Petrogenesis of Eclogite and Mafic Granulite Xenoliths from South
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Real-Time AFM Diagrams on Your Macintosh
Spear Geological Materials Research v.1, n.3, p.1 Real-time AFM diagrams on your Macintosh Frank S. Spear Department of Earth and Environmental Sciences, Rensselaer Polytechnic Institute Troy, NY 12180 USA <[email protected]> (Received December 15, 1998; Published May 25, 1999) Abstract An algorithm is presented for the calculation of stable AFM mineral assemblages in the KFMASH system based on an internally consistent thermodynamic data set and the petrogenetic grid derived from this data set. The P-T stability of each divariant (three-phase) AFM assemblage is determined from the bounding KFASH, KMASH and KFMASH reactions. Macintosh regions (enclosed areas defined by a sequence of x-y points) are created for each divariant region. The Macintosh toolbox routine ÒPtInRgnÓ (point-in-region) is used to determine whether a user- specified P and T falls within the stability limit of each assemblage, and the compositions of minerals in the stable assemblages are calculated and plotted. Implementation of the algorithm is coded in FORTRAN as a module for program Gibbs (Spear and Menard, 1989). Users can calculate individual AFM diagrams at any P-T condition within the limits of the P-T grid, and sequences of AFM diagrams along any P-T path. Diagrams can be saved as PICT images for creating animations. The internally consistent thermodynamic data sets of Holland and Powell (1998) and Spear and Cheney (unpublished) are supported. The algorithm and its implementation provide a useful tool for researchers to explore the implications of a petrogenetic grid and to compare predictions of different thermodynamic data sets. -
Metamorphic Rocks Reminder Notes
Metamorphic Rocks Reminder notes: • Metamorphism • Metasomatism • Regional metamorphism • Contact metamorphism • Protolith • Prograde • Retrograde • Fluids – dewatering and decarbonation – volatile flux • Chemical change vs textural changes • Mud to gneiss Metamorphism – changes in mineralogy and texture of a rock due to changes in pressure and temperature. The bulk chemical composition of the rock doesn’t change. Metasomatism – changes in mineralogy and texture of a rock due to changes in pressure, temperature, and chemistry. Chemically active fluids move ions from one place to another which changes the bulk chemistry of the rock. These fluids come from the breakdown of hydrous and carbonate minerals. Contact versus Regional metamorphism Metamorphic Facies Plotting metamorphic mineral diagrams Barrovian metamorphic sequences Thermodynamics and Gibbs free energy • Reactions take place in a direction that lowers Gibbs free energy • Equilibrium is achieved only when Gibbs free energy reaches a minimum • At equilibrium, temperature, pressure, and chemical potentials of all components must be the same throughout • Equilibrium thermodynamics and kinetics. Thermodynamics tells us what can happen, kinetics tells us if it does happen Petrogenetic Grid AKFM diagram for pelitic rocks Petrogenetic grid – reactions in metapelites for greenschist and amphibolite facies Assemblages in metapelites as a function of metamorphic grade Role of Fluids in Metamorphism CaCO3 + SiO2 = CaSiO3 + CO2 (fluid) Ca2Mg5Si8O22(OH)2 + 3CaCO3 = 4CaMgSi2O6 + CaMg(CO3)2 + H2O + CO2 tremolite calcite diopside dolomite fluid Metamorphic grade, index minerals, isograds, and metamorphic facies Textures of metamorphic rocks • Excess energy present in deformed crystals (elastic), twins, surface free energy • Growth of new grains leads to decreasing free energy – release elastic energy, reduce surface to volume ratio (increase grains size, exception occurs in zones of intense shearing where a number of nuclei are formed). -
University Microfilms, a XEROX Company, Ann Arbor, Michigan
i 71-22,648 SWAINBANK, Richard Charles, 1943- GEOCHEMISTRY AND PETROLOGY OF ECLOGITIC ROCKS IN THE FAIRBANKS AREA, ALASKA. University of Alaska, Ph.D., 1971 Geology University Microfilms, A XEROX Company, Ann Arbor, Michigan THIS DISSERTATION HAS BEEN MICROFILMED EXACTLY AS RECEIVED Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. GEOCHEMISTRY AND PETROLOGY OF ECLOGITIC ROCKS IN THE FAIRBANKS AREA, ALASKA A DISSERTATION Presented to the Faculty of the University of Alaska in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY by Richard Charles Swainbank B. Sc. M. Sc. College, Alaska May 1971 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. GEOCHEMISTRY AND PETROLOGY OF ECLOGITIC ROCKS IN THE FAIRBANKS AREA, ALASKA APPROVED: 7 ^ ■ APPROVED: £ DATE: Dean of the College of Earth Science and Mineral Industry Vice President for Research and Advanced Study Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. a b s t r a c t Eclogites have generally been considered to be compositionally analogous to basic igneous rocks and to have been recrystallized at high temperatures and/or pressures. A group of eclogitic rocks in the Fairbanks area are new composi tional variants and are, together with more orthodox eclogites, an essential unit within a metasedimentary sequence, which has recrystal lized under lower amphibolite facies conditions. Chemical analyses of the unusual calcite-bearing eclogitic rocks strongly suggest that they are derived from sedimentary parents akin to calcareous marls. The clinopyroxenes from these eclogites are typical omphacites, and the coexistant garnets are typical of garnets from eclogites in blue schist terrane. -
Facies and Mafic
Metamorphic Facies and Metamorphosed Mafic Rocks l V.M. Goldschmidt (1911, 1912a), contact Metamorphic Facies and metamorphosed pelitic, calcareous, and Metamorphosed Mafic Rocks psammitic hornfelses in the Oslo region l Relatively simple mineral assemblages Reading: Winter Chapter 25. (< 6 major minerals) in the inner zones of the aureoles around granitoid intrusives l Equilibrium mineral assemblage related to Xbulk Metamorphic Facies Metamorphic Facies l Pentii Eskola (1914, 1915) Orijärvi, S. l Certain mineral pairs (e.g. anorthite + hypersthene) Finland were consistently present in rocks of appropriate l Rocks with K-feldspar + cordierite at Oslo composition, whereas the compositionally contained the compositionally equivalent pair equivalent pair (diopside + andalusite) was not biotite + muscovite at Orijärvi l If two alternative assemblages are X-equivalent, l Eskola: difference must reflect differing we must be able to relate them by a reaction physical conditions l In this case the reaction is simple: l Finnish rocks (more hydrous and lower MgSiO3 + CaAl2Si2O8 = CaMgSi2O6 + Al2SiO5 volume assemblage) equilibrated at lower En An Di Als temperatures and higher pressures than the Norwegian ones Metamorphic Facies Metamorphic Facies Oslo: Ksp + Cord l Eskola (1915) developed the concept of Orijärvi: Bi + Mu metamorphic facies: Reaction: “In any rock or metamorphic formation which has 2 KMg3AlSi 3O10(OH)2 + 6 KAl2AlSi 3O10(OH)2 + 15 SiO2 arrived at a chemical equilibrium through Bt Ms Qtz metamorphism at constant temperature and = -
The Metamorphosis of Metamorphic Petrology
Downloaded from specialpapers.gsapubs.org on May 16, 2016 The Geological Society of America Special Paper 523 The metamorphosis of metamorphic petrology Frank S. Spear Department of Earth and Environmental Sciences, JRSC 1W19, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA David R.M. Pattison Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada John T. Cheney Department of Geology, Amherst College, Amherst, Massachusetts 01002, USA ABSTRACT The past half-century has seen an explosion in the breadth and depth of studies of metamorphic terranes and of the processes that shaped them. These developments have come from a number of different disciplines and have culminated in an unprece- dented understanding of the phase equilibria of natural systems, the mechanisms and rates of metamorphic processes, the relationship between lithospheric tecton- ics and metamorphism, and the evolution of Earth’s crust and lithospheric mantle. Experimental petrologists have experienced a golden age of systematic investigations of metamorphic mineral stabilities and reactions. This work has provided the basis for the quantifi cation of the pressure-temperature (P-T) conditions associated with various metamorphic facies and eventually led to the development of internally con- sistent databases of thermodynamic data on nearly all important crustal minerals. In parallel, the development of the thermodynamic theory of multicomponent, multi- phase complex systems underpinned development of the major methods of quantita- tive phase equilibrium analysis and P-T estimation used today: geothermobarometry, petrogenetic grids, and, most recently, isochemical phase diagrams. New analytical capabilities, in particular, the development of the electron micro- probe, played an enabling role by providing the means of analyzing small volumes of materials in different textural settings in intact rock samples. -
Streaming of Saline Fluids Through Archean Crust
Lithos 346–347 (2019) 105157 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Streaming of saline fluids through Archean crust: Another view of charnockite-granite relations in southern India Robert C. Newton a,⁎, Leonid Ya. Aranovich b, Jacques L.R. Touret c a Dept. of Earth, Planetary and Spaces, University of California at Los Angeles, Los Angeles, CA 90095, USA b Inst. of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Science, Moscow RU-119017, Russia c 121 rue de la Réunion, F-75020 Paris, France article info abstract Article history: The complementary roles of granites and rocks of the granulite facies have long been a key issue in models of the Received 27 June 2019 evolution of the continental crust. “Dehydration melting”,orfluid-absent melting of a lower crust containing H2O Received in revised form 25 July 2019 only in the small amounts present in biotite and amphibole, has raised problems of excessively high tempera- Accepted 26 July 2019 tures and restricted amounts of granite production, factors seemingly incapable of explaining voluminous bodies Available online 29 July 2019 of granite like the Archean Closepet Granite of South India. The existence of incipient granulite-facies metamor- phism (charnockite formation) and closely associated migmatization (melting) in 2.5 Ga-old gneisses in a quarry Keywords: fl Charnockite exposure in southern India and elsewhere, with structural, chemical and mineral-inclusion evidence of uid ac- Granite tion, has encouraged a wetter approach, in consideration of aqueous fluids for rock melting which maintain suf- Saline fluids ficiently low H2O activity for granulite-facies metamorphism. -
The Origin of Formation of the Amphibolite- Granulite Transition
The Origin of Formation of the Amphibolite- Granulite Transition Facies by Gregory o. Carpenter Advisor: Dr. M. Barton May 28, 1987 Table of Contents Page ABSTRACT . 1 QUESTION OF THE TRANSITION FACIES ORIGIN • . 2 DEFINING THE FACIES INVOLVED • • • • • • • • • • 3 Amphibolite Facies • • • • • • • • • • 3 Granulite Facies • • • • • • • • • • • 5 Amphibolite-Granulite Transition Facies 6 CONDITIONS OF FORMATION FOR THE FACIES INVOLVED • • • • • • • • • • • • • • • • • 8 Amphibolite Facies • • • • • • • • 9 Granulite Facies • • • • • • • • • •• 11 Amphibolite-Granulite Transition Facies •• 13 ACTIVITIES OF C02 AND H20 . • • • • • • 1 7 HYPOTHESES OF FORMATION • • • • • • • • •• 19 Deep Crust Model • • • • • • • • • 20 Orogeny Model • • • • • • • • • • • • • 20 The Earth • • • • • • • • • • • • 20 Plate Tectonics ••••••••••• 21 Orogenic Events ••••••••• 22 Continent-Continent Collision •••• 22 Continent-Ocean Collision • • • • 24 CONCLUSION • . • 24 BIBLIOGRAPHY • • . • • • • 26 List of Illustrations Figure 1. Precambrian shields, platform sediments and Phanerozoic fold mountain belts 2. Metamorphic facies placement 3. Temperature and pressure conditions for metamorphic facies 4. Temperature and pressure conditions for metamorphic facies 5. Transformation processes with depth 6. Temperature versus depth of a descending continental plate 7. Cross-section of the earth 8. Cross-section of the earth 9. Collision zones 10. Convection currents Table 1. Metamorphic facies ABSTRACT The origin of formation of the amphibolite granulite transition -
Cold Subduction and the Formation of Lawsonite Eclogite – Constraints from Prograde Evolution of Eclogitized Pillow Lava from Corsica
J. metamorphic Geol., 2010, 28, 381–395 doi:10.1111/j.1525-1314.2010.00870.x Cold subduction and the formation of lawsonite eclogite – constraints from prograde evolution of eclogitized pillow lava from Corsica E. J. K. RAVNA,1 T. B. ANDERSEN,2 L. JOLIVET3 AND C. DE CAPITANI4 1Department of Geology, University of Tromsø, N-9037 Tromsø, Norway ([email protected]) 2Department of Geosciences and PGP, University of Oslo, PO Box 1047, Blindern, 0316 Oslo, Norway 3ISTO, UMR 6113, Universite´ dÕOrle´ans, 1A Rue de la Fe´rollerie, 45071 Orle´ans, Cedex 2, France 4Mineralogisch-Petrographisches Institut, Universita¨t Basel, Bernoullistrasse 30, 4056 Basel, Switzerland ABSTRACT A new discovery of lawsonite eclogite is presented from the Lancoˆne glaucophanites within the Schistes Lustre´ s nappe at De´ file´ du Lancoˆne in Alpine Corsica. The fine-grained eclogitized pillow lava and inter- pillow matrix are extremely fresh, showing very little evidence of retrograde alteration. Peak assemblages in both the massive pillows and weakly foliated inter-pillow matrix consist of zoned idiomorphic Mg-poor (<0.8 wt% MgO) garnet + omphacite + lawsonite + chlorite + titanite. A local overprint by the lower grade assemblage glaucophane + albite with partial resorption of omphacite and garnet is locally observed. Garnet porphyroblasts in the massive pillows are Mn rich, and show a regular prograde growth-type zoning with a Mn-rich core. In the inter-pillow matrix garnet is less manganiferous, and shows a mutual variation in Ca and Fe with Fe enrichment toward the rim. Some garnet from this rock type shows complex zoning patterns indicating a coalescence of several smaller crystallites. -
Nature and Origin of Fluids in Granulite Facies Metamorphism R.C
129 NATURE AND ORIGIN OF FLUIDS IN GRANULITE FACIES METAMORPHISM R.C. Newton, Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA Orthopyroxene, the definitive mineral of the granulite facies, may originate in prograde dehydration reactions in rock systems open to fluids or may be a premetamorphic relic of igneous intrusions or their contact aureoles which persisted through fluid-deficient metamorphism. Terrains showing evidence of open-system orthopyroxene-forming reactions are those of South India and southern Norway. An example of fluid-deficient granulite facies metamorphism is the Adirondack Highlands of New York, where metamorphic pyroxene commonly resulted from dry recrystallization of pyroxenes of plutonic charnockites and anorthosites. The metamorphism recorded by the presence of orthopyroxene in different terrains may thus have been conservative or may have involved fluids of different origins pervasive on various length-scales. Metamorphism with pervasive metasomatism is signaled by monotonous H20, C02 and 02 fugacities over large areas, nearly independent of lithology, by scarcity of relict textures, and by pronounced depletion of Rb and other large ion lithophile (LILE) elements in the highest grade areas, such as the southernmost part of the Bamble, South Norway, terrain (1). Primary hornblende is rare or absent in quartzofeldspathic gneisses and orthopyroxene is ubiquitous in acid and basic rocks in the charnockitic terrains. Pronounced major and minor element redistributions took place -
Towards a Unified Nomenclature in Metamorphic Petrology
8. Amphibolite and Granulite Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 01.02.07 1José Coutinho, 2Hans Kräutner, 3Francesco Sassi, 4Rolf Schmid and 5Sisir Sen. 1 J. Coutinho, University of São Paulo, São Paulo, Brazil 2 L M University, Munich, Germany 3 F. Sassi, Department of Mineralogy and Petrography, University of Padova, Italy 4 R. Schmid, ETH-Centre, Zürich, Switzerland 5 S. Sen, Indian Institute of Technology, Kharagpur, India Introduction This paper summarises the results of the discussions by the SCMR, and the response to circulars distributed by the SCMR, which demonstrated the highly variable usage of the terms granulite and amphibolite. It presents those definitions which currently seem to be the most appropriate ones. Some notes are included in order to explain the reasoning behind the suggested definitions. In considering the definitions it is important to remember that some of them are a compromise of highly different, even conflicting, opinions and traditions. The names amphibolite and granulite have been used in geological literature for nearly 200 years: amphibolite since Brongniart (1813), granulite since Weiss (1803). Although Brongniart described amphibolite as a rock composed of amphibole and plagioclase, in those early days the meaning of the term was variable. Only later (e.g. Rosenbusch, 1898) was it fixed as metamorphic rock consisting of hornblende and plagioclase, and of medium to high metamorphic grade. In contrast, the use of the name granulite was highly variable, a position which was further complicated by the introduction of the facies principle (Eskola, 1920, 1952) when the name granulite was proposed for all rocks of the granulite facies. -
A Systematic Nomenclature for Metamorphic Rocks
A systematic nomenclature for metamorphic rocks: 1. HOW TO NAME A METAMORPHIC ROCK Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 1/4/04. Rolf Schmid1, Douglas Fettes2, Ben Harte3, Eleutheria Davis4, Jacqueline Desmons5, Hans- Joachim Meyer-Marsilius† and Jaakko Siivola6 1 Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland, [email protected] 2 British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom, [email protected] 3 Grant Institute of Geology, Edinburgh, United Kingdom, [email protected] 4 Patission 339A, 11144 Athens, Greece 5 3, rue de Houdemont 54500, Vandoeuvre-lès-Nancy, France, [email protected] 6 Tasakalliontie 12c, 02760 Espoo, Finland ABSTRACT The usage of some common terms in metamorphic petrology has developed differently in different countries and a range of specialised rock names have been applied locally. The Subcommission on the Systematics of Metamorphic Rocks (SCMR) aims to provide systematic schemes for terminology and rock definitions that are widely acceptable and suitable for international use. This first paper explains the basic classification scheme for common metamorphic rocks proposed by the SCMR, and lays out the general principles which were used by the SCMR when defining terms for metamorphic rocks, their features, conditions of formation and processes. Subsequent papers discuss and present more detailed terminology for particular metamorphic rock groups and processes. The SCMR recognises the very wide usage of some rock names (for example, amphibolite, marble, hornfels) and the existence of many name sets related to specific types of metamorphism (for example, high P/T rocks, migmatites, impactites). -
The Granulite-Granite Linkage: Inferences Froll} S
the Granulite-Granite Linkage: Inferences froll} s lDEPARTAMENTO DE PETROLOGIA Y GEOQUIMICA, FACULTAD DE CIENCIAS GEOLOGICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN 2 DEPARTMENT OF GEOLOGY, BIRKBECK COLLEGE, MALIT STREET, LONDON WCIE 7HX, UK 3CNRS UMR 6524, D EPARTEMENT DES SCIENCES DE LA TERRE, UNIVERSITE BLAISE PASCAL, 5 RUE KESSLER, F-63038 CLERMONT-FERRAND, FRANCE 4DEPARTAMENTO DE GEOLOGIA, FACULTAD DE CIENCIAS DEL MAR, UNIVERSIDAD DE CADIZ, 1151O PUERTO REAL ''-'""JJHC,J. SPAIN if the xenoliths is lower than that outcropping mid-crustal A contribution the granites reduces the mantle contribution in models ifgranite nature if the lower continental crust in contrasts with the more mqficffJ7f!r:r-,Cf1LUflf con7iJo:ntum and estimaud in other European Herrynian areas) a non- Thermobarometric calculations based on min- crust in this Herrynian eral paragenesis indicate conditions around 850-950°(;, 7-11 th us the xenoliths lower con- this high-T high-P assemi'JLCl!.'!e IS a by Ket;vpftlUC coronas) trf111.'in(J'rt in the KEY WORDS: filsi;; lower continental crust; Sr-Nd .L.LO,'OYJ<,"-M& Iberian Belt alkaline magma. Felsic mela1!!J'leOlIS exhibit restitic mineral with up to 50% 37% sillimanite. Major and trace element mO,rJelLWP idea that the taU�-l1erc�vnuzn {J19JaLumlnollS INTRODUCTION The study of lower-crustal xenoliths has been a 8 Nd calculaud at an (J1)erage Herrynian age tool in understanding the process of anatexis involved in if300 Ma) are in the range O' 706-0' 712) and -1,4 to -8'2, the genesis of felsic (Downes & Duthou, These values match the isowpic if the Ruiz et Miller et 1992; Hanchar et outcrobtnnp late TIe Sr 1994; Pankhurst & Rapela, It is clear that granite sources in orogenic areas are not the outcropping An alkaline ultrabasic dyke swarm was intruded into metamorphic rocks but are located in deeper crustal the region in Mesozoic times (Villaseca & Nuez, levels.