David Baxter GK-12 Summer Research Program Brown University Oliver Hazard Perry Middle School NASA Explorer School

Total Page:16

File Type:pdf, Size:1020Kb

David Baxter GK-12 Summer Research Program Brown University Oliver Hazard Perry Middle School NASA Explorer School David Baxter GK-12 Summer Research Program Brown University Oliver Hazard Perry Middle School NASA Explorer School Department of Geological Sciences Planetary Geology Group Dr. Michael Wyatt Dr. James Head III NASA/JPL/ASU Overall Mars Science Strategy: “Follow the Water” Science Goals of NASA’s Long‐Term Mars Program 1: Determine Whether Life Arose on Mars 2: Characterize the Climate of Mars 3: Characterize the Geology of Mars 4: Prepare for Human Exploration Comparison Of Earth and Mars EARTH MARS Average Surface 15c -63c Temp. Distance from Sun 149,600,000 km 227,940,000 km Orbital Period 365.2 days 687 days Rotational Period 24 hours 24.6 hours Number of Moons 1 2 Obliquity (Tilt) 22.5 deg 25.19 deg. * OBLIQUITY OF MARS AND EARTH • Increased axis tilt causes climatic changes, especially at the poles. • These changes in obliquity correspond to warmer climatic patterns. • Mars has had a dry and cold climate except for brief periods of high obliquity. GLOBAL DICOTOMY OF MARS Northern Lowlands of Mars Acidalia Planitia Region MOLA: NASA/JPL/ASU MARS EXPLORATION 1996 2004 2001 2004 Exploration of Mars Mars Global Surveyor Mars Odyssey Mars Express Mars Reconnaissance Launched 1996 Launched 2001 Launched 2003 Orbitier Launched 2005 Instruments: Instruments: Instruments: Instruments: •Mars Orbiter •Thermal Emission •High Resolution •Content Camera (CTX) Camera (MOC) Imaging System Stereo Camera •High Resolution Imaging •Mars Orbiter Laser (Themis) (HRSC) Science Experiment Altimeter (MOLA) •Gamma Ray •OMEGA (Mineral (HiRISE) •Thermal Emission Spectrometer (GRS) observations •Compact Reconnaissance Spectrometer (TES) •Martian Radiation Image Spectrometer for Experiment (MARIE) Mars (CRISM) •Mars Color Imager (MARCI) EXPLORATION OF MARS Mars Pathfinder Sojourner Rover Mars Exploration Rovers: Mars Polar Lander- Phoenix Launched 1996 Spirit and Opportunity Launched 2007 Launched 2003 Instruments: Instruments: Instruments: • Robotic Arm Camera • Alpha Proton X-Ray • Panoramic Camera (RAC) (PANCAM) Spectrometer • Surface Stereo Imager (APXS) • Mini-Thermal Emission (SSI) Spectrometer( Mini-TES) • Imager for Mars • Microscopy, Pathfinder (IMP) • Alpha Particle X-Ray Electrochemistry, and • Atmospheric Spectrometer (APXS) Conductivity analyzer Structure Instrument • MossBauer (MECA) /Meteorology Spectrometer • Thermal and Evolved Package (ASI/MET) • Rock Abrasion Tool Gas Analyzer (TEGA) (RAT) • Mars Descent Imager • Microscopic Imager (MI) (MARDI) • Meteorological Station (MET) GK-12 Summer Research CURRICULUM RESEARCH PROJECT PROJECT • Focus on Impact • Northern Craters Lowlands Comparative Planetology Comparing geologic features Comparing mineralogy of of Earth and Mars Earth and Mars NASA/JPL/ASU Landsat images Evidence of Jarosite Hematite on Earth NASA/JPL/ASU Why is the Study of Craters Important? • Analyzing the formation, morphology, and modification of craters can: • Help determine the relative age of a surface. • Determine the geology, as crater formation brings material to the surface. • Provide a basis for comparative planetology. Comparison of Craters Mars Earth’s Moon • Subsurface water/ice • Ejecta form ray pattern create lobate ejecta • Little modification of • High modification of craters craters NASA/JPL/ASU Research Project: Driving Question: How does Water/Ice Affect the Surface of Mars? 1. Surface Composition (Minerals) 2. Surface Morphology METHODOLOGY: SATELLITE IMAGERY MOLA COLOR: Topography MOLA SHADED RELIEF THEMIS DAY VISABLE TES HIGH CA PYROXENE: Composition HiRISE HRSC Malin Space Science Systems ACIDALIA PLANITIA MOLA Shaded Relief: NASA/JPL/ASU Attempt to use geologic surface feature to explain how water and ice have altered the surface in this area. Which geologic process was the most recent? MOLA Shaded Relief TES Pyroxene NASA/JPL/ASU Focus Questions: • Explain the occurrence of Basaltic material (pyroxene) in area of the Mawrth Vallis within Acidalia Palnitia. • Can surface features of this region explain the geologic history of what happened? Examples of Features to Characterize Surface Lobe Ejecta Craters Knobs/Mesas Pitted Mounds Depressions Wrinkle Ridges Channels Polygonal Terrain Pedestal Craters Theory One: Water transported basaltic material from highlands into the lowlands area through channels during a period of warmer climate. The pyroxene signature shows the extent of these deposits. Theory Two: Basaltic material was already covering entire area and was covered by volcanic Andesite material from the north. The pyroxene signature indicates the extent of that onlapping material. Theory Three: Basaltic material was already present and the surface was altered by water and ice. Pyroxene band shows the extent of that alteration. • Dissected terrain with mesas in highland/lowland boundary •Wrinkle ridges Mawrth Vallis • Cliffs/scarps • Eroded remains of large craters • Pyroxene evident in area MOLA Shaded Relief: NASA/JPL/ASU HiRISE: Mawrth Vallis MOLA Shaded Relief • Arrows indicate wrinkle ridges • Pedestal remains of large craters • Lobate ejecta patterns around newer craters • Pyroxene evident in area HiRISE image HiRISE: NASA/JPL/ASU Acidalia Mense HiRISE: NASA/JPL/ASU MOLA: NASA/JPL/ASU • Wrinkle ridges not apparent • Many channels present • Depressions • Lobate ejecta craters • Channels • Pitted Mounds • Polygonal terrain • High albedo ejecta around crater lobes • Ghost/eroded craters not evident • Pitted mounds CTX:NASA/JPL/ASU Summary • Mars surface is being continually changed by geologic processes. – There is evidence for tectonic activity, volcanism, fluvial (water) processes, etc. – The question is which process is the most recent. • The climate is largely dry and cold except during brief periods of high obliquity. • The geologic features found in areas without pyroxene signature are consistent with ice weathered surfaces. – These same features are found in places on Earth such as Antarctica, Greenland, and Iceland. CONCLUSIONS • Geologic features suggest the weathering of basalt by water and ice in the Mawrth Vallis area of Acidalia Planitia. Based on evidence, this appears to be the most recent process onlapping older material. • The pyroxene band present appears to be the boundary of this weathering. • This pyroxene material may have been deposited through channels present during an earlier time of high obliquity. Mars Phoenix Lander: NASA/JPL/ASU Exploring the Arctic Plains of Mars Evidence of ice on Mars Acknowledgements Dr. Michael Wyatt Dr. James Head III Brown Planetary Geology Group Karen Haberstroh Heather Johnson GK-12 Summer Research Program EXPLORATION OF MARS Mars Pathfinder Sojourner Rover Mars Exploration Rovers: Mars Polar Lander- Phoenix Launched 1996 Spirit and Opportunity Launched 2007 Launched 2003 Instruments: Instruments: Instruments: • Robotic Arm Camera • Alpha Proton X-Ray • Panoramic Camera (RAC) (PANCAM) Spectrometer • Surface Stereo Imager (APXS) • Mini-Thermal Emission (SSI) Spectrometer( Mini-TES) • Imager for Mars • Microscopy, Pathfinder (IMP) • Alpha Particle X-Ray Electrochemistry, and • Atmospheric Spectrometer (APXS) Conductivity analyzer Structure Instrument • MossBauer (MECA) /Meteorology Spectrometer • Thermal and Evolved Package (ASI/MET) • Rock Abrasion Tool Gas Analyzer (TEGA) (RAT) • Mars Descent Imager • Microscopic Imager (MI) (MARDI) • Meteorological Station (MET) Exploration of Mars Mars Global Surveyor Mars Odyssey Mars Express Mars Reconnaissance Launched 1996 Launched 2001 Launched 2003 Orbitier Launched 2005 Instruments: Instruments: Instruments: Instruments: •Mars Orbiter •Thermal Emission •High Resolution •Content Camera (CTX) Camera (MOC) Imaging System Stereo Camera •High Resolution Imaging •Mars Orbiter Laser (Themis) (HRSC) Science Experiment Altimeter (MOLA) •Gamma Ray •OMEGA (Mineral (HiRISE) •Thermal Emission Spectrometer (GRS) observations •Compact Reconnaissance Spectrometer (TES) •Martian Radiation Image Spectrometer for Experiment (MARIE) Mars (CRISM) •Mars Color Imager (MARCI) Geologic Map Of Mars USGS: Tanaka, Skinner, and Hare.
Recommended publications
  • Meteorites on Mars Observed with the Mars Exploration Rovers C
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, E06S22, doi:10.1029/2007JE002990, 2008 Meteorites on Mars observed with the Mars Exploration Rovers C. Schro¨der,1 D. S. Rodionov,2,3 T. J. McCoy,4 B. L. Jolliff,5 R. Gellert,6 L. R. Nittler,7 W. H. Farrand,8 J. R. Johnson,9 S. W. Ruff,10 J. W. Ashley,10 D. W. Mittlefehldt,1 K. E. Herkenhoff,9 I. Fleischer,2 A. F. C. Haldemann,11 G. Klingelho¨fer,2 D. W. Ming,1 R. V. Morris,1 P. A. de Souza Jr.,12 S. W. Squyres,13 C. Weitz,14 A. S. Yen,15 J. Zipfel,16 and T. Economou17 Received 14 August 2007; revised 9 November 2007; accepted 21 December 2007; published 18 April 2008. [1] Reduced weathering rates due to the lack of liquid water and significantly greater typical surface ages should result in a higher density of meteorites on the surface of Mars compared to Earth. Several meteorites were identified among the rocks investigated during Opportunity’s traverse across the sandy Meridiani plains. Heat Shield Rock is a IAB iron meteorite and has been officially recognized as ‘‘Meridiani Planum.’’ Barberton is olivine-rich and contains metallic Fe in the form of kamacite, suggesting a meteoritic origin. It is chemically most consistent with a mesosiderite silicate clast. Santa Catarina is a brecciated rock with a chemical and mineralogical composition similar to Barberton. Barberton, Santa Catarina, and cobbles adjacent to Santa Catarina may be part of a strewn field. Spirit observed two probable iron meteorites from its Winter Haven location in the Columbia Hills in Gusev Crater.
    [Show full text]
  • Grid Mapping of Ice-Related Landforms in Acidalia Planitia, Mars
    Grid mapping of ice-related landforms in Acidalia Planitia, Mars Ernst Hauber1 Csilla Orgel2 Dennis Reiss3 Stephan van Gasselt4 Andreas Johnsson5 1German Aerospace Center (DLR), Institute of Planetary Research, Berlin, [email protected] 2Institut für Geowissenschaften, FU Berlin, [email protected] 3Institut für Planetologie, WWU Münster, [email protected] 4National Chengchi University, Taipei, [email protected] 5Dept.of Earth Sciences, University of Gothenburg, [email protected] Abstract Many young landforms in mid- and high-latitudes on Mars are probably related to ice, but their exact distribution and origin are still poorly understood. In an attempt to determine their extent and identify possible spatial relationships and genetic links between them, we mapped their distribution across a N-S traverse across Acidalia Planitia, following a grid-mapping approach. The general characteristics of Acidalia are similar to that of Utopia Planitia and Arcadia Planitia, which are known to host large water ice reservoirs. Keywords: Mars; permafrost; landforms; ice; climate; grid mapping. Introduction patterned ground in Utopia Planitia; Séjourné et al., 2011). Large quantities of excess water ice reside in the upper parts of the Martian crust in the northern hemisphere We aim at a better understanding of the distribution of (e.g., Plaut et al., 2009; Stuurman et al., 2016; Bramson et possibly ice-related landforms in Acidalia Planitia, the al., 2015). Although it is believed that this ice was third major lowland basin. Our goal is to identify deposited during phases of different obliquities (e.g., latitude-dependencies of such landforms and their Madeleine et al., 2009), it does survive over geological relation to each other as well as to external parameters time under current conditions (Bramson et al., 2017) and such as topography, and thermal inertia.
    [Show full text]
  • Mars Exploration Rovers: 4 Years on Mars
    https://ntrs.nasa.gov/search.jsp?R=20080047431 2019-10-28T16:17:34+00:00Z Mars Exploration Rovers: 4 Years on Mars Geoffrey A. Landis This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond. Four Years on Mars: the Mars Exploration Rovers Geoffrey A. Landis NASA John Glenn Research Center http://www.sff.net/people/geoffrey.landis Presentation at MIT Department of Aeronautics and Astronautics, January 18, 2008 Exploration - Landis Mars viewed from the Hubble Space Telescope Exploration - Landis Views of Mars in the early 20th century Lowell 1908 Sciaparelli 1888 Burroughs 1912 (cover painting by Frazetta) Tales of Outer Space ed. Donald A. Wollheim, Ace D-73, 1954 (From Winchell Chung's web page projectrho.com) Exploration - Landis Past Missions to Mars: first close up images of Mars from Mariner 4 Mariner 4 discovered Mars was a barren, moon-like desert Exploration - Landis Viking 1976 Signs of past water on Mars? orbiter Photo from orbit by the 1976 Viking orbiter Exploration - Landis Pathfinder and Sojourner Rover: a solar-powered mission
    [Show full text]
  • Phyllosilicate and Hydrated Silica Detections in the Knobby Terrains Of
    PUBLICATIONS Geophysical Research Letters RESEARCH LETTER Phyllosilicate and hydrated silica detections 10.1002/2014GL059423 in the knobby terrains of Acidalia Planitia, Key Points: northern plains, Mars • Knobs detected with patchy phyllosilicates may be eroded L. Pan1 and B. L. Ehlmann1,2 remnants of highlands • Hydrated silica in the younger 1Division of Geological and Planetary Science, California Institute of Technology, Pasadena, California, USA, 2Jet Propulsion plains formed in localized aqueous environments Laboratory, California Institute of Technology, Pasadena, California, USA • The hydrated minerals indicate less intensive aqueous alteration through time Abstract Here we report detections of Fe/Mg phyllosilicates and hydrated silica in discrete stratigraphic units within the knobby terrains of Acidalia Planitia made using data acquired by Compact Reconnaissance Imaging Spectrometer for Mars. Fe/Mg phyllosilicates are detected in knobs that were eroded during Correspondence to: southward retreat of the dichotomy boundary. A second later unit, now eroded to steep-sided platforms L. Pan, embaying the knobs, contains hydrated silica, which may have formed via localized vapor weathering, [email protected] thin-film leaching, or transient water that resulted in surface alteration. These are then overlain by smooth plains with small cones, hypothesized to be mud volcanoes which previous studies have shown to have no Citation: hydrated minerals. In spite of Acidalia’s location within the putative northern ocean, collectively, the data Pan, L., and B. L. Ehlmann (2014), record a history of aqueous processes much like that in the southern highlands with progressively less Phyllosilicate and hydrated silica detec- tions in the knobby terrains of Acidalia intensive aqueous chemical alteration from the Noachian to Amazonian.
    [Show full text]
  • Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
    MacArtney, Adrienne (2018) Atmosphere crust coupling and carbon sequestration on early Mars. PhD thesis. http://theses.gla.ac.uk/9006/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten:Theses http://theses.gla.ac.uk/ [email protected] ATMOSPHERE - CRUST COUPLING AND CARBON SEQUESTRATION ON EARLY MARS By Adrienne MacArtney B.Sc. (Honours) Geosciences, Open University, 2013. Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the UNIVERSITY OF GLASGOW 2018 © Adrienne MacArtney All rights reserved. The author herby grants to the University of Glasgow permission to reproduce and redistribute publicly paper and electronic copies of this thesis document in whole or in any part in any medium now known or hereafter created. Signature of Author: 16th January 2018 Abstract Evidence exists for great volumes of water on early Mars. Liquid surface water requires a much denser atmosphere than modern Mars possesses, probably predominantly composed of CO2. Such significant volumes of CO2 and water in the presence of basalt should have produced vast concentrations of carbonate minerals, yet little carbonate has been discovered thus far.
    [Show full text]
  • Initial Results from the Miniature Thermal Emission Spectrometer
    S PIRIT AT G USEV C RATER S RESEARCH ARTICLE PECIAL Initial Results from the Mini-TES Experiment in S Gusev Crater from the Spirit Rover ECTION P. R. Christensen,1* S. W. Ruff,1 R. L. Fergason,1 A. T. Knudson,1 S. Anwar,1 R. E. Arvidson,2 J. L. Bandfield,1 D. L. Blaney,3 C. Budney,3 W. M. Calvin,4 T. D. Glotch,1 M. P. Golombek,3 N. Gorelick,1 T. G. Graff,1 V. E. Hamilton,5 A. Hayes,6 J. R. Johnson,7 H. Y. McSween Jr.,8 G. L. Mehall,1 L. K. Mehall,1 J. E. Moersch,8 R. V. Morris,9 A. D. Rogers,1 M. D. Smith,10 S. W. Squyres,6 M. J. Wolff,11 M. B. Wyatt1 The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied Several targets have been observed with the the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil use of 5ϫ spatial oversampling and spatial spectra show evidence for minor carbonates and bound water. Rocks are olivine- deconvolution techniques to improve spec- rich basalts with varying degrees of dust and other coatings. Dark-toned soils tral isolation (8), together with multiple observed on disturbed surfaces may be derived from rocks and have derived RAT brushings to clean larger areas. mineralogy (Ϯ5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% Undisturbed surficial materials. Un- pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite disturbed surfaces in the vicinity of the 45% Ϯ5 to 10). Two spectrally distinct coatings are observed on rocks, a possible station are ϳ5% surface cover of clasts that indicator of the interaction of water, rock, and airfall dust.
    [Show full text]
  • Active Gullies and Mass Wasting on Equatorial Mars
    EPSC Abstracts Vol. 12, EPSC2018-457-1, 2018 European Planetary Science Congress 2018 EEuropeaPn PlanetarSy Science CCongress c Author(s) 2018 Active Gullies and Mass Wasting on Equatorial Mars Alfred S. McEwen (1), Melissa F. Thomas (1), Colin M. Dundas (2) (1) LPL, University of Arizona, Tucson, Arizona, USA, (2) USGS, Flagstaff, Arizona, USA Abstract Previously-reported equatorial topographic changes include slumps on the colluvial fans below active Mid- to high-latitude gully activity has been directly RSL sites in Garni Crater [5] and in Juventae Chasma observed at hundreds of locations on Mars [1]. Here [7]. These slumps all occurred near the coldest time we describe equatorial locations (25 latitude) with of year for these locations, Ls 0-120, which is gully-like or other topographic changes in before- opposite to the seasonality of RSL. and-after images from HiRISE. This activity is concentrated in sulfate-rich sedimentary units, which We are in the process of searching HiKER pairs over places constraints on the age and mechanical steep equatorial slopes, as well as acquiring new properties of these deposits. Hydrated sulfates may HiKER images. From the effort to date we have found that equatorial changes are most common in be the largest equatorial reservoir of H2O on Mars, and their friability makes them more attractive for in- sedimentary layers that may be rich is sulfates situ resource utilization (ISRU). according to mapping by orbital spectrometers [8], and have concentrated our search in these regions. 1. Introduction The most impressive changes we have found are on Mid- to high-latitude gully activity can be explained bright layered mounds in Ganges Chasma.
    [Show full text]
  • CURRICULUM VITAE Bradley J
    CURRICULUM VITAE Bradley J. Thomson Assistant Professor Department of Earth & Planetary Sciences Phone: 865.974.2699 University of Tennessee Fax: 865.974.2368 1621 Cumberland Ave., Room 602 Email: [email protected] Knoxville, TN 37996-1410 Website: https://lunatic.utk.edu EDUCATION Ph.D. Geological Sciences, Brown University, 2006 Dissertation title: Recognizing impact glass on Mars using surface texture, mechanical properties, and mid-infrared spectroscopic properties Advisor: Peter H. SchultZ M.Sc. Geological Sciences, Brown University, 2001 Thesis title: Utopia Basin, Mars: Origin and evolution of basin internal structure Advisor: James W. Head III B.S. Harvey Mudd College, 1999, Geology major at Pomona College Thesis title: Thickness of basalts in Mare Imbrium Advisor: Eric B. Grosfils PROFESSIONAL EXPERIENCE Assistant Professor, Department of Earth and Planetary Sciences (EPS), University of Tennessee, Knoxville TN, 2020–present Research Associate Professor, Department of Earth and Planetary Sciences (EPS), University of Tennessee, Knoxville TN, 2016–2020 Senior Research Scientist, Boston University Center for Remote Sensing, 2011–2016 Co-Investigator, Mini-RF radar on the Lunar Reconnaissance Orbiter, 2009–present Co-Investigator, Mini-SAR radar on Chandrayaan-1, 2008–2009 Senior Staff Scientist, JHU Applied Physics Lab, 2008–2011 NASA Postdoctoral Program Fellow, Jet Propulsion Lab, 2006–2008 Science Theme Lead for mass wasting processes HiRISE camera on Mars Reconnaissance Orbiter, 2007–2010 Postdoctoral Fellow, Lunar and Planetary
    [Show full text]
  • Broschüre Zu MIMOS II
    MMOS Mössbauerspektrometer auf dem Mars Mössbauer spectrometer on Mars Einleitung Mars ist von allen Planeten im Sonnen­ Um zwei Landestellen genau zu unter­ system der Erde am ähnlichsten. Unser suchen, startete die NASA 2003 die „Mars­ Nachbarplanet verfügt über eine dünne Exploration­Rover­Mission“. Die beiden Atmosphäre, die Temperaturen auf Rover „Spirit“ und „Opportunity“ sind nach der Marsoberfläche erreichen bis zu „Mars Pathfinder“ bereits robotische 20 °C und ein Tag auf dem Mars („Sol“) Mars­Erkunder der zweiten Generation. Als dauert nur 39 Minuten länger vorrangige Ziele der Mission wurde definiert, als ein Tag auf der Erde. an zwei Stellen auf der Marsoberfläche nach Hinweisen auf mögliche Wasser­ Der Mars ist daher ein begehrtes aktivität in der Vergangenheit zu suchen und Forschungsobjekt, um mehr über mögliche aus den Ergebnissen Rückschlüsse auf die Entwicklungsszenarien eines erdähnlichen Entwicklung des Marsklimas und möglicher­ Planeten zu lernen. weise einst vorhandene lebensfreundliche Bedingungen auf dem Mars zu ziehen. Eine Frage ist von besonderem Interesse: Warum konnten auf der Erde lebensfreund­ Als Teil ihrer wissenschaftlichen Nutzlast liche Bedingungen entstehen, aber nicht auf tragen beide Rover das miniaturisierte dem Mars? Da Wasser die Grundlage aller Mössbauerspektrometer MIMOS II, dessen bekannten Lebensformen bildet, folgen die Aufgabe der Nachweis von Eisenmineralen Forscher mit ihren Untersuchungen den ist. Einige dieser Minerale können mit Spuren von Wasseraktivität auf dem Mars. dem Vorhandensein von Wasser bei ihrer Seit mehr als vier Jahrzehnten sind dazu Entstehung in Verbindung gebracht werden. Bilder und spektroskopische Daten sowohl Die mineralogische Charakterisierung aus dem Marsorbit als auch von der der Landestellen gibt zusätzlich Aufschluss Oberfläche aufgenommen worden.
    [Show full text]
  • Art on Mars: a Foundation for Exoart
    THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF CANBERRA AUSTRALIA by TREVOR JOHN RODWELL Bachelor of Design (Hons), University of South Australia Graduate Diploma (Business Enterprise), The University of Adelaide ART ON MARS: A FOUNDATION FOR EXOART May 2011 ABSTRACT ART ON MARS: A FOUNDATION FOR EXOART It could be claimed that human space exploration started when the former Soviet Union (USSR) launched cosmonaut Yuri Gagarin into Earth orbit on 12 April 1961. Since that time there have been numerous human space missions taking American astronauts to the Moon and international crews to orbiting space stations. Several space agencies are now working towards the next major space objective which is to send astronauts to Mars. This will undoubtedly be the most complex and far-reaching human space mission ever undertaken. Because of its large scale and potentially high cost it is inevitable that such a mission will be an international collaborative venture with a profile that will be world- wide. Although science, technology and engineering have made considerable contributions to human space missions and will be very much involved with a human Mars mission, there has been scant regard for artistic and cultural involvement in these missions. Space agencies have, however, realised the influence of public perception on space funding outcomes and for some time have strived to engage the public in these space missions. This has provided an opportunity for an art and cultural involvement, but there is a problem for art engaging with space missions as currently there is no artform specific to understanding and tackling the issues of art beyond our planet.
    [Show full text]
  • Wang Et Al., 2008
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, E12S40, doi:10.1029/2008JE003126, 2008 Click Here for Full Article Light-toned salty soils and coexisting Si-rich species discovered by the Mars Exploration Rover Spirit in Columbia Hills Alian Wang,1 J. F. Bell III,2 Ron Li,3 J. R. Johnson,4 W. H. Farrand,5 E. A. Cloutis,6 R. E. Arvidson,1 L. Crumpler,7 S. W. Squyres,2 S. M. McLennan,8 K. E. Herkenhoff,4 S. W. Ruff,9 A. T. Knudson,1 Wei Chen,3 and R. Greenberger1 Received 26 February 2008; revised 27 June 2008; accepted 29 July 2008; published 19 December 2008. [1] Light-toned soils were exposed, through serendipitous excavations by Spirit Rover wheels, at eight locations in the Columbia Hills. Their occurrences were grouped into four types on the basis of geomorphic settings. At three major exposures, the light-toned soils are hydrous and sulfate-rich. The spatial distributions of distinct types of salty soils vary substantially: with centimeter-scaled heterogeneities at Paso Robles, Dead Sea, Shredded, and Champagne-Penny, a well-mixed nature for light-toned soils occurring near and at the summit of Husband Hill, and relatively homogeneous distributions in the two layers at the Tyrone site. Aeolian, fumarolic, and hydrothermal fluid processes are suggested to be responsible for the deposition, transportation, and accumulation of these light-toned soils. In addition, a change in Pancam spectra of Tyrone yellowish soils was observed after being exposed to current Martian surface conditions for 175 sols. This change is interpreted to be caused by the dehydration of ferric sulfates on the basis of laboratory simulations and suggests a relative humidity gradient beneath the surface.
    [Show full text]
  • Durham Research Online
    Durham Research Online Deposited in DRO: 27 March 2019 Version of attached le: Published Version Peer-review status of attached le: Peer-reviewed Citation for published item: Orgel, Csilla and Hauber, Ernst and Gasselt, Stephan and Reiss, Dennis and Johnsson, Andreas and Ramsdale, Jason D. and Smith, Isaac and Swirad, Zuzanna M. and S¡ejourn¡e,Antoine and Wilson, Jack T. and Balme, Matthew R. and Conway, Susan J. and Costard, Francois and Eke, Vince R. and Gallagher, Colman and Kereszturi, Akos¡ and L osiak, Anna and Massey, Richard J. and Platz, Thomas and Skinner, James A. and Teodoro, Luis F. A. (2019) 'Grid mapping the Northern Plains of Mars : a new overview of recent water and icerelated landforms in Acidalia Planitia.', Journal of geophysical research : planets., 124 (2). pp. 454-482. Further information on publisher's website: https://doi.org/10.1029/2018JE005664 Publisher's copyright statement: Orgel, Csilla, Hauber, Ernst, Gasselt, Stephan, Reiss, Dennis, Johnsson, Andreas, Ramsdale, Jason D., Smith, Isaac, Swirad, Zuzanna M., S¡ejourn¡e,Antoine, Wilson, Jack T., Balme, Matthew R., Conway, Susan J., Costard, Francois, Eke, Vince R., Gallagher, Colman, Kereszturi, Akos,¡ L osiak, Anna, Massey, Richard J., Platz, Thomas, Skinner, James A. Teodoro, Luis F. A. (2019). Grid Mapping the Northern Plains of Mars: A New Overview of Recent Water and IceRelated Landforms in Acidalia Planitia. Journal of Geophysical Research: Planets 124(2): 454-482. 10.1029/2018JE005664. To view the published open abstract, go to https://doi.org/ and enter the DOI. Additional information: Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in DRO • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
    [Show full text]