Wilson Abstract and Williamson, 1997). This molecule was also thought The apicoplast is a plastid organelle, homologous to to be mitochondrial DNA, and early sequence data of chloroplasts of plants, that is found in apicomplexan eubacterial-like rRNA genes supported this organellar parasites such as the causative agents of Malaria conclusion. However, as the sequencing effort continued Plasmodium spp. It occurs throughout the Apicomplexa a new conclusion, that was originally embraced with and is an ancient feature of this group acquired by the some awkwardness (“Have malaria parasites three process of endosymbiosis. Like plant chloroplasts, genomes?”, Wilson et al., 1991), began to emerge. apicoplasts are semi-autonomous with their own genome Gradually, evermore convincing character traits of a and expression machinery. In addition, apicoplasts import plastid genome were uncovered, and strong parallels numerous proteins encoded by nuclear genes. These with plastid genomes from non-photosynthetic plants nuclear genes largely derive from the endosymbiont (Epifagus virginiana) and algae (Astasia longa) became through a process of intracellular gene relocation.
    [Show full text]
  • Volume 2. Animals
    AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations.
    [Show full text]
  • Haemocystidium Spp., a Species Complex Infecting Ancient Aquatic Turtles of the Family Podocnemididae First Report of These
    IJP: Parasites and Wildlife 10 (2019) 299–309 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Haemocystidium spp., a species complex infecting ancient aquatic turtles of the family Podocnemididae: First report of these parasites in Podocnemis T vogli from the Orinoquia Leydy P. Gonzáleza,b, M. Andreína Pachecoc, Ananías A. Escalantec, Andrés David Jiménez Maldonadoa,d, Axl S. Cepedaa, Oscar A. Rodríguez-Fandiñoe, ∗ Mario Vargas‐Ramírezd, Nubia E. Mattaa, a Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia b Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia c Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA d Instituto de Genética, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia e Fundación Universitaria-Unitrópico, Dirección de Investigación, Grupo de Investigación en Ciencias Biológicas de la Orinoquía (GINBIO), Colombia ARTICLE INFO ABSTRACT Keywords: The genus Haemocystidium was described in 1904 by Castellani and Willey. However, several studies considered Haemoparasites it a synonym of the genera Plasmodium or Haemoproteus. Recently, molecular evidence has shown the existence Reptile of a monophyletic group that corresponds to the genus Haemocystidium. Here, we further explore the clade Simondia Haemocystidium spp. by studying parasites from Testudines. A total of 193 individuals belonging to six families of Chelonians Testudines were analyzed. The samples were collected in five localities in Colombia: Casanare, Vichada, Arauca, Colombia Antioquia, and Córdoba. From each individual, a blood sample was taken for molecular analysis, and peripheral blood smears were made, which were fixed and subsequently stained with Giemsa.
    [Show full text]
  • Download Download
    HAMADRYAD Vol. 27. No. 2. August, 2003 Date of issue: 31 August, 2003 ISSN 0972-205X CONTENTS T. -M. LEONG,L.L.GRISMER &MUMPUNI. Preliminary checklists of the herpetofauna of the Anambas and Natuna Islands (South China Sea) ..................................................165–174 T.-M. LEONG & C-F. LIM. The tadpole of Rana miopus Boulenger, 1918 from Peninsular Malaysia ...............175–178 N. D. RATHNAYAKE,N.D.HERATH,K.K.HEWAMATHES &S.JAYALATH. The thermal behaviour, diurnal activity pattern and body temperature of Varanus salvator in central Sri Lanka .........................179–184 B. TRIPATHY,B.PANDAV &R.C.PANIGRAHY. Hatching success and orientation in Lepidochelys olivacea (Eschscholtz, 1829) at Rushikulya Rookery, Orissa, India ......................................185–192 L. QUYET &T.ZIEGLER. First record of the Chinese crocodile lizard from outside of China: report on a population of Shinisaurus crocodilurus Ahl, 1930 from north-eastern Vietnam ..................193–199 O. S. G. PAUWELS,V.MAMONEKENE,P.DUMONT,W.R.BRANCH,M.BURGER &S.LAVOUÉ. Diet records for Crocodylus cataphractus (Reptilia: Crocodylidae) at Lake Divangui, Ogooué-Maritime Province, south-western Gabon......................................................200–204 A. M. BAUER. On the status of the name Oligodon taeniolatus (Jerdon, 1853) and its long-ignored senior synonym and secondary homonym, Oligodon taeniolatus (Daudin, 1803) ........................205–213 W. P. MCCORD,O.S.G.PAUWELS,R.BOUR,F.CHÉROT,J.IVERSON,P.C.H.PRITCHARD,K.THIRAKHUPT, W. KITIMASAK &T.BUNDHITWONGRUT. Chitra burmanica sensu Jaruthanin, 2002 (Testudines: Trionychidae): an unavailable name ............................................................214–216 V. GIRI,A.M.BAUER &N.CHATURVEDI. Notes on the distribution, natural history and variation of Hemidactylus giganteus Stoliczka, 1871 ................................................217–221 V. WALLACH.
    [Show full text]
  • Characteristion of Human Malaria PLASMODIUM FALCIPARUM
    Characteristion of human malaria PLASMODIUM FALCIPARUM All group erythrocytes Sequestration no hypnozoites pre-erythrocytic up to 30 000 erythrocytic schizogony (12-16 merozoites) sporogony (up to 20 000 sporozoites) 1 Knobs on Plasmodium falciparum-infecte erythrocyte 2 Plasmodium falciparum: Thin Blood Smears 3 Appearance of Plasmodium falciparum stages in Giemsa Stained Thin and Thick films 5 PLASMODIUM VIVAX 'benign' tertian malaria( most of the temperate zones) different parasite strains biological Base multinucleatum (China) appears to have a characteristic oocyst), P.v.hibernans(Russia) sporozoites produce only hypnozoites) molecular Base (differences in their genetic) make-up have been identified(P. vivax-like parasite) indistinguishable from the simian parasite(P. simiovale) 6 erythrocyte invasion to reticulocytes ( Duffy blood group) red blood cells infected sometimes as 'larger' than normal Caveolar (reddish cytoplasmic stippling or 'Schiiffner's dots( sporozoites mav transform into hypnozoit 7 Plasmodium vivax: Thin Blood Smears 1: Normal red cell 2-6: Young trophozoites(ring) 7-18: Trophozoites 9-27: Schizonts 28,29: Macrogametocytes 30: Microgametocyte 8 Appearance of Plasmodium vivax stages in Giemsa Stained Thin and Thick films PASMODIUM OVALE a species truly distinct from P.vivax morphological differences oval shape of infected RBC with ragged or fimbriated number of merozoites in schizont(15000) erythrocytic schizonts have 6-12 merozoites Band shapes often seen antigenic and molecular differences
    [Show full text]
  • The IUCN Red List of Threatened Speciestm
    Species 2014 Annual ReportSpecies the Species of 2014 Survival Commission and the Global Species Programme Species ISSUE 56 2014 Annual Report of the Species Survival Commission and the Global Species Programme • 2014 Spotlight on High-level Interventions IUCN SSC • IUCN Red List at 50 • Specialist Group Reports Ethiopian Wolf (Canis simensis), Endangered. © Martin Harvey Muhammad Yazid Muhammad © Amazing Species: Bleeding Toad The Bleeding Toad, Leptophryne cruentata, is listed as Critically Endangered on The IUCN Red List of Threatened SpeciesTM. It is endemic to West Java, Indonesia, specifically around Mount Gede, Mount Pangaro and south of Sukabumi. The Bleeding Toad’s scientific name, cruentata, is from the Latin word meaning “bleeding” because of the frog’s overall reddish-purple appearance and blood-red and yellow marbling on its back. Geographical range The population declined drastically after the eruption of Mount Galunggung in 1987. It is Knowledge believed that other declining factors may be habitat alteration, loss, and fragmentation. Experts Although the lethal chytrid fungus, responsible for devastating declines (and possible Get Involved extinctions) in amphibian populations globally, has not been recorded in this area, the sudden decline in a creekside population is reminiscent of declines in similar amphibian species due to the presence of this pathogen. Only one individual Bleeding Toad was sighted from 1990 to 2003. Part of the range of Bleeding Toad is located in Gunung Gede Pangrango National Park. Future conservation actions should include population surveys and possible captive breeding plans. The production of the IUCN Red List of Threatened Species™ is made possible through the IUCN Red List Partnership.
    [Show full text]