Planetary Report Report
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Meteorites on Mars Observed with the Mars Exploration Rovers C
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113, E06S22, doi:10.1029/2007JE002990, 2008 Meteorites on Mars observed with the Mars Exploration Rovers C. Schro¨der,1 D. S. Rodionov,2,3 T. J. McCoy,4 B. L. Jolliff,5 R. Gellert,6 L. R. Nittler,7 W. H. Farrand,8 J. R. Johnson,9 S. W. Ruff,10 J. W. Ashley,10 D. W. Mittlefehldt,1 K. E. Herkenhoff,9 I. Fleischer,2 A. F. C. Haldemann,11 G. Klingelho¨fer,2 D. W. Ming,1 R. V. Morris,1 P. A. de Souza Jr.,12 S. W. Squyres,13 C. Weitz,14 A. S. Yen,15 J. Zipfel,16 and T. Economou17 Received 14 August 2007; revised 9 November 2007; accepted 21 December 2007; published 18 April 2008. [1] Reduced weathering rates due to the lack of liquid water and significantly greater typical surface ages should result in a higher density of meteorites on the surface of Mars compared to Earth. Several meteorites were identified among the rocks investigated during Opportunity’s traverse across the sandy Meridiani plains. Heat Shield Rock is a IAB iron meteorite and has been officially recognized as ‘‘Meridiani Planum.’’ Barberton is olivine-rich and contains metallic Fe in the form of kamacite, suggesting a meteoritic origin. It is chemically most consistent with a mesosiderite silicate clast. Santa Catarina is a brecciated rock with a chemical and mineralogical composition similar to Barberton. Barberton, Santa Catarina, and cobbles adjacent to Santa Catarina may be part of a strewn field. Spirit observed two probable iron meteorites from its Winter Haven location in the Columbia Hills in Gusev Crater. -
Planetary Report Report
The PLANETARYPLANETARY REPORT REPORT Volume XXIX Number 1 January/February 2009 Beyond The Moon From The Editor he Internet has transformed the way science is On the Cover: Tdone—even in the realm of “rocket science”— The United States has the opportunity to unify and inspire the and now anyone can make a real contribution, as world’s spacefaring nations to create a future brightened by long as you have the will to give your best. new goals, such as the human exploration of Mars and near- In this issue, you’ll read about a group of amateurs Earth asteroids. Inset: American astronaut Peggy A. Whitson who are helping professional researchers explore and Russian cosmonaut Yuri I. Malenchenko try out training Mars online, encouraged by Mars Exploration versions of Russian Orlan spacesuits. Background: The High Rovers Project Scientist Steve Squyres and Plane- Resolution Camera on Mars Express took this snapshot of tary Society President Jim Bell (who is also head Candor Chasma, a valley in the northern part of Valles of the rovers’ Pancam team.) Marineris, on July 6, 2006. Images: Gagarin Cosmonaut Training This new Internet-enabled fun is not the first, Center. Background: ESA nor will it be the only, way people can participate in planetary exploration. The Planetary Society has been encouraging our members to contribute Background: their minds and energy to science since 1984, A dust storm blurs the sky above a volcanic caldera in this image when the Pallas Project helped to determine the taken by the Mars Color Imager on Mars Reconnaissance Orbiter shape of a main-belt asteroid. -
DISR) on the Huygens Probe
Data Archive Users’ Guide for the Descent Imager and Spectral Radiometer (DISR) on the Huygens Probe By: The DISR Team 29 January 2013 Version 2.0 International Traffic in Arms Regulations (ITAR) disclosure... Evaluation by the Export Officer of the University of Arizona's Office for the Responsible Conduct of Research (ORCR) has deemed that this document is not subject to International Traffic in Arms Regulations (ITAR) control, and is not restricted by the Arms Export Control Act. It is suitable for public release, and its distribution is unlimited. DISR - C. See 29 January 2013 Index 1.0 Introduction & Science Objectives .................................................................................. 3 2.0 Instrument Description.................................................................................................... 4 3.0 Titan Descent Sequence & Divergences ...................................................................... 11 4.0 Archive Description....................................................................................................... 15 5.0 Data Calibration............................................................................................................ 19 5.1 General Information.................................................................................................. 19 5.2 Descent Cycles......................................................................................................... 20 5.3 Lamp Datasets ........................................................................................................ -
THE MARS 2020 ROVER ENGINEERING CAMERAS. J. N. Maki1, C
51st Lunar and Planetary Science Conference (2020) 2663.pdf THE MARS 2020 ROVER ENGINEERING CAMERAS. J. N. Maki1, C. M. McKinney1, R. G. Willson1, R. G. Sellar1, D. S. Copley-Woods1, M. Valvo1, T. Goodsall1, J. McGuire1, K. Singh1, T. E. Litwin1, R. G. Deen1, A. Cul- ver1, N. Ruoff1, D. Petrizzo1, 1Jet Propulsion Laboratory, California Institute of Technology (4800 Oak Grove Drive, Pasadena, CA 91109, [email protected]). Introduction: The Mars 2020 Rover is equipped pairs (the Cachecam, a monoscopic camera, is an ex- with a neXt-generation engineering camera imaging ception). The Mars 2020 engineering cameras are system that represents a significant upgrade over the packaged into a single, compact camera head (see fig- previous Navcam/Hazcam cameras flown on MER and ure 1). MSL [1,2]. The Mars 2020 engineering cameras ac- quire color images with wider fields of view and high- er angular/spatial resolution than previous rover engi- neering cameras. Additionally, the Mars 2020 rover will carry a new camera type dedicated to sample op- erations: the Cachecam. History: The previous generation of Navcams and Hazcams, known collectively as the engineering cam- eras, were designed in the early 2000s as part of the Mars Exploration Rover (MER) program. A total of Figure 1. Flight Navcam (left), Flight Hazcam (middle), 36 individual MER-style cameras have flown to Mars and flight Cachecam (right). The Cachecam optical assem- on five separate NASA spacecraft (3 rovers and 2 bly includes an illuminator and fold mirror. landers) [1-6]. The MER/MSL cameras were built in two separate production runs: the original MER run Each of the Mars 2020 engineering cameras utilize a (2003) and a second, build-to-print run for the Mars 20 megapixel OnSemi (CMOSIS) CMOS sensor Science Laboratory (MSL) mission in 2008. -
Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface
Operation and Performance of the Mars Exploration Rover Imaging System on the Martian Surface Justin N. Maki Jet Propulsion Laboratory California Institute of Technology Pasadena, CA USA [email protected] Todd Litwin, Mark Schwochert Jet Propulsion Laboratory California Institute of Technology Pasadena, CA USA Ken Herkenhoff United States Geological Survey Flagstaff, AZ USA Abstract - The Imaging System on the Mars Exploration Rovers has successfully operated on the surface of Mars for over one Earth year. The acquisition of hundreds of panoramas and tens of thousands of stereo pairs has enabled the rovers to explore Mars at a level of detail unprecedented in the history of space exploration. In addition to providing scientific value, the images also play a key role in the daily tactical operation of the rovers. The mobile nature of the MER surface mission requires extensive use of the imaging system for traverse planning, rover localization, remote sensing instrument targeting, and robotic arm placement. Each of these activity types requires a different set of data compression rates, surface Figure 1. The Mars Exploration Spirit Rover, as viewed by coverage, and image acquisition strategies. An overview the Navcam shortly after lander egress early in the mission. of the surface imaging activities is provided, along with a presents an overview of the operation and performance of summary of the image data acquired to date. the MER Imaging System. Keywords: Imaging system, cameras, rovers, Mars, 1.2 Imaging System Design operations. The MER cameras are classified into five types: Descent cameras, Navigation cameras (Navcam), Hazard Avoidance 1 Introduction cameras (Hazcam), Panoramic cameras (Pancam), and Microscopic Imager (MI) cameras. -
Mars Exploration Rovers: 4 Years on Mars
https://ntrs.nasa.gov/search.jsp?R=20080047431 2019-10-28T16:17:34+00:00Z Mars Exploration Rovers: 4 Years on Mars Geoffrey A. Landis This January, the Mars Exploration Rovers "Spirit" and "Opportunity" are starting their fifth year of exploring the surface of Mars, well over ten times their nominal 90-day design lifetime. This lecture discusses the Mars Exploration Rovers, presents the current mission status for the extended mission, some of the most results from the mission and how it is affecting our current view of Mars, and briefly presents the plans for the coming NASA missions to the surface of Mars and concepts for exploration with robots and humans into the next decade, and beyond. Four Years on Mars: the Mars Exploration Rovers Geoffrey A. Landis NASA John Glenn Research Center http://www.sff.net/people/geoffrey.landis Presentation at MIT Department of Aeronautics and Astronautics, January 18, 2008 Exploration - Landis Mars viewed from the Hubble Space Telescope Exploration - Landis Views of Mars in the early 20th century Lowell 1908 Sciaparelli 1888 Burroughs 1912 (cover painting by Frazetta) Tales of Outer Space ed. Donald A. Wollheim, Ace D-73, 1954 (From Winchell Chung's web page projectrho.com) Exploration - Landis Past Missions to Mars: first close up images of Mars from Mariner 4 Mariner 4 discovered Mars was a barren, moon-like desert Exploration - Landis Viking 1976 Signs of past water on Mars? orbiter Photo from orbit by the 1976 Viking orbiter Exploration - Landis Pathfinder and Sojourner Rover: a solar-powered mission -
Of Curiosity in Gale Crater, and Other Landed Mars Missions
44th Lunar and Planetary Science Conference (2013) 2534.pdf LOCALIZATION AND ‘CONTEXTUALIZATION’ OF CURIOSITY IN GALE CRATER, AND OTHER LANDED MARS MISSIONS. T. J. Parker1, M. C. Malin2, F. J. Calef1, R. G. Deen1, H. E. Gengl1, M. P. Golombek1, J. R. Hall1, O. Pariser1, M. Powell1, R. S. Sletten3, and the MSL Science Team. 1Jet Propulsion Labora- tory, California Inst of Technology ([email protected]), 2Malin Space Science Systems, San Diego, CA ([email protected] ), 3University of Washington, Seattle. Introduction: Localization is a process by which tactical updates are made to a mobile lander’s position on a planetary surface, and is used to aid in traverse and science investigation planning and very high- resolution map compilation. “Contextualization” is hereby defined as placement of localization infor- mation into a local, regional, and global context, by accurately localizing a landed vehicle, then placing the data acquired by that lander into context with orbiter data so that its geologic context can be better charac- terized and understood. Curiosity Landing Site Localization: The Curi- osity landing was the first Mars mission to benefit from the selection of a science-driven descent camera (both MER rovers employed engineering descent im- agers). Initial data downlinked after the landing fo- Fig 1: Portion of mosaic of MARDI EDL images. cused on rover health and Entry-Descent-Landing MARDI imaged the landing site and science target (EDL) performance. Front and rear Hazcam images regions in color. were also downloaded, along with a number of When is localization done? MARDI thumbnail images. The Hazcam images were After each drive for which Navcam stereo da- used primarily to determine the rover’s orientation by ta has been acquired post-drive and terrain meshes triangulation to the horizon. -
The Mars Science Laboratory (Msl) Navigation Cameras (Navcams)
42nd Lunar and Planetary Science Conference (2011) 2738.pdf THE MARS SCIENCE LABORATORY (MSL) NAVIGATION CAMERAS (NAVCAMS). J. N. Maki1, D. Thiessen1, A.Pourangi1, P. Kobzeff1, L. Scherr1, T. Elliott1, A. Dingizian1, Beverly St. Ange1, 1Jet Propulsion La- boratory/California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109. Introduction: The Mars Science Laboratory (MSL) The camera plate, which also holds the Mastcam and Rover (scheduled for launch in November/December Chemcam instruments, is mounted to a 0.85-meter 2011) will fly four Navigation Cameras (Navcams). high Remote Sensing Mast (RSM), which points the The key requirements of the Navcam imaging system cameras in the azimuth and elevation directions. The are: 1) provide terrain context for traverse planning RSM is attached to the rover deck, which is 1.1 meters and Mastcam/Chemcam pointing, 2) provide a 360- above the nominal surface. The resultant configura- degree field of regard at <1 mrad/pixel angular resolu- tion places the Navcams 1.9 meters above the Martian tion, 3) provide stereo ranging data out to 100 m, and surface (0.4 meters higher than the MER Navcams). 4) use of a broadband, visible filter. The Navcams The MSL Navcams are build-to-print copies were built at the Jet Propulsion Laboratory in Pasade- of the Mars Exploration Rover (MER) cameras, which na, CA. are described in detail in [1]. The main difference Instrument Details: The mounting locations of the between the MER and MSL cameras is that the MSL Navcams are shown in figure 1. Navcams have slightly more powerful heaters to allow operation at colder ambient temperatures. -
Pre-Mission Insights on the Interior of Mars Suzanne E
Pre-mission InSights on the Interior of Mars Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, Ulrich Christensen, Véronique Dehant, Mélanie Drilleau, William Folkner, Nobuaki Fuji, et al. To cite this version: Suzanne E. Smrekar, Philippe Lognonné, Tilman Spohn, W. Bruce Banerdt, Doris Breuer, et al.. Pre-mission InSights on the Interior of Mars. Space Science Reviews, Springer Verlag, 2019, 215 (1), pp.1-72. 10.1007/s11214-018-0563-9. hal-01990798 HAL Id: hal-01990798 https://hal.archives-ouvertes.fr/hal-01990798 Submitted on 23 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Open Archive Toulouse Archive Ouverte (OATAO ) OATAO is an open access repository that collects the wor of some Toulouse researchers and ma es it freely available over the web where possible. This is an author's version published in: https://oatao.univ-toulouse.fr/21690 Official URL : https://doi.org/10.1007/s11214-018-0563-9 To cite this version : Smrekar, Suzanne E. and Lognonné, Philippe and Spohn, Tilman ,... [et al.]. Pre-mission InSights on the Interior of Mars. (2019) Space Science Reviews, 215 (1). -
Downloaded for Personal Non-Commercial Research Or Study, Without Prior Permission Or Charge
MacArtney, Adrienne (2018) Atmosphere crust coupling and carbon sequestration on early Mars. PhD thesis. http://theses.gla.ac.uk/9006/ Copyright and moral rights for this work are retained by the author A copy can be downloaded for personal non-commercial research or study, without prior permission or charge This work cannot be reproduced or quoted extensively from without first obtaining permission in writing from the author The content must not be changed in any way or sold commercially in any format or medium without the formal permission of the author When referring to this work, full bibliographic details including the author, title, awarding institution and date of the thesis must be given Enlighten:Theses http://theses.gla.ac.uk/ [email protected] ATMOSPHERE - CRUST COUPLING AND CARBON SEQUESTRATION ON EARLY MARS By Adrienne MacArtney B.Sc. (Honours) Geosciences, Open University, 2013. Submitted in partial fulfilment of the requirements for the degree of Doctor of Philosophy at the UNIVERSITY OF GLASGOW 2018 © Adrienne MacArtney All rights reserved. The author herby grants to the University of Glasgow permission to reproduce and redistribute publicly paper and electronic copies of this thesis document in whole or in any part in any medium now known or hereafter created. Signature of Author: 16th January 2018 Abstract Evidence exists for great volumes of water on early Mars. Liquid surface water requires a much denser atmosphere than modern Mars possesses, probably predominantly composed of CO2. Such significant volumes of CO2 and water in the presence of basalt should have produced vast concentrations of carbonate minerals, yet little carbonate has been discovered thus far. -
Initial Results from the Miniature Thermal Emission Spectrometer
S PIRIT AT G USEV C RATER S RESEARCH ARTICLE PECIAL Initial Results from the Mini-TES Experiment in S Gusev Crater from the Spirit Rover ECTION P. R. Christensen,1* S. W. Ruff,1 R. L. Fergason,1 A. T. Knudson,1 S. Anwar,1 R. E. Arvidson,2 J. L. Bandfield,1 D. L. Blaney,3 C. Budney,3 W. M. Calvin,4 T. D. Glotch,1 M. P. Golombek,3 N. Gorelick,1 T. G. Graff,1 V. E. Hamilton,5 A. Hayes,6 J. R. Johnson,7 H. Y. McSween Jr.,8 G. L. Mehall,1 L. K. Mehall,1 J. E. Moersch,8 R. V. Morris,9 A. D. Rogers,1 M. D. Smith,10 S. W. Squyres,6 M. J. Wolff,11 M. B. Wyatt1 The Miniature Thermal Emission Spectrometer (Mini-TES) on Spirit has studied Several targets have been observed with the the mineralogy and thermophysical properties at Gusev crater. Undisturbed soil use of 5ϫ spatial oversampling and spatial spectra show evidence for minor carbonates and bound water. Rocks are olivine- deconvolution techniques to improve spec- rich basalts with varying degrees of dust and other coatings. Dark-toned soils tral isolation (8), together with multiple observed on disturbed surfaces may be derived from rocks and have derived RAT brushings to clean larger areas. mineralogy (Ϯ5 to 10%) of 45% pyroxene (20% Ca-rich pyroxene and 25% Undisturbed surficial materials. Un- pigeonite), 40% sodic to intermediate plagioclase, and 15% olivine (forsterite disturbed surfaces in the vicinity of the 45% Ϯ5 to 10). Two spectrally distinct coatings are observed on rocks, a possible station are ϳ5% surface cover of clasts that indicator of the interaction of water, rock, and airfall dust. -
1 the Martian Near Surface
The Martian Near Surface Environment: Analysis of Antarctic Soils and Laboratory Experiments on Putative Martian Organics Item Type text; Electronic Dissertation Authors Archer, Paul Douglas Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 07/10/2021 13:24:53 Link to Item http://hdl.handle.net/10150/195892 1 THE MARTIAN NEAR SURFACE ENVIRONMENT: ANALYSIS OF ANTARCTIC SOILS AND LABORATORY EXPERIMENTS ON PUTATIVE MARTIAN ORGANICS by Paul Douglas Archer, Jr. _____________________ A Dissertation Submitted to the Faculty of the DEPARTMENT OF PLANETARY SCIENCES In Partial Fulfillment of the Requirements For the Degree of DOCTOR OF PHILOSOPHY In the Graduate College THE UNIVERSITY OF ARIZONA 2010 2 THE UNIVERSITY OF ARIZONA GRADUATE COLLEGE As members of the Dissertation Committee, we certify that we have read the dissertation prepared by Paul Douglas Archer, Jr. entitled The Martian Near Surface Environment: Analysis of Antarctic Soils and Laboratory Experiments on Putative Martian Organics and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy _______________________________________________________________________ Date: April 22, 2010 Peter H. Smith _______________________________________________________________________