The Granulite-Granite Linkage: Inferences Froll} S

Total Page:16

File Type:pdf, Size:1020Kb

The Granulite-Granite Linkage: Inferences Froll} S the Granulite-Granite Linkage: Inferences froll} s lDEPARTAMENTO DE PETROLOGIA Y GEOQUIMICA, FACULTAD DE CIENCIAS GEOLOGICAS, UNIVERSIDAD COMPLUTENSE, 28040 MADRID, SPAIN 2 DEPARTMENT OF GEOLOGY, BIRKBECK COLLEGE, MALIT STREET, LONDON WCIE 7HX, UK 3CNRS UMR 6524, D EPARTEMENT DES SCIENCES DE LA TERRE, UNIVERSITE BLAISE PASCAL, 5 RUE KESSLER, F-63038 CLERMONT-FERRAND, FRANCE 4DEPARTAMENTO DE GEOLOGIA, FACULTAD DE CIENCIAS DEL MAR, UNIVERSIDAD DE CADIZ, 1151O PUERTO REAL ''-'""JJHC,J. SPAIN if the xenoliths is lower than that outcropping mid-crustal A contribution the granites reduces the mantle contribution in models ifgranite nature if the lower continental crust in contrasts with the more mqficffJ7f!r:r-,Cf1LUflf con7iJo:ntum and estimaud in other European Herrynian areas) a non- Thermobarometric calculations based on min- crust in this Herrynian eral paragenesis indicate conditions around 850-950°(;, 7-11 th us the xenoliths lower con- this high-T high-P assemi'JLCl!.'!e IS a by Ket;vpftlUC coronas) trf111.'in(J'rt in the KEY WORDS: filsi;; lower continental crust; Sr-Nd .L.LO,'OYJ<,"-M& Iberian Belt alkaline magma. Felsic mela1!!J'leOlIS exhibit restitic mineral with up to 50% 37% sillimanite. Major and trace element mO,rJelLWP idea that the taU�-l1erc�vnuzn {J19JaLumlnollS INTRODUCTION The study of lower-crustal xenoliths has been a 8 Nd calculaud at an (J1)erage Herrynian age tool in understanding the process of anatexis involved in if300 Ma) are in the range O' 706-0' 712) and -1,4 to -8'2, the genesis of felsic (Downes & Duthou, These values match the isowpic if the Ruiz et Miller et 1992; Hanchar et outcrobtnnp late TIe Sr 1994; Pankhurst & Rapela, It is clear that granite sources in orogenic areas are not the outcropping An alkaline ultrabasic dyke swarm was intruded into metamorphic rocks but are located in deeper crustal the region in Mesozoic times (Villaseca & Nuez, levels. Lower crust is not easily accessible for study and These dykes have a N-S orientation and are cut can also be modified later orogenic events which by the tholeiitic Messejana-Plasencia dyke emplaced at could strongly its primary characteristics (Costa � 184 Ma (Schermerhorn et The anorogenic & However, in the case of the central Spain, alkaline is related to North Atlantic rifting uLLLHfJ�v'-' of lower-crustal lithologies have been exhumed Triassic times et The dykes, by alkaline magmas. this which are ultrabasic lamprophyres, has not been affected by �H'--·LLLLU'-'� contain a varied population of mainly felsic granulitic any or event since the xenoliths These granulite xeno­ orogeny, so the xenoliths are considered to represent the liths show very distinctive lower crust as it existed at the end of granite vH.LfJ�'LLv'�HL.vHL. and geochemical The Central System cropping Hercynian rrrr,-nllilT1r' 2 complex 000 km in surface located In this paper we present a r.Alrrr\rrr".r. internal of the Iberian Belt geochemical and isotopic of the granulitic huge batholith intruded into continental crust xenolith suite from the SCS that indicates a felsic restitic composed of metasedimentary pelitic schists of Pre­ character for the lower continental crust in this region. cambrian and lower Cambrian age, and metaigneous The role played by the late Hercynian mag- rocks related to early Palaeozoic orogenic matism in the of this restitic lower crust, and events (500 ± 20 Ma, Vialette et 1987; Valverde the differences between material at lower- and Vaquero et Orthogneisses are the most abund­ middle-crustal levels and granulitic ant rocks of the outcropping metamorphic series in the terranes, eastern region of the SCS (>80% of surface area in the Guadarrama region; Villaseca In the western of the SCS a more complex metasedimentary series PREVIOUS ESTIMATES OF LOWER­ is dominant, which is rich in metapsammites with local interlayered carbonate material (Ugidos et CRUS TAL COMPOSITION IN During the orogeny, this crust evolved from CENTRAL SPAIN: GEOPHYSICAL intermediate-P towards low-P, conditions (dated DATA at 335 Ma in the Guadarrama sector; Valverde Vaquero Deep seismic constrain the crustal struc- et reaching granulite-facies conditions in wide ture of central Spain. Banda et al. 1) showed that the zones of middle crust with consequent anatexis (e.g. the crust in this area is around 31 km thick and consists of anatectic granulitic terrane of Toledo; Barbero, four 2): Granitic plutonism took place in late Hp·rn�Tnll-::\n (Villaseca et (l) a SeCilITlentary cover up to 3 km thick, with P-wave consists mainly of with very velocities <3·5 scarce basic to intermediate plutonic rocks, and was (2) an upper emplaced at shallow crustal levels [see reviews by Mo- including a low-velocity from about 7 to reno-Ventas et al. Pinarelli & Rottura and 11 km (Vp = 5·6 km/s), with P-wave velocities in the Villaseca et al. The lack of sources range 5,6-6,1 km/s; in terms of isotopic composition in the vicinity of the (3) middle crust from 11 to 23 km depth and Vp � PTT"rl''An plutons has led to two models for the 6·4 of the SCS (1) between crustal (4) lower crust from 23 to 31 km depth and Vp = melts and mantle-derived magmas (Moreno-Ventas et 6,8-6,9 km/so Pinarelli & Rottura, (2) melting of intracrustal materials (Bea & l.".L'U� '�H'J- and magnetotelluric data from Carbo & Ca­ Villaseca et Although the outcropping me- pote (1985) corroborate the described of taigneous rocks (orthogneisses) more closely the crust in central Spain. More recently, deep seismic the isotope signatures of the SCS granites than the sounding undertaken the Iberian Lithosphere Hetero­ metasedimentary nevertheless they show clear geneity and Anisotropy Project showed the continental differences in Sr isotope composition with the crust of the SCS to be 34 km with the upper granites (Villaseca et No significant meta­ boundary of the lower crust located between 21 and morphic event has affected the SCS batholith after its 23 km depth DSS Group, The boundary IOIm,ltl()n; igneous textures are p reserved almost without between middle and lower crust is always well marked exception. by an increase in P-wave velocity up to 6,7-6,8 km/so Xenolith-rich localities Messejana-Plasencia dyke Lamprophyric dykes -' Syenitic dykes ". Sedimentary rocks � Metamorphic rocks o 10 20 km �=-�-----�...=.--=�� Granitoids Fig. I. Geological map of central Spain showing hmprophyric dykes and the location of the main outcrops with granulitic xenoliths. However, models derived fr-om ILl HA crustal data show more commonly as a thin layer above the Moho. Also, that there are no significant lateral inhomogeneities in some recent xenolith studies Hanchar et 1994) gross crustal structure, in marked contrast to the hetero­ indicate that the lower continental crust may contain a geneous Hercynian surface geology. larger supracIllstal component than previously thought. Data from P-wave coda in the SCS (Paulssen & Visser, Thus, in some regions, the lower-cIllstal composition 1993) also confirm a continental crust of around 30 km may be closer to tonalite rather thew cliorite as previously in thickness, similar to the average crustal thickness of estimated (Wedepohl, 1995). McLemlaJl & Taylor (1996) Phanerozoic fo ld belts of central Europe (Wedepohl, also recognized that estimates of the average composition 1995). The lowennost 8 km correspond to the gTanulitic of the continental crust may be shifted towards a more lower crust with P-wave velocities always in the range of acid composition. 6·5-6·9 km/so These values are more typical of felsic or pelitic compositions rather than maficgranulites (Vp fr om 6·9 to 7·5 km/s; Rudnick, 1992; Wedepohl, 1995). P­ wave velocities in the range 6·13-7·0 km/s are very TYPES OF GRANULITIC XENOLITHS common in garnet-bearing peraluminous granulites Although granulitic xenoliths occur in camptonitic dykes (Kern, 1990), these being one of the most abuncIant in several places in the SCS, two localities are most lithologies in the xenolith suite of the SCS (Villaseca & important because of the large number and variety of Nu ez, 1986). In Fig. 2, a sketch profile of the SCS xenoliths found in them. The first is a diatreme-like crust is compared with the average continental crust of outcrop in La Paramera (Nuez et al., 1981). It is composed Wedepohl (1995). of breccia, and has a surface area of around 20 000 m2• From seismological data there does not seem to be a The outcrop is elliptical in shape, with its long axis sigTlificant mafic granulitic or eclogitic layer in the lower striking N-S, the same direction as the dykes. In this crust of the SCS, which agTees with the lithologies of the locality, 25<Yo of the breccia is composed of granitic granulitic xenoliths studied in this work. Wedepohl (1995) and other wall-rock xenoliths and xenoCIysts, as well as stated that in the younger fo ld belts in Central Europe, granulite xenoliths. The second important locality is the malic granulites occur locally as voluminous bodies but dyke swarm of Peguerinos (Fig. 1) where the narrow Vp 6 7 8 6 7 8 "" Sediments Sediments '. _/ Metamorphic . -+ ;. ;. .,. .,.+ Fe/sic � ? . ' � �. rocks intrusives 10 ++++++ and metamorphic ... + ... + ;. + Fe/sic rocks ... -+ -+ ... ;- + + + -+ ;. 1- intrusives - ;. -+ + -+ + E 20 ++++++ ...::.::: 'I - .s::: Fe/sic Fe/sic - granulites granulites C. � 30 - C � . - MOHO -� � � � I � ,,////"1/ � � � ///////' ///,.// /.' Mafic //////// � � � / /."///// granulites / /,'///// � � � ,1/1,'" Mantle 40 HMOHO \ � . � � � � � � � � Mantle � � � � � � � � � � Standard profile Continental crust of the continental crust in Central Spain Fig. 2. Standard profile of the continental crust from Wcdcpohl (I compared with th e es timated continental crust in central Spain. Data ["om \'I'eclepohl are derivecl from intcgratecl 3000 km long European clata ["orn central Spain on the bases of geophys ical and petrological arguments.
Recommended publications
  • Facies and Mafic
    Metamorphic Facies and Metamorphosed Mafic Rocks l V.M. Goldschmidt (1911, 1912a), contact Metamorphic Facies and metamorphosed pelitic, calcareous, and Metamorphosed Mafic Rocks psammitic hornfelses in the Oslo region l Relatively simple mineral assemblages Reading: Winter Chapter 25. (< 6 major minerals) in the inner zones of the aureoles around granitoid intrusives l Equilibrium mineral assemblage related to Xbulk Metamorphic Facies Metamorphic Facies l Pentii Eskola (1914, 1915) Orijärvi, S. l Certain mineral pairs (e.g. anorthite + hypersthene) Finland were consistently present in rocks of appropriate l Rocks with K-feldspar + cordierite at Oslo composition, whereas the compositionally contained the compositionally equivalent pair equivalent pair (diopside + andalusite) was not biotite + muscovite at Orijärvi l If two alternative assemblages are X-equivalent, l Eskola: difference must reflect differing we must be able to relate them by a reaction physical conditions l In this case the reaction is simple: l Finnish rocks (more hydrous and lower MgSiO3 + CaAl2Si2O8 = CaMgSi2O6 + Al2SiO5 volume assemblage) equilibrated at lower En An Di Als temperatures and higher pressures than the Norwegian ones Metamorphic Facies Metamorphic Facies Oslo: Ksp + Cord l Eskola (1915) developed the concept of Orijärvi: Bi + Mu metamorphic facies: Reaction: “In any rock or metamorphic formation which has 2 KMg3AlSi 3O10(OH)2 + 6 KAl2AlSi 3O10(OH)2 + 15 SiO2 arrived at a chemical equilibrium through Bt Ms Qtz metamorphism at constant temperature and =
    [Show full text]
  • Streaming of Saline Fluids Through Archean Crust
    Lithos 346–347 (2019) 105157 Contents lists available at ScienceDirect Lithos journal homepage: www.elsevier.com/locate/lithos Streaming of saline fluids through Archean crust: Another view of charnockite-granite relations in southern India Robert C. Newton a,⁎, Leonid Ya. Aranovich b, Jacques L.R. Touret c a Dept. of Earth, Planetary and Spaces, University of California at Los Angeles, Los Angeles, CA 90095, USA b Inst. of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Science, Moscow RU-119017, Russia c 121 rue de la Réunion, F-75020 Paris, France article info abstract Article history: The complementary roles of granites and rocks of the granulite facies have long been a key issue in models of the Received 27 June 2019 evolution of the continental crust. “Dehydration melting”,orfluid-absent melting of a lower crust containing H2O Received in revised form 25 July 2019 only in the small amounts present in biotite and amphibole, has raised problems of excessively high tempera- Accepted 26 July 2019 tures and restricted amounts of granite production, factors seemingly incapable of explaining voluminous bodies Available online 29 July 2019 of granite like the Archean Closepet Granite of South India. The existence of incipient granulite-facies metamor- phism (charnockite formation) and closely associated migmatization (melting) in 2.5 Ga-old gneisses in a quarry Keywords: fl Charnockite exposure in southern India and elsewhere, with structural, chemical and mineral-inclusion evidence of uid ac- Granite tion, has encouraged a wetter approach, in consideration of aqueous fluids for rock melting which maintain suf- Saline fluids ficiently low H2O activity for granulite-facies metamorphism.
    [Show full text]
  • The Origin of Formation of the Amphibolite- Granulite Transition
    The Origin of Formation of the Amphibolite- Granulite Transition Facies by Gregory o. Carpenter Advisor: Dr. M. Barton May 28, 1987 Table of Contents Page ABSTRACT . 1 QUESTION OF THE TRANSITION FACIES ORIGIN • . 2 DEFINING THE FACIES INVOLVED • • • • • • • • • • 3 Amphibolite Facies • • • • • • • • • • 3 Granulite Facies • • • • • • • • • • • 5 Amphibolite-Granulite Transition Facies 6 CONDITIONS OF FORMATION FOR THE FACIES INVOLVED • • • • • • • • • • • • • • • • • 8 Amphibolite Facies • • • • • • • • 9 Granulite Facies • • • • • • • • • •• 11 Amphibolite-Granulite Transition Facies •• 13 ACTIVITIES OF C02 AND H20 . • • • • • • 1 7 HYPOTHESES OF FORMATION • • • • • • • • •• 19 Deep Crust Model • • • • • • • • • 20 Orogeny Model • • • • • • • • • • • • • 20 The Earth • • • • • • • • • • • • 20 Plate Tectonics ••••••••••• 21 Orogenic Events ••••••••• 22 Continent-Continent Collision •••• 22 Continent-Ocean Collision • • • • 24 CONCLUSION • . • 24 BIBLIOGRAPHY • • . • • • • 26 List of Illustrations Figure 1. Precambrian shields, platform sediments and Phanerozoic fold mountain belts 2. Metamorphic facies placement 3. Temperature and pressure conditions for metamorphic facies 4. Temperature and pressure conditions for metamorphic facies 5. Transformation processes with depth 6. Temperature versus depth of a descending continental plate 7. Cross-section of the earth 8. Cross-section of the earth 9. Collision zones 10. Convection currents Table 1. Metamorphic facies ABSTRACT The origin of formation of the amphibolite­ granulite transition
    [Show full text]
  • Nature and Origin of Fluids in Granulite Facies Metamorphism R.C
    129 NATURE AND ORIGIN OF FLUIDS IN GRANULITE FACIES METAMORPHISM R.C. Newton, Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA Orthopyroxene, the definitive mineral of the granulite facies, may originate in prograde dehydration reactions in rock systems open to fluids or may be a premetamorphic relic of igneous intrusions or their contact aureoles which persisted through fluid-deficient metamorphism. Terrains showing evidence of open-system orthopyroxene-forming reactions are those of South India and southern Norway. An example of fluid-deficient granulite facies metamorphism is the Adirondack Highlands of New York, where metamorphic pyroxene commonly resulted from dry recrystallization of pyroxenes of plutonic charnockites and anorthosites. The metamorphism recorded by the presence of orthopyroxene in different terrains may thus have been conservative or may have involved fluids of different origins pervasive on various length-scales. Metamorphism with pervasive metasomatism is signaled by monotonous H20, C02 and 02 fugacities over large areas, nearly independent of lithology, by scarcity of relict textures, and by pronounced depletion of Rb and other large ion lithophile (LILE) elements in the highest grade areas, such as the southernmost part of the Bamble, South Norway, terrain (1). Primary hornblende is rare or absent in quartzofeldspathic gneisses and orthopyroxene is ubiquitous in acid and basic rocks in the charnockitic terrains. Pronounced major and minor element redistributions took place
    [Show full text]
  • Towards a Unified Nomenclature in Metamorphic Petrology
    8. Amphibolite and Granulite Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks: Web version 01.02.07 1José Coutinho, 2Hans Kräutner, 3Francesco Sassi, 4Rolf Schmid and 5Sisir Sen. 1 J. Coutinho, University of São Paulo, São Paulo, Brazil 2 L M University, Munich, Germany 3 F. Sassi, Department of Mineralogy and Petrography, University of Padova, Italy 4 R. Schmid, ETH-Centre, Zürich, Switzerland 5 S. Sen, Indian Institute of Technology, Kharagpur, India Introduction This paper summarises the results of the discussions by the SCMR, and the response to circulars distributed by the SCMR, which demonstrated the highly variable usage of the terms granulite and amphibolite. It presents those definitions which currently seem to be the most appropriate ones. Some notes are included in order to explain the reasoning behind the suggested definitions. In considering the definitions it is important to remember that some of them are a compromise of highly different, even conflicting, opinions and traditions. The names amphibolite and granulite have been used in geological literature for nearly 200 years: amphibolite since Brongniart (1813), granulite since Weiss (1803). Although Brongniart described amphibolite as a rock composed of amphibole and plagioclase, in those early days the meaning of the term was variable. Only later (e.g. Rosenbusch, 1898) was it fixed as metamorphic rock consisting of hornblende and plagioclase, and of medium to high metamorphic grade. In contrast, the use of the name granulite was highly variable, a position which was further complicated by the introduction of the facies principle (Eskola, 1920, 1952) when the name granulite was proposed for all rocks of the granulite facies.
    [Show full text]
  • Eclogite Resembling Metamorphic Disequilibrium Assemblage Formed Through Fuid‑Induced Metasomatic Reactions Sanghoon Kwon1, Vinod O
    www.nature.com/scientificreports OPEN Eclogite resembling metamorphic disequilibrium assemblage formed through fuid‑induced metasomatic reactions Sanghoon Kwon1, Vinod O. Samuel1*, Yungoo Song1, Sung Won Kim2, Seung‑Ik Park3, Yirang Jang4 & M. Santosh5,6 Equilibrium omphacite‑garnet‑bearing mafc rocks have been classifed as eclogites, either pristine or retrogressed, that were formed at great depths in the lithosphere. Here we report a unique natural example of eclogite resembling assemblage in disequilibrium formed through fuid‑induced metasomatic reactions under the amphibolite to granulite facies. Primarily, the amphibolized protolith experienced a garnet‑amphibolite facies metamorphism at ~ 500–700 °C and ~ 0.8–1 GPa. Subsequently, CO2 fuid induced fracturing and dissolution‑reprecipitation reactions occurred at peak metamorphic conditions of ~ 700 °C and ~ 1 GPa. Occasional omphacite‑albite assemblage, which gradually replace diopside‑oligoclase symplectite adjacent to albite veins along fractures, indicates fuid‑induced coupled dissolution‑reprecipitation disequilibrium reactions. Here the albite‑omphacite assemblage is in local equilibrium at least on 1 mm length scale, during cooling, below ~ 600 ºC and ~ 1 GPa, within the amphibolite facies conditions. The results from this study clearly suggest that disequilibrium garnet‑omphacite assemblage in mafc rocks could be formed by crustal reworking processes below granulite facies conditions, and their textural equilibrium is an important criterion while defning eclogite facies. Eclogite facies metamorphic rocks formed through subduction and collision processes are common in global orogenic belts1–12 (e.g., Usagaran belt 1, Belomorian Belt2, Trans-Hudson orogen3, Grenvillian-Caledonian belt 4,5 Qinling–Dabie–Sulu belt6, Appalachian Orogenic Belt 7, Central Asian Orogenic Belt 8, Sambagawa belt 9, Alpine- Himalayan belt10,11, Franciscan complex12 etc.) created throughout Earth’s history.
    [Show full text]
  • The Greenschist to Amphibolite Facies Tonalite-Greenstone Terrain of The
    95 THE PIKWITONEI GRANULITE DOMAIN: A LOWER CRUSTAL LEVEL ALONG THE CHURCHILL-SUPERIOR BOUNDARY IN CENTRAL MANITOBA. W. Weber, Manitoba Geological Services Branch, Winnipeg, Manitoba, Canada, R3H OW4 The greenschist to amphibolite facies tonalite-greenstone terrain of the Gods Lake subprovince grades - in a northwesterly direction - into the granulite facies Pikwitonei domain (1) at the western margins of the Superior Province,. The transition is the result of prograde metamorphism and takes place over 50 - 100 km without any structural or lithological breaks. Locally the orthopyroxene isograd is oblique to the structural grain and transects greenstone belts, e.g., the Cross Lake belt (2). The greenstone belts in the granulite facies and adjacent lower grade domain consist mainly of mafic and (minor) ultramafic metavolcanics, and clastic and chemical metasedimentary rocks (1,2). Typical for the greenstone belts crossed by the orthopyroxene isograd are anorthositic gabbros and anorthosites, and plagiophyric mafic flows. Available data suggest a late Aphebian age for the prograde greenschist to granulite facies metamorphism. Peak conditions are reflected by saphirin-bearing and opx-sillimanite quartz gneisses which indicate 10 - 11 kb pressure and temperatures of 900 - 1000°C (2). At its western and northern edge - towards the contact with the Churchill Province - the rocks of the Pikwitonei granulite domain were overprinted by the Hudsonian orogeny; they were deformed, selectively retrogressed and recrystallized under greenschist to amphibolite facies conditions (1,2); locally they were migmatized. The Thompson belt, the Split Lake block and a linear zone south of the Fox River consists of these reworked granulites. Proterozoic rocks of the Circum-Superior belt (3) (apparently) overlie the reworked granulites along the Fox River and in the Thompson belt.
    [Show full text]
  • Role of Water in the Formation of Granulite and Amphibolite Facies Rocks Tobacco Root Mountains Montana
    University of Montana ScholarWorks at University of Montana Graduate Student Theses, Dissertations, & Professional Papers Graduate School 1988 Role of water in the formation of granulite and amphibolite facies rocks Tobacco Root Mountains Montana Linda M. Angeloni The University of Montana Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits ou.y Recommended Citation Angeloni, Linda M., "Role of water in the formation of granulite and amphibolite facies rocks Tobacco Root Mountains Montana" (1988). Graduate Student Theses, Dissertations, & Professional Papers. 8115. https://scholarworks.umt.edu/etd/8115 This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact [email protected]. COPYRIGHT ACT OF 1976 Th is is an unpublished manuscript in which copyright SUBSISTS. Any further r e p r in t in g of its contents must be APPROVED BY THE AUTHOR. Ma n s f ie l d Library Un iv e r s it y of Montana Date : t , 9 C B_ THE ROLE OF WATER IN THE FORMATION OF GRANULITE AND AMPHIBOLITE FACIES ROCKS, TOBACCO ROOT MOUNTAINS, MONTANA By Linda Marie Angeloni B.S., University of California, Santa Cruz, 1982 Presented in partial fulfillment of the requirements for the degree of Master of Science University of Montana 1988 Approved by Chairman, Board of Examiners Dean, Graduate School Date UMI Number: EP38916 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Proterozoic Deformation in the Northwest of the Archean Yilgarn Craton, Western Australia Catherine V
    Available online at www.sciencedirect.com Precambrian Research 162 (2008) 354–384 Proterozoic deformation in the northwest of the Archean Yilgarn Craton, Western Australia Catherine V. Spaggiari a,∗, Jo-Anne Wartho b,1, Simon A. Wilde b a Geological Survey of Western Australia, Department of Industry and Resources, 100 Plain Street, East Perth, Western Australia 6004, Australia b Department of Applied Geology, Curtin University, GPO Box U1987, Perth, Western Australia 6845, Australia Received 31 January 2007; received in revised form 19 September 2007; accepted 16 October 2007 Abstract The Narryer Terrane within the northwestern Yilgarn Craton contains the oldest crust in Australia. The Jack Hills greenstone belt is located within the southern part of the Narryer Terrane, and structures cutting it and surrounding rocks have been dated using the 40Ar/39Ar technique. The results show that east-trending, dextral, transpressive shearing was related to the 1830–1780 Ma Capricorn Orogeny, followed by further deformation and/or cooling between c. 1760 and 1740 Ma. These results confirm that major deformation has affected the northwestern part of the Yilgarn Craton in an intracratonic setting during the Proterozoic. Proterozoic structures have been interpreted to extend south beyond the Narryer Terrane into the northern part of the Youanmi Terrane (Murchison Domain), and include the Yalgar Fault, previously interpreted as the boundary between the Narryer and Youanmi Terranes. Terrane amalgamation pre-dated the emplacement of c. 2660 Ma granites in both terranes, and the current expression of the Yalgar Fault must represent a younger, reworked, post-amalgamation structure, possibly controlled by the tectonic boundary. However, new aeromagnetic and gravity imagery does not show the eastern part of the Yalgar Fault as a major structure.
    [Show full text]
  • Explanatory Notes for the Time–Space Diagram and Stratotectonic Elements Map of Tasmania
    Tasmanian Geological Survey TASMANIA DEVELOPMENT Record 1995/01 AND RESOURCES Tasgo NGMA Project Sub-Project 1: Geological Synthesis Explanatory notes for the Time–Space Diagram and Stratotectonic Elements Map of Tasmania by D. B. Seymour and C. R. Calver Tasmanian Geological Survey Record 1995/01 1 CONTENTS INTRODUCTION ..................................................................................................................... 4 KING ISLAND.......................................................................................................................... 5 ?Mesoproterozoic ............................................................................................................... 5 Neoproterozoic orogenesis and granitoid intrusive rocks ................................................ 5 ?Neoproterozoic sequences ................................................................................................ 5 Early Carboniferous granitoid intrusive rocks ................................................................ 6 ROCKY CAPE ELEMENT....................................................................................................... 7 ?Mesoproterozoic: Rocky Cape Group ............................................................................... 7 Burnie and Oonah Formations ........................................................................................ 7 Smithton Synclinorium .................................................................................................... 7 Ahrberg Group .................................................................................................................
    [Show full text]
  • Petrogenesis of Eclogite and Mafic Granulite Xenoliths from South
    Petrogenesis of eclogite and mafic granulite xenoliths from South Australian Jurassic kimberlitic intrusions: Tectonic Implications Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology Angus Tod November 2012 1 PETROGENESIS OF GITE ECLO AND MAFIC GRANULITE XENOLITHS FROM SOUTH AUSTRALIAN JURASSIC KIMBERLITIC TRUSIONS: IN TECTONIC IMPLICATIONS ANGASTON, EL ALAMEIN AND PITCAIRN ECLOGITES AND MAFIC TES GRANULI ABSTRACT Jurassic kimberlites in South Australia have entrained sub lithospheric mafic granulites and eclogites from the eastern margin of the Australian Craton. This thesis looks at these rocks as a unique window into the sub-lithospheric mantle beneath the south eastern margin of Gondwana. Samples collected from Angaston, El Alamein and Pitcairn included eclogites, amphibole eclogites, amphibole granulites and feldspar rich granulites. These samples were prepared for analytical work at the University of Adelaide. Whole rock geochemistry was collected from x-ray fluorescence in the Mawson Laboratories. Mineral identification and geochemistry was determined by the Cameca SX 51 microprobe at Adelaide Microscopy. Geothermobarometry showed pressures between 6-30kbar, which represent 15-90km of depth and temperatures between 620-1200oC. These rocks experience very high pressure and temperatures and show petrological evidence of isobaric cooling path from the adiabat to the stable geotherm. Magma crystallisation models using MELTS program helped to determine the protoliths that appear to represent mafic underplates. The cumulate and melts that make up these xenoliths have been shown in this thesis to most likely have been derived from a MORB source that crystallised at high pressures (up to 30kbar). Pseudosections produced with the Theriak-Domino program were used to produce a metamorphic path and show that rock type is closely linked to emplacement depth and bulk composition.
    [Show full text]
  • Petrogenesis of Eclogite and Mafic Granulite Xenoliths from South
    Petrogenesis of eclogite and mafic granulite xenoliths from South Australian Jurassic kimberlitic intrusions: Tectonic Implications Thesis submitted in accordance with the requirements of the University of Adelaide for an Honours Degree in Geology Angus Tod November 2012 1 PETROGENESIS OF GITE ECLO AND MAFIC GRANULITE XENOLITHS FROM SOUTH AUSTRALIAN JURASSIC KIMBERLITIC TRUSIONS: IN TECTONIC IMPLICATIONS ANGASTON, EL ALAMEIN AND PITCAIRN ECLOGITES AND MAFIC TES GRANULI ABSTRACT Jurassic kimberlites in South Australia have entrained sub lithospheric mafic granulites and eclogites from the eastern margin of the Australian Craton. This thesis looks at these rocks as a unique window into the sub-lithospheric mantle beneath the south eastern margin of Gondwana. Samples collected from Angaston, El Alamein and Pitcairn included eclogites, amphibole eclogites, amphibole granulites and feldspar rich granulites. These samples were prepared for analytical work at the University of Adelaide. Whole rock geochemistry was collected from x-ray fluorescence in the Mawson Laboratories. Mineral identification and geochemistry was determined by the Cameca SX 51 microprobe at Adelaide Microscopy. Geothermobarometry showed pressures between 6-30kbar, which represent 15-90km of depth and temperatures between 620-1200oC. These rocks experience very high pressure and temperatures and show petrological evidence of isobaric cooling path from the adiabat to the stable geotherm. Magma crystallisation models using MELTS program helped to determine the protoliths that appear to represent mafic underplates. The cumulate and melts that make up these xenoliths have been shown in this thesis to most likely have been derived from a MORB source that crystallised at high pressures (up to 30kbar). Pseudosections produced with the Theriak-Domino program were used to produce a metamorphic path and show that rock type is closely linked to emplacement depth and bulk composition.
    [Show full text]