Diptera: Drosophilidae) in the Biomes Caatinga and Atlantic Forest, Northeastern Brazil

Total Page:16

File Type:pdf, Size:1020Kb

Diptera: Drosophilidae) in the Biomes Caatinga and Atlantic Forest, Northeastern Brazil ARTHROPOD BIOLOGY Abundance and Richness of Cryptic Species of the willistoni Group of Drosophila (Diptera: Drosophilidae) in the Biomes Caatinga and Atlantic Forest, Northeastern Brazil ANA CRISTINA LAUER GARCIA,1,2 DIVA MARIA IZABEL DE OLIVEIRA SILVA,3 AMANDA GABRIELA FELIX MONTEIRO,1 GEO´ RGIA FERNANDA OLIVEIRA,1 4 1 MARTI´N ALEJANDRO MONTES, AND CLA´ UDIA ROHDE Downloaded from https://academic.oup.com/aesa/article/107/5/975/64874 by guest on 27 September 2021 Ann. Entomol. Soc. Am. 107(5): 975Ð982 (2014); DOI: http://dx.doi.org/10.1603/AN14052 ABSTRACT Cryptic species meet the biological deÞnition of species, but are morphologically identical or quite similar. Several ecological studies underestimate richness and neglect important information on cryptic species, as they are rather difÞcult to identify. Among insects, drosophilids of the willistoni subgroup, which includes Drosophila willistoni Sturtevant, Drosophila paulistorum Dobzhansky & Pavan, Drosophila equinoxialis Dobzhansky, Drosophila tropicalis Burla & da Cunha, Drosophila insularis Dobzhansky, and Drosophila pavlovskiana Kastritsis & Dobzhansky, are good examples of cryptic species. Although several studies have shown that this subgroup is one of the most abundant in the Neotropical region, no identiÞcation to species level has been reported for areas where these individuals live in sympatry. This study evaluates the seasonal oscillations in abundance of this subgroup in biomes with contrasting vegetation and rainfall regimes: the Caatinga and the Atlantic Forest, in northeastern Brazil. Approximately 39,000 drosophilids were captured in 24 collections, of which 18,000 belonged to the willistoni subgroup. The most abundant were D. willistoni, D. pauli- storum, and D. equinoxialis, in this order. D. equinoxialis was recorded in only one of the environments surveyed, represented by few individuals. In all environments, individuals of the willistoni subgroup were more abundant in the rainy season, when richness often was higher. The results underline the importance of humidity and of temperature for the subgroup willistoni and indicate the ecological versatility of some of its species. KEY WORDS ecology, neotropical region, pernambuco, temperature, humidity Cryptic species establish morphologically identical or by cryptic species (Salles 1947; Burla et al. 1949; quite similar natural populations that nevertheless re- Breuer and Pavan 1950; Magalha˜es and Bjo¨rnberg main isolated from the reproductive standpoint (Mayr 1957; Vilela 1983, 1992; Vilela and Ba¨chli 1990; Vilela 1963). The notion of cryptic species is one of the most et al. 2002). Examples include the willistoni group of stringent conditions that defy the morphological con- Drosophila, which is composed of three subgroups. cept of species and poses a signiÞcant problem to One of these is the willistoni subgroup, represented by taxonomists. Dobzhansky (1970) underscores the im- six cryptic species. Of these, Drosophila insularis Dob- portance of the identiÞcation of these individuals in zhansky and Drosophila pavlovskiana Kastritsis & evolutionary and ecological studies, and emphasizes Dobzhansky are endemic to the Lesser Antilles and that species are natural entities that exist irrespec- Guiana, respectively. The other four species are tively of our competence to distinguish one from the widely distributed and are often sympatric. Drosophila other. willistoni Sturtevant occurs from the south of the A considerable share of the diversity of small ßies United States to northern Argentina and Uruguay, that comprise the Drosophilidae family is represented Drosophila paulistorum Dobzhansky & Pavan spreads from northern Guatemala to southern Brazil, Drosoph- 1 Universidade Federal de Pernambuco, Centro Acadeˆmico de ila equinoxialis Dobzhansky distributes from southern Vito´ria, Programa de Po´s-Graduac¸a˜oemSau´ de Humana e Meio Am- Mexico and practically reaches central Brazil and biente, Rua do Alto do Reservato´rio, s/n, Bela Vista, 55608-680 Vito´ria Peru, while Drosophila tropicalis Burla & da Cunha is de Santo Anta˜o, PE, Brazil. 2 Corresponding author, e-mail: [email protected]. recorded from northern Guatemala down to central 3 Universidade de Pernambuco, Programa de Po´s-Graduac¸a˜oem Brazil and central Bolivia (Spassky et al. 1971, Dob- Biologia Celular e Molecular Aplicada, Rua Arno´bio Marques, 310, zhansky and Powell 1975, Ehrman and Powell 1982, Bairro Santo Amaro, 50100-130 Recife, PE, Brazil. Santos and Valente 1990). 4 Universidade Federal Rural de Pernambuco, Departamento de Biologia, Campus Dois Irma˜os. Rua Dom Manoel de Medeiros, s/n. In the Neotropical region, the willistoni subgroup is CEP 52171-900 Recife, PE, Brazil. one of the most abundant in numerous environments, 0013-8746/14/0975Ð0982$04.00/0 ᭧ 2014 Entomological Society of America 976 ANNALS OF THE ENTOMOLOGICAL SOCIETY OF AMERICA Vol. 107, no. 5 Downloaded from https://academic.oup.com/aesa/article/107/5/975/64874 by guest on 27 September 2021 Fig. 1. Collection sites of drosophilids in the state of Pernambuco, northeastern Brazil, in the Caatinga biome (black squares) and Atlantic Forest biome, biogeographical subregions Brejos de Altitude (triangles) and Pernambuco (circles). Inset shows the map of South America, Brazil (light gray), and the northeastern region of the country (dark gray). Site codes: SET-1 (Serra Talhada, 07Њ 57Ј S, 38Њ 18Ј W); SET-2 (Serra Talhada, 07Њ 56Ј S, 38Њ 17Ј W); CAT-1 (Buõ´que, 08Њ 24Ј S, 37Њ 09Ј W); CAT-2 (Buõ´que, 08Њ 36Ј S, 37Њ 14Ј W); TRI (Triunfo, 07Њ 50Ј S, 38Њ 06Ј W); MAD (Brejo da Madre de Deus, 08Њ 12Ј S, 36Њ 24Ј W); BEZ (Bezerros, 08Њ 53ЈS, 36Њ 29Ј W); BON (Bonito, 08Њ 30Ј S, 35Њ 42Ј W); TAP (Sa˜o Lourenc¸o da Mata, 08Њ 07Ј S, 35Њ 17Ј W); POM (Pombos, 08Њ 08Ј S, 35Њ 23Ј W); ZOO (Recife, 08Њ 03Ј S, 34Њ 52Ј W); SAL (Tamandare´ ,08Њ 45Ј S, 35Њ 06Ј W). and sometimes accounts for the largest proportion of gimes: the Caatinga and the Atlantic Forest in north- individuals collected (Dobzhansky and Pavan 1950, eastern Brazil. In the latter, the biogeographic subre- Martins 2001, Medeiros and Klaczko 2004, Tidon 2006, gions Brejos de Altitude and Pernambuco were Do¨ge et al. 2008, Acurio and Rafael 2009, Rohde et al. surveyed. 2010). Nevertheless, in several studies carried out in areas where more than one species of this group has Materials and Methods been recorded, its representatives are not identiÞed to species level. This situation is observed in Brazilian Study Sites. Adult drosophilids were collected in biomes like the Atlantic Forest (Pavan 1950, Sene et 12 sites in the state of Pernambuco, northeastern Bra- al. 1980, Tidon-Sklorz and Sene 1992, De Toni et al. zil. Of these, four are located in the Caatinga biome 2001, Silva et al. 2005, Mateus et al. 2006, Torres and and eight are in the Atlantic Forest biome. In the Madi-Ravazzi 2006, De Toni et al. 2007, Cavasini et al. latter, four are in the Brejos de Altitude subregion and 2008, Do¨ge et al. 2008, Gottschalk et al. 2009, Bizzo et four are in the Pernambuco subregion (Fig. 1). In each al. 2010), the Cerrado (Sene et al. 1980, Torres and site, two collections were conducted, totaling 24 sam- Madi-Ravazzi 2006, Tidon 2006, Blauth and Gottschalk plings, at periods characterized by contrasting rainfall 2007, Mata et al. 2008), the Amazon Forest (Martins levels (the dry and the rainy season). 1989, 2001), and the Caatinga (Sene et al. 1980). The vegetal formations in Caatinga are character- In light of the importance and of the paucity of ized by xerophilous steppic savanna, and the dry sea- information about species of the willistoni subgroup, son is long (Eiten 1982). Mean annual rainfall varies the current study assessed the seasonal oscillations in between 400 and 600 mm, most of which in three willistoni representativesÕ richness and abundance in consecutive months between November and June biomes with contrasting vegetation and rainfall re- (AbÕSaber 1977). The Caatinga is the only exclusively September 2014 GARCIA ET AL.: CRYPTIC SPECIES OF THE willistoni GROUP OF Drosophila 977 Table 1. Absolute abundance of species of the willistoni subgroup of Drosophila and of the other drosophilid species captured in different collection efforts in each of the three environments surveyed in the dry and rainy seasons Locality willistoni Subgroup Other Biome Environment Date Season Total code D. willistoni D. paulistorum D. equinoxialis Total species Caatinga SET-1 15 Feb. 2009 Dry 3 Ð Ð 3 275 278 23 June 2009 Rainy 1,611 133 Ð 1,744 771 2,515 SET-2 15 Feb. 2009 Dry 1 Ð Ð 1 783 784 23 June 2009 Rainy 1,975 154 Ð 2,129 1,069 3,198 CAT-1 13 Mar. 2009 Dry Ð Ð Ð Ð 273 273 25 June 2008 Rainy 312 Ð Ð 312 630 942 CAT-2 13 Mar. 2009 Dry Ð Ð Ð Ð 350 350 25 June 2008 Rainy 149 55 Ð 204 1,011 1,215 Total 4,051 342 Ð 4,393 5,162 9,555 Atlantic Forest Brejos de altitude TRI 30 Jan. 2009 Dry 8 7 Ð 15 284 299 Downloaded from https://academic.oup.com/aesa/article/107/5/975/64874 by guest on 27 September 2021 23 June 2009 Rainy 774 298 Ð 1,072 602 1,674 MAD 16 Dec. 2010 Dry 31 4 Ð 35 35 70 10 Nov. 2010 Rainy 274 5 3 282 315 597 BEZ 8 Dec. 2009 Dry 44 Ð Ð 44 395 439 12 July 2008 Rainy 117 11 Ð 128 4,064 4,192 BON 6 Feb. 2010 Dry 994 11 Ð 1,005 862 1,867 17 May 2010 Rainy 3,028 262 Ð 3,290 894 4,184 Total 5,270 597 3 5,871 7,451 13,322 Pernambuco TAP 5 Mar. 2011 Dry 682 42 Ð 724 2,960 3,684 14 Oct. 2010 Rainy 746 73 Ð 819 1,152 1,971 POM 5 Jan.
Recommended publications
  • Drosophila Biology in the Genomic Age
    Copyright Ó 2007 by the Genetics Society of America DOI: 10.1534/genetics.107.074112 Drosophila Biology in the Genomic Age Therese Ann Markow*,1 and Patrick M. O’Grady† *Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 and †Division of Organisms and the Environment, University of California, Berkeley, California 94720 Manuscript received April 9, 2007 Accepted for publication May 10, 2007 ABSTRACT Over the course of the past century, flies in the family Drosophilidae have been important models for understanding genetic, developmental, cellular, ecological, and evolutionary processes. Full genome se- quences from a total of 12 species promise to extend this work by facilitating comparative studies of gene expression, of molecules such as proteins, of developmental mechanisms, and of ecological adaptation. Here we review basic biological and ecological information of the species whose genomes have recently been completely sequenced in the context of current research. F most biologists were given one wish to facilitate their several hundred taxa that await description. Most of I research, many would opt for the fully sequenced these taxa belong to one of two major subgenera: genome of their focal taxon. Others might ask for a Sophophora and Drosophila. Figure 1 shows the phylo- diverse array of genetic tools around which they could genetic relationships and divergence times of the 12 design experiments to answer evolutionary, developmen- species for which whole-genome sequences are now tal, behavioral, or ecological questions. With the recent available. The 12 species with sequenced genomes completion of full genome sequences from 12 species, represent a gradient of evolutionary distances from D.
    [Show full text]
  • THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975
    NATIONAL ACADEMY OF SCIENCES T H E O D O S I U S D O B ZHANSKY 1900—1975 A Biographical Memoir by F R A N C I S C O J . A Y A L A Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1985 NATIONAL ACADEMY OF SCIENCES WASHINGTON D.C. THEODOSIUS DOBZHANSKY January 25, 1900-December 18, 1975 BY FRANCISCO J. AYALA HEODOSIUS DOBZHANSKY was born on January 25, 1900 Tin Nemirov, a small town 200 kilometers southeast of Kiev in the Ukraine. He was the only child of Sophia Voinarsky and Grigory Dobrzhansky (precise transliteration of the Russian family name includes the letter "r"), a teacher of high school mathematics. In 1910 the family moved to the outskirts of Kiev, where Dobzhansky lived through the tumultuous years of World War I and the Bolshevik revolu- tion. These were years when the family was at times beset by various privations, including hunger. In his unpublished autobiographical Reminiscences for the Oral History Project of Columbia University, Dobzhansky states that his decision to become a biologist was made around 1912. Through his early high school (Gymnasium) years, Dobzhansky became an avid butterfly collector. A schoolteacher gave him access to a microscope that Dob- zhansky used, particularly during the long winter months. In the winter of 1915—1916, he met Victor Luchnik, a twenty- five-year-old college dropout, who was a dedicated entomol- ogist specializing in Coccinellidae beetles.
    [Show full text]
  • Between Drosophila Species
    Copyright 0 1990 by the Genetics Society of America Evidence for Horizontal Transmission of theP Transposable Element Between Drosophila Species Stephen B. Daniels,* Kenneth R. Peterson: Linda D. Strausbaugh,* Margaret G. Kidwell+ and Arthur Chovnick*' *Department of Molecular and Cell Biology, University of Connecticut, Stows, Connecticut 06268, and ?Departmentof Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721 Manuscript received September 2 1, 1989 Accepted for publication November 2, 1989 ABSTRACT Several studies have suggested that P elements have rapidly spread through natural populations of Drosophila melanogaster within the last four decades. This observation, together with the observation that P elements are absent in the otherspecies of the melanogaster subgroup, has lead to the suggestion that P elements may have entered the D. melanogaster genome by horizontal transmission from some more distantly related species. In an effort to identify the potential donor in the horizontal transfer event, we have undertaken an extensive survey of the genus Drosophila using Southern blot analysis. The results showed that P-homologous sequences are essentially confined to the subgenus Sophophora. The strongest P hybridization occurs in species from the closely related willistoni and saltans groups. The D. melanogaster P element is most similar to the elements from the willistoni group. A wild- derived strain of D. willistoni was subsequently selected for a more comprehensive molecular exami- nation. As part of the analysis, a complete P element was cloned and sequenced from this line. Its nucleotide sequence was found to be identical to the D. melanogaster canonical P, with the exception of a single base substitution at position 32.
    [Show full text]
  • Three Decades of Studies on Chromosomal Polymorphism of Drosophila Willistoni and Description of Fifty Different Rearrangements
    Genetics and Molecular Biology, 35, 4 (suppl), 966-979 (2012) Copyright © 2012, Sociedade Brasileira de Genética. Printed in Brazil www.sbg.org.br Research Article Three decades of studies on chromosomal polymorphism of Drosophila willistoni and description of fifty different rearrangements Claudia Rohde* and Vera Lúcia S. Valente Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil. Abstract Drosophila willistoni (Insecta, Diptera) is considered a paradigm for evolutionary studies. Their chromosomes are characterized by multiple paracentric inversions that make it hard to identify and describe chromosomal poly- morphisms. In the present report we attempted to systematize the description of all the 50 inversions found in the last three decades, since we have been studying the chromosomes of several individuals of 30 different populations, in- cluding the one used in the genome sequencing project (Gd-H4-1). We present the photographic register of 11 ar- rangements in the left arm of the X chromosome (XL), eight in the right arm (XR), 10 in the left arm of chromosome II (IIL), eight in its right arm (IIR) and 13 in chromosome III. This information also includes their breakpoints on the refer- ence photomap. A clear geographic difference was detected in XL and XR, with different fixed arrangements de- pending on the origin of the population studied. Through the comparison of all X arrangements it was possible to infer the putative ancestral arrangements, i.e., those related to all the remaining arrangements through the small number of inversions that occurred in the past, which we will call XL-A and XR-A.
    [Show full text]
  • A New Drosophila Spliceosomal Intron Position Is Common in Plants
    A new Drosophila spliceosomal intron position is common in plants Rosa Tarrı´o*†, Francisco Rodrı´guez-Trelles*‡, and Francisco J. Ayala*§ *Department of Ecology and Evolutionary Biology, University of California, Irvine, CA 92697-2525; †Misio´n Biolo´gica de Galicia, Consejo Superior de Investigaciones Cientı´ficas,Apartado 28, 36080 Pontevedra, Spain; and ‡Unidad de Medicina Molecular-INGO, Hospital Clı´nicoUniversitario, Universidad de Santiago de Compostela, 15706 Santiago, Spain Contributed by Francisco J. Ayala, April 3, 2003 The 25-year-old debate about the origin of introns between pro- evolutionary scenarios (refs. 2 and 9, but see ref. 6). In addition, ponents of ‘‘introns early’’ and ‘‘introns late’’ has yielded signifi- IL advocates now acknowledge intron sliding as a real evolu- cant advances, yet important questions remain to be ascertained. tionary phenomenon even though it is uncommon (10, 11) and, One question concerns the density of introns in the last common in most cases, implicates just one nucleotide base-pair slide ancestor of the three multicellular kingdoms. Approaches to this (12–14). IL supporters now tend to view spliceosomal introns as issue thus far have relied on counts of the numbers of identical genomic parasites that have been co-opted into many essential intron positions across present-day taxa on the assumption that functions such that few, if any, eukaryotes could survive without the introns at those sites are orthologous. However, dismissing them (2). parallel intron gain for those sites may be unwarranted, because In this emerging scenario, IE upholders claim that the last various factors can potentially constrain the site of intron insertion.
    [Show full text]
  • Characterization of a Cu/Zn Superoxide Dismutase-Encoding Gene Region in Drosophila Willistoni*
    Gene, 147 ( 1994) 2955296 0 1994 Elsevier Science B.V. All rights reserved. 0378-l 119/94/$07.00 295 GENE 08177 Characterization of a Cu/Zn superoxide dismutase-encoding gene region in Drosophila willistoni* (Drosophila virilis; gene homology: gene structure; polyadenylation signal; Sophophora) Jan Kwiatowski”,b, Amparo Latorrea,c, Douglas Skarecky” and Francisco J. Ayala” Received by J.A. Engler: 21 December 1993: Revised/Accepted: 1 March/Z March 1994; Received at publishers: 13 June 1994 SUMMARY A Cu/Zn superoxide dismutase-encoding gene (Sod) from Drosophila willistoni was cloned and sequenced. The gene shows a typical structure for a fruit-fly Sod gene, with a coding region of 462 bp in two exons separated by a 417-bp intron. Comparison of the Sod sequences from D. willistoni and D. melanogaster suggests that these species are only remotely related. Downstream from the Sod gene, there is an ORF on the opposite strand that putatively encodes the last exon of an unidentified gene. The polyadenylation signals of the two genes are separated by only 61 bp in D. willistoni, conforming to the common picture of compact dipteran genomes. A 1472-bp fragment containing Cu!Zn Sod was isolated the Sophophora subgenus. The coding nt as well as aa from a genomic library of D. willistoni by cross- differences between D. willistoni and D. melanoguster or hybridization with Cu/Zn Sod cDNA from D. melanogas- D. simulans are larger than those between D. willistoni ter and sequenced on both strands. The coding region and D. virilis, a species of the subgenus Drosophila (Fig.
    [Show full text]
  • Dissecting the Molecular Interplay Between Tomato Spotted Wilt Virus and the Insect Vector, Frankliniella Occidentalis
    DISSECTING THE MOLECULAR INTERPLAY BETWEEN TOMATO SPOTTED WILT VIRUS AND THE INSECT VECTOR, FRANKLINIELLA OCCIDENTALIS by ISMAEL E. BADILLO VARGAS B.S., University of Puerto Rico – Mayagüez, 2006 M.S., University of Wisconsin – Madison, 2008 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Department of Plant Pathology College of Agriculture KANSAS STATE UNIVERSITY Manhattan, Kansas 2014 Abstract The Bunyaviridae is a family of animal and plant viruses that pose a threat to human, animal, and plant health worldwide. In nature, the dissemination of these viruses is dependent on arthropod vectors (genera Orthobunyavirus, Nairovirus, Phlebovirus, and Tospovirus) or rodent vectors (genus Hantavirus). The genus Tospovirus is the only one within this virus family that is composed of plant-infecting viruses transmitted by thrips. Tomato spotted wilt virus (TSWV), the type species of the Tospovirus genus, is one of the ten most devastating plant viruses known. It is most efficiently transmitted by the western flower thrips, Frankliniella occidentalis Pergande, in a persistant propagative manner. The insect molecules associated with virus infection and transmission by the thrips vector remain unidentified to date. The aim of this work was to identify F. occidentalis larval thrips proteins that are differentially expressed during TSWV infection of the insect vector and those that directly interact with TSWV. To achieve these goals, I used two-dimensional (2-D) gel electrophoresis and mass spectrometry coupled with Mascot searches. I identified 26 protein spots that displayed differential abundances in response to TSWV infection, which contained 37 proteins. Sixty two percent of these proteins were down-regulated by the viral infection demonstrating a complex response.
    [Show full text]
  • Drosophila Information Service
    Drosophila Information Service Number 103 December 2020 Prepared at the Department of Biology University of Oklahoma Norman, OK 73019 U.S.A. ii Dros. Inf. Serv. 103 (2020) Preface Drosophila Information Service (often called “DIS” by those in the field) was first printed in March, 1934. For those first issues, material contributed by Drosophila workers was arranged by C.B. Bridges and M. Demerec. As noted in its preface, which is reprinted in Dros. Inf. Serv. 75 (1994), Drosophila Information Service was undertaken because, “An appreciable share of credit for the fine accomplishments in Drosophila genetics is due to the broadmindedness of the original Drosophila workers who established the policy of a free exchange of material and information among all actively interested in Drosophila research. This policy has proved to be a great stimulus for the use of Drosophila material in genetic research and is directly responsible for many important contributions.” Since that first issue, DIS has continued to promote open communication. The production of this volume of DIS could not have been completed without the generous efforts of many people. Except for the special issues that contained mutant and stock information now provided in detail by FlyBase and similar material in the annual volumes, all issues are now freely-accessible from our web site: www.ou.edu/journals/dis. For early issues that only exist as aging typed or mimeographed copies, some notes and announcements have not yet been fully brought on line, but key information in those issues is available from FlyBase. We intend to fill in those gaps for historical purposes in the future.
    [Show full text]
  • Disentangling the Relationship Between Sex-Biased Gene Expression and X-Linkage
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press Disentangling the relationship between sex-biased gene expression and X-linkage Richard P. Meisel1∗, John H. Malone2;3∗, Andrew G. Clark1 1) Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY USA 2) Laboratory of Cellular and Developmental Biology, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, MD USA 3) Current affiliation: Department of Biological Science, Florida State University, Tallahassee, FL USA * Equal contributions To whom correspondence should be addressed: Richard P. Meisel Dept. Molecular Biology and Genetics 221 Biotechnology Bldg. Cornell University Ithaca, NY 14853 U.S.A. phone: 1-607-255-1707 fax: 1-607-255-6249 email: [email protected] Running title: X-linkage and sex-biased expression Keywords: Sex-bias, X chromosome, gene expression, Drosophila, Mouse 1 Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT X chromosomes are preferentially transmitted through females, which may favor the accumu- lation of X-linked alleles/genes with female-beneficial effects. Numerous studies have shown that genes with sex-biased expression are under- or over-represented on the X chromosomes of a wide variety of organisms. The patterns, however, vary between different animal species, and the causes of these differences are unresolved. Additionally, genes with sex-biased expres- sion tend to be narrowly expressed in a limited number of tissues, and narrowly expressed genes are also non-randomly X-linked in a taxon-specific manner.
    [Show full text]
  • End of Course Biology
    SESSION: 31 PAGE: 1 3/20/06 12:26 LOGIN IS-joer PATH: @sunultra1/raid/CLS_tpc/GRP_va_sprg06/JOB_06-ribsg11/DIV_g11bio-1 VIRGINIA STANDARDS OF LEARNING Spring 2005 Released Test END OF COURSE BIOLOGY CORE 1 Property of the Virginia Department of Education ᭧ 2006 by the Commonwealth of Virginia, Department of Education, P.O. Box 2120, Richmond, Virginia 23218-2120. All rights reserved. Except as permitted by law, this material may not be reproduced or used in any form or by any means, electronic or mechanical, including photocopying or recording, or by any information storage retrieval system, without written permission from the copyright owner. Commonwealth of Virginia public school educators may reproduce any portion of these released tests for noncommercial educational purposes without requesting permission. All others should direct their written requests to the Virginia Department of Education, Division of Assessment and Reporting at the above address or by e-mail to [email protected]. SESSION: 30 PAGE: 2 1/13/06 6:36 LOGIN IS-garyo PATH: @sunultra1/raid/CLS_tpc/GRP_va_sprg06/JOB_06-ribsg11/DIV_g11bio-1 Biology DIRECTIONS 1 10x Read each question carefully and choose the best 2046072 answer. Then mark the space on the answer sheet for the answer you have chosen. ੭BY01I404 C L SAMPLE 40x ArtCodes BY01I404.AR1 The following pictures show some stages during asexual reproduction of a hydra. Which picture shows the first Onion cells step? What is the total magnification used to view these onion cells through this microscope setup? A 10ϫ B 40ϫ C 50ϫ AC D 400ϫ ੭ 2 External sources, such as radiation or chemicals, can cause mutations in genes or entire chromosomes.
    [Show full text]
  • Zanini, R., M. Depra, and V.L.S. Valente
    Dros. Inf. Serv. 98 (2015) Research Notes 25 On the geographic distribution of the Drosophila willistoni group (Diptera, Drosophilidae) – updated distribution of alagitans and bocainensis subgroups. Zanini, Rebeca 1,2, Maríndia Deprá 1,2, Vera Lúcia da Silva Valente 1,2. 1Programa de Pós- Graduação em Biologia Animal, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9500 prédio 43435 CEP 91501-970, Bairro Agronomia, Porto Alegre, RS, Brazil. 2Laboratório de Drosophila, Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul (UFRGS), Avenida Bento Gonçalves, 9500 prédio 43323 sala 210 CEP 91501-970, Bairro Agronomia, Porto Alegre, RS, Brazil. Corresponding author: [email protected] Introduction Drosophila willistoni group (Diptera, Drosophilidae) is a Neotropical species group and is currently composed of 24 species distributed in three subgroups – alagitans, bocainensis, and willistoni (Bächli, 2015). The alagitans species group was established by Patterson and Mainland (1944), which reunited D. alagitans and D. capnoptera in a species group belonging to subgenus Drosophila (Wheeler and Magalhães, 1962). Later, Hsu (1949) observed that the male genitalia of these species resembled the willistoni species group and the alagitans group was later transferred to subgenus Sophophora (Wheeler, 1949). Wheeler and Magalhães (1962) described two new species for this subgroup – D. megalagitans and D. neoalagitans. Carson (1954) observed that three distinct specimens were designated as D. bocainensis; one of them was confirmed as D. bocainensis and the others redescribed as D. parabocainensis and D. bocainoides, establishing the bocainensis species complex (Carson, 1954). Salzano (1956) also reviewed the status of this species. Wheeler and Magalhães (1962) described some species belonging to this subgroup – D.
    [Show full text]
  • A Supertree Analysis and Literature Review of the Genus Drosophila and Closely Related Genera (Diptera, Drosophilidae)
    A supertree analysis and literature review of the genus Drosophila and closely related genera (Diptera, Drosophilidae) KIM VAN DER LINDE and DAVID HOULE Insect Syst.Evol. van der Linde, K. and Houle, D.: A supertree analysis and literature review of the genus Drosophila and closely related genera (Diptera, Drosophilidae). Insect Syst. Evol. 39: 241- 267. Copenhagen, October 2008. ISSN1399-560X. In the 17 years since the last familywide taxonomic analysis of the Drosophilidae, many stud- ies dealing with a limited number of species or groups have been published. Most of these studies were based on molecular data, but morphological and chromosomal data also contin- ue to be accumulated. Here, we review more than 120 recent studies and use many of those in a supertree analysis to construct a new phylogenetic hypothesis for the genus Drosophila and related genera. Our knowledge about the phylogeny of the genus Drosophila and related gen- era has greatly improved over the past two decades, and many clades are now firmly suppor- ted by many independent studies. The genus Drosophila is paraphyletic and comprises four major clades interspersed with at least five other genera, warranting a revision of the genus. Despite this progress, many relationships remain unresolved. Much phylogenetic work on this important family remains to be done. K. van der Linde & D. Houle, Department of Biological Science, Florida State University, Tallahassee, Florida 32306-4295, U.S.A. ([email protected]). *Corresponding author: Kim van der Linde, Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, U.S.A.; telephone (850) 645-8521, fax (850) 645- 8447, email: ([email protected]).
    [Show full text]