WO 2013/057196 Al 25 April 2013 (25.04.2013) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2013/057196 Al 25 April 2013 (25.04.2013) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/057196 Al 25 April 2013 (25.04.2013) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C07D 501/36 (2006.01) A61P 31/04 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/546 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP2012/070664 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 18 October 2012 (18.10.2012) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 11185954.2 20 October 201 1 (20. 10.201 1) EP (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: DSM SINOCHEM PHARMACEUTICALS GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, NETHERLANDS B.V. [NL/NL]; P.O.Box 245, Alexan UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, der Fleminglaan 1, NL-2613 AX Delft (NL). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (72) Inventors: MOODY, Harold, Monro; P.O.Box 4, NL- MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, 6100 AA Echt (NL). MAAS, Peter, Johannes, Domini- TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, cus; P.O. Box 4, NL-6100 AA Echt (NL). SCHMITGES, ML, MR, NE, SN, TD, TG). Thomas; P.O. Box 4, NL-6100 AA Echt (NL). Published: (74) Agent: VROOM, DE, Erik; DSM Intellectual Property, P.O. Box 130, NL-6100 AC Echt (NL). — with international search report (Art. 21(3)) © o (54) Title: PROCESS FOR THE PREPARATION OF CEFAMANDOLE NAFATE (57) Abstract: The present invention relates to a process for the preparation of cefamandole nafate from cefamandole and to the use thereof in the manufacture of a medicament for treatment of a bacterial disease. PROCESS FOR THE PREPARATION OF CEFAMANDOLE NAFATE Field of the invention The present invention relates to a process for the preparation of cefamandole nafate from O-formyl cefamandole. Background of the invention Cefamandole ((1); CAS 34444-01-4; (6R,7R)-7-[[(2R)-hydroxyphenyl- acetyl]amino]-3-[[(1 -methyl-1 /-/-tetrazol-5-yl)thio]methyl]-8-oxo-5-thia-1 - azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid is a second generation broad-spectrum semi-synthetic cephalosporin antibiotic, the preparation of which was first disclosed in US 3,641 ,021 . Cefamandole nafate ((3); CAS 42540-40-9) is the sodium salt of the formate ester of cefamandole and is the clinically used form of cefamandole. Various approaches towards the preparation of cefamandole nafate have been reported. In a first approach, the compound can be prepared by chemical N-acylation of the appropriate β-lactam nucleus, 7-amino-3-(1 -methyl-1 H-tetrazol-5-ylthiomethyl)-3- cephem-4-carboxylic acid (7-TMCA) as for instance described in Kaiser et al. (J. Infect. Dis. (1978) 137, 10-16). In a second and environmentally more benign approach, an enzymatically catalyzed kinetically controlled acylation of 7-TMCA has been proposed in more recent literature by, amongst others, Nierstrasz et al. (Biocatalysis and Biotransformation (1999) 17, 209-223), Terreni et al. (Appl. Microbiol. Biotechnol. (2007) 77, 579-587) and Serra et al. (Eur. J. Org. Chem. (2009), 1384-1389). Although direct kinetically controlled acylation of 7-TMCA with D,L-0-formyl methyl mandelate towards O-formyl cefamandole (2) has been suggested by Fuganti et al. (Biotechnol. Lett. (1992) 14, 543-546) using the enzyme penicillin G acylase from Escherichia coii immobilized on Eupergit C, the general opinion is that the active site of penicillin G acylase is only moderately suited to accommodate the D,L-0-formyl mandelate side chain. Unfortunately, an efficient approach leading from cefamandole (1) or O-formyl cefamandole (2) to cefamandole nafate (3), has not been reported yet. Detailed description of the invention The current most promising approach for the preparation of cefamandole nafate (3) is kinetically controlled acylation of 7-TMCA with an ester of mandelic acid, such as methyl mandelate, to give cefamandole (1) followed by conversion into O- formyl cefamandole (2) and subsequently into cefamandole nafate (3). It is an object of the present invention to provide a method for the preparation of cefamandole nafate (3) from O-formyl cefamandole (2). In a first aspect of the invention there is provided a method for the preparation of cefamandole nafate (3) comprising the steps of: (a) reacting cefamandole or a salt thereof and an impurity chosen from the list consisting of mandelic acid, methyl mandelate and O-acetyl mandelic acid or salts thereof with a formylating agent; (b) contacting the mixture obtained in step (a) with a sodium source in an organic solvent, characterized in that said impurity is present in an amount of from 0.5% to 25% by weight relative to the amount of O-formyl cefamandole or a salt thereof formed in step (a). As a result of the formylation reaction in step (a) the compounds present in step (b) are O-formyl cefamandole (2) or a salt thereof and an impurity chosen from the list consisting of mandelic acid, methyl mandelate, O-acetyl mandelic acid and O-formyl mandelic acid or salts thereof. The method remarkably enables production of highly pure cefamandole nafate (3) and is characterized in that any of the impurities mentioned above are removed to completion or near completion even when present in high amounts in the starting material, such as from 1% to 10%, from 2% to 20% or from 3% to 30%, all by weight relative to amount of said O-formyl cefamandole (2) or a salt thereof. Suitable organic solvents are esters such as acetates, formats and propionates and ketones. Preferred organic solvent are acetone, butyl acetate, butyl formate, ethyl acetate, ethyl formate, isobutyl acetate, isobutyl formate, isopropyl acetate, isopropyl formate but also mixtures of two or more of these and/or other solvents may be employed. In one embodiment, suitable sodium sources are sodium halides or sodium salts of organic acids such as sodium acetate, sodium ethyl hexanoate or sodium formate or mixtures thereof. It is well known that mandelic acid is formed as a side product (usually in significant amounts) during the enzymatic synthesis of cefamandole (1) from 7-TMCA and an ester of mandelic acid. Like cefamandole (1), this mandelic acid is also formylated to give O-formyl mandelic acid. Surprisingly it is found that upon conversion of O-formyl cefamandole (2) to the sodium salt cefamandole nafate (3), only the latter crystallizes and can be isolated in high purity whereas the sodium salt of O-formyl mandelic acid remains dissolved in the mother liquor. This unexpected phenomenon results in a highly efficient purification step. In another embodiment, O-formyl cefamandole (2) or a salt thereof is prepared by reacting cefamandole or a salt thereof with a formylating agent. In general, formylation of alcohols is well studied, as for instance in a review by G.A. Olah et al. (Chem. Rev. (1987) 87, 671-686) and can be carried out using a variety of reagents such as formic acid (M. Chakrabarty et al., Synth. Commun. (2000) 30:2, 187-200), formic anhydrides, formic esters, formic halides or N-formyl derivatives. Examples are N-formylbenzotriazole (A.R. Katritzky et al., Synthesis (1995), 503-505), ethyl formate (M.H. Habibi et al., Tetrahedron (2001 ) 57, 8333-8337), 2,2,2-trifluoroethyl formate (D.R. Hill et al., Org. Lett. (2002), 111-1 13), acetic acid with ethyl formate (V. Mirkhani et al., Monatshefte fur Chemie (2004) 135, 1257-1263). However not much is known of formylation of the class of sensitive β-lactams. In US 4,877,783 formylation of a β-lactam is reported using acetic formic anhydride, however the formylation concerns the carbon adjacent to the carbonyl of the β-lactam ring and the carboxyl group of the β-lactam is protected. If not for anything else this example stresses the ease of formation of unwanted side products in β-lactam formylation reactions. In one embodiment, the formylating agent is formic acid, a formic anhydride, a formic ester, a formic halide or an N-formyl derivative. Preferably, the formylating agent is a mixed anhydride such as acetic formic anhydride of formula CH3C(0)OC(0)H, a compound that can conveniently be prepared from acetic anhydride and formic acid. Alternatively, a sterically hindered derivative of acetic formic anhydride may be used, such as butyric formic anhydride of formula CH3CH2CHC(0)OC(0)H or 2-ethylbutyric formic anhydride of formula (C2H 5)2CH C(0)OC(0)H or isobutyric formic anhydride of formula (CH 3)2CHC(0)OC(0)H or 2-methylbutyric formic anhydride of formula C H3C H2CH(CH 3)C(0)OC(0)H or propionic formic anhydride of formula CH3CH2C(0)OC(0)l-l or mixtures thereof.
Recommended publications
  • United States Patent [19] [11] 15 Re. 30,811 Dykstra Et A1
    United States Patent [19] [11] 15 Re. 30,811 Dykstra et a1. [45] Reissued Dec. 1, 1981 [54] SUBSTITUTED PIPERIDINES 2,780,577 2/1957 Phillips et a]. .................. .. 424/267 THERAPEUTIC PROCESS AND 3,192,213 1/1965 Krapcho . .. 260/253 COMPOSITIONS 3,789,072 1/1974 Bernstein ...... .. 260/557 D 3,931,195 1/1976 Dykstra et a1. .............. .. 260/293.58 [75] Inventors: Stanley J. Dykstra; Joseph L. OTHER PUBLICATIONS Minielli, both of Evansville, Ind. 73 A. - ._ Mead J hnson 81 C a Lawson, J. Pharm. Ex p . Thera p ., 160, pp . 21-31 (1968). [ 1 ‘Slgnee Evansv?le in mm’ ‘W’ Krapcho et al., J. Med. Chem, 6, p. 219 (1963). ' Krapcho et al., J. Med. Chem, 7, pp. 376-377 (1964). [2!] Appl- NW 98.008 Krapcho et 31., .1. Med. Chem, 9, pp. 809-812 (1966). [22] Filed. No“ 28, 1979 Krapcho et al., J. Med. Chem, 12, pp. 164-166 (1969). Phillips, J. Am. Chem. Soc., 72, pp. 1850-1852 (1950). Related US. Patent Documents Primary Examiner—Stanley J. Friedman Reissue of. Attorney, Agent, or Firm-Robert H. Uloth; Robert E. [64] Patent NO.I 4,064,254 Camha" Issued: Dec. 20, 1977 [57] ABSTRACT F531:A 1. N 0 .: 0cL734,583 21 1976 The compounds are of the heterocycltc, class of 2 v _ ’ phenethylpiperidines having an amido substituent in the U-5- APPl1cat1°I151 ortho position of the phenethyl moiety. Substituents in 160] Dlvisio" 0151?’ NO- 620-207’ Ocl- 3» 19751 Pa" N°~ the ortho position include formamido, benzamido, cin 4‘00Oé143' wh‘ch '5 agd‘wls‘gn 025:", No- 384'34l' Jul" namamido, 2-thiophenecarboxamido, alkanesul 31' 1.
    [Show full text]
  • Trimethylacetic Formic Anhydride Precipitation from Ethanol and Diethyl Ether, M.P
    PDF hosted at the Radboud Repository of the Radboud University Nijmegen The following full text is a publisher's version. For additional information about this publication click this link. http://hdl.handle.net/2066/16408 Please be advised that this information was generated on 2021-09-24 and may be subject to change. 460 Edward J. Vlietsira et al. / Trimethylacetic formic anhydride precipitation from ethanol and diethyl ether, m.p. 240°C (dec.); Acknowledgements [a]5 5 —140° (c 1.0, water). MS: M* 700. We thank Mr. P. Kranenburg for valuable technical as­ N-(6,14-endo-Etheno-7,8-dihydromorphine-7ai-carbonyl)-L- sistance and Messrs. J. A. de Groot, L. J. M. Helvensteijn -phenylalanyl-L-leucinol (14) and E. F. Lameijer for carrying out preliminary experi­ The hydrochloride of 12 (1.63 g, 2.4 mmol) was converted into the ments. We are grateful to the Management of Diosynth base and dissolved in 30 ml of anhydrous 2-propanol. To this B. V., Apeldoorn, The Netherlands, for gifts of chemicals. solution, 1.5 g (15 mmol) of anhydrous calcium chloride and We thank the U.S.A. Committee on Problems of Drug 1.14 g (30 mmol) of sodium tetrahydroborate were added. The Dependence and Dr. A. E. Jacobson, Biological Coordi­ conversion was complete (TLC) after 6 days at 35°C. Water nator, for the results of the pharmacological studies. We (50 ml) was then added and the mixture acidified with 2 N hydro­ gen chloride to pH 2-3. Extraction with a mixture of chloroform are indebted to Dr.
    [Show full text]
  • SODIUM FORMATE, Hydrate
    CXSO045 - SODIUM FORMATE, hydrate SODIUM FORMATE, hydrate Safety Data Sheet CXSO045 Date of issue: 04/04/2017 Version: 1.0 SECTION 1: Identification 1.1. Product identifier Product name : SODIUM FORMATE, hydrate Product code : CXSO045 Product form : Substance Physical state : Solid Formula : CHNaO2 Synonyms : FORMIC ACID, ZINC SALT, DIHYDRATE DIFORMATOZINC DIHYDRATE ZINC DIFORMATE DIHYDRATE Chemical family : METAL COMPOUND 1.2. Recommended use of the chemical and restrictions on use Recommended use : Chemical intermediate For research and industrial use only 1.3. Details of the supplier of the safety data sheet GELEST, INC. 11 East Steel Road Morrisville, PA 19067 USA T 215-547-1015 - F 215-547-2484 - (M-F): 8:00 AM - 5:30 PM EST [email protected] - www.gelest.com 1.4. Emergency telephone number Emergency number : CHEMTREC: 1-800-424-9300 (USA); +1 703-527-3887 (International) SECTION 2: Hazard(s) identification 2.1. Classification of the substance or mixture GHS-US classification Not classified 2.2. Label elements GHS-US labeling No labeling applicable 2.3. Hazards not otherwise classified (HNOC) No additional information available 2.4. Unknown acute toxicity (GHS US) No data available SECTION 3: Composition/Information on ingredients 3.1. Substances Substance type : Mono-constituent Name : SODIUM FORMATE, hydrate CAS No : 141-53-7 Name Product identifier % GHS-US classification Sodium formate (CAS No) 141-53-7 95 - 100 Not classified Full text of hazard classes and H-statements : see section 16 3.2. Mixtures Not applicable 4.1. Description of first aid measures First-aid measures general : Remove contaminated clothing and shoes.
    [Show full text]
  • Derivatives of Carboxylic Acid
    Derivatives of Carboxylic Acid acid chloride carboxylate nitrile amide acid anhydride ester Nomenclature of Acid Halides IUPAC: alkanoic acid → alkanoyl halide Common: alkanic acid → alkanyl halide I: 3-aminopropanoyl chloride I: 4-nitropentanoyl chloride c: b-aminopropionyl chloride c: g-nitrovaleryl chloride I: hexanedioyl chloride c: adipoyl chloride Rings: (IUPAC only): ringcarbonyl halide I: benzenecarbonyl bromide I: 3-cylcopentenecarbonyl chloride c: benzoyl bromide Nomenclature of Acid Anhydrides Acid anhydrides are prepared by dehydrating carboxylic acids acetic anhydride ethanoic acid ethanoic anhydride I: benzenecarboxylic anhydride I: butanedioic acid I: butanedioic anhydride c: benzoic andhydride c: succinic acid c: succinic anhydride Some unsymmetrical anhydrides I: ethanoic methanoic I: benzoic methanoic anhydride anhydride I: cis-butenedioic c: benzoic formic anhydride anhydride c: acetic formic anhydride Nomenclature of Esters Esters occur when carboxylic acids react with alcohols I: phenyl methanoate I: t-butyl benzenecarboxylate I: methyl ethanoate c: phenyl formate c: methyl acetate c: t-butyl benzoate I: isobutyl I: cyclobutyl 2- I: dimethyl ethanedioate cyclobutanecarboxylate methylpropanoate c: cyclobutyl a- c: dimethyl oxalate c: none methylpropionate Cyclic Esters Reaction of -OH and -COOH on same molecule produces a cyclic ester, lactone. To name, add word lactone to the IUPAC acid name or replace the -ic acid of common name with -olactone. 4-hydroxy-2-methylpentanoic acid lactone -methyl- -valerolactone Amides Product of the reaction of a carboxylic acid and ammonia or an amine. Not basic because the lone pair on nitrogen is delocalized by resonance. Classes of Amides 1 amide has one C-N bond (two N-H). 2 amide or N-substituted amide has two C-N bonds (one N-H).
    [Show full text]
  • Of Grignard Reagent Formation. the Surface Nature of the Reaction
    286 Ace. Chem. Res. 1990,23, 286-293 Mechanism of Grignard Reagent Formation. The Surface Nature of the Reaction H. M. WALBORSKY Dittmer Laboratory of Chemistry, Florida State University, Tallahassee, Florida 32306 Received February 23, 1990 (Revised Manuscript Received May 7, 1990) The reaction of organic halides (Br, C1, I) with mag- Scheme I nesium metal to yield what is referred to today as a Kharasch-Reinmuth Mechanism for Grignard Reagent Grignard reagent has been known since the turn of the Formation century,' The name derives from its discoverer, Nobel (1)(Mg0)AMg*)2y + RX 4 [(M~'~(MQ')~~-,('MQX)+ R.] + laureate Victor Grignard. How this reagent is formed, (Mgo)x-2(MQ')2~MgX)(MgR) that is, how a magnesium atom is inserted into a car- bon-halogen bond, is the subject of this Account. ('4 (Ms0),-*(M9')2~MgX)(MgR) + + (Mg0)x-dMg*)2y+2 + 2RMgX RX + Mg - RMgX Kharasch and Reinmuth,, persuaded by the work of late under the same conditions gave Itl = 6.2 X s-l. Another system that meets the above criterion is the Gomberg and Bachmad as well as by product analyses of many Grignard formation reactions that existed in vinyl system. The lack of reactivity of vinyl halides toward SN1reactions is well-known and is exemplified the literature prior to 1954,speculated that the reaction involved radicals and that the radical reactions might by the low solvolysis rate of 2-propenyl triflate5 in 80% involve "surface adherent radicals, at least in part". The ethanol at 25 OC, kl being 9.8 X s-l.
    [Show full text]
  • Methoxyethane, Physical Properties, Safety, MSDS, Enthalpy, Gas Liquid
    (c) Bürkle GmbH 2021 Important Important information The tables “Chemical resistance of plastics”, “Plastics and their properties” and “Viscosity of liquids" as well as the information about chemical resistance given in the particular product descriptions have been drawn up based on information provided by various raw material manufacturers. These values are based solely on laboratory tests with raw materials. Plastic components produced from these raw materials are frequently subject to influences that cannot be recognized in laboratory tests (temperature, pressure, material stress, effects of chemicals, construction features, etc.). For this reason the values given are only to be regarded as being guidelines. In critical cases it is essential that a test is carried out first. No legal claims can be derived from this information; nor do we accept any liability for it. A knowledge of the chemical and mechanical resistance alone is not sufficient for the evaluation of the usability of a product. For example, the regulations concerning flammable liquids (explosion prevention) must also be taken into consideration. Copyright This table has been published and updated by Bürkle GmbH, D-79415 Bad Bellingen as a work of reference. This Copyright clause must not be removed. The table may be freely passed on and copied, provided that the information about the publisher is retained. Extensions, additions and translations If your own experiences with materials and media could be used to extend this table then we would be pleased to receive any additional information. Please send an E-Mail to [email protected]. We would also like to receive translations into other languages.
    [Show full text]
  • The Activation of Surface Films of Lecithin by Amphipathic Molecules
    Vol. 72 493 The Activation of Surface Films of Lecithin by Amphipathic Molecules BY R. M. C. DAWSON AND A. D. BANGHAM Agricultural Research Council Institute of Animcw Physiology,, Babraham, Cambridge (Received, 31 December 1958) In the preceding paper it was shown that a phos- methanol-chloroform (1:1, v/v) and the auspension pholipase prepared,from Penicllium notatum will filtered. The filtrates were pooled and evaporated to hydrolyse lecithin only after the, addition,, of a dryness in vacuo. The,lipid residue was then dissolved in minimum proportion of anionic amphipathic 50 ml. of ethanol and the ethanol removed in vacuo to complete dehydration. The,residue was next thoroughly molecules1 e.g. dicetylphosphoric acid, cardiolipin, extracted with 100 ml. of-diethyl, ether; insoluble matter sodium dodecyl sulphate (Bangham & Dawson, was removed by filtration and the filtrate evaporated to 1959), The onset of hydrolysis occurred, only when dryness. The residue was dissolved in 4 ml. of ether and the emulsion particles carried a minimum net 40 ml. of acetone was added;-after allowing the solution to negative charge, independent of the .species of stand for 1 hr. at 0°, the precipitate of phospholipids was anion added. recovered by centrifuging. The, acetone-damp precipitate The question arose whether the negative charge was extracted, first with,8 ml. of chloroform -methanol on the surface of the emulsion particle was ,directly (1:1, v/v), and then onc,e more with 4 ml. of the same concerned with the reaction between enzyme,and solvent, any insoluble material-beAg"remroved by centri- substrate at the or whether it fuging.
    [Show full text]
  • United States Patent (19) 11) Patent Number: 4,585,788 Helsley Et Al
    United States Patent (19) 11) Patent Number: 4,585,788 Helsley et al. 45) Date of Patent: Apr. 29, 1986 54 6,11-DIHYDRODIBENZB,EOXEPIN ACETIC ACIDS AND DERVATIVES FOREIGN PATENT DOCUMENTS 48-389 6/1972 Japan . 75 Inventors: Grover C. Helsley, Pottersville; 000425 7/1972 Japan. Arthur R. McFadden, East Brunswick, both of N.J.; David Primary Examiner-Norma S. Milestone Hoffman, North Kingstown, R.I. Attorney, Agent, or Firm-Curtis, Morris & Safford 57 ABSTRACT (73) Assignee: American Hoechst Corporation, 6,11-Dihydrodibenzb,eoxepin-acetic acids and deriva Somerville, N.J. tives having the general formula 21 Appl. No.: 459,774 1 22 Fied: Apr. 10, 1974 210 X Yn C-Z Related U.S. Application Data St. 5 k 63 Continuation-in-part of Ser. No. 394,801, Sep. 6, 1973, abandoned. (51) Int. Cl." .................. C07D 313/12; A61K 31/335 are prepared by multi-step sequences. X is C=O, CHCl, 52) U.S. C. ..................................... 514/450; 549/354 CHBr, CH2 or CHOR; Y is alkyl or alkoxy of 1 to 4 (58) Field of Search ........................ 260/333; 549/354; carbon atoms, halogen or trifluoromethyl; n is 0, 1, 2 or 514/450 3; Z is COOR5, CH2OR5, CONR25 or CONHOR5; and Rl-Rs are hydrogen or alkyl of 1 to 4 carbon atoms. 56) References Cited These compounds and the physiologically tolerable U.S. PATENT DOCUMENTS salts thereof are useful as antiinflammatory and analge 3,702,852 11/1972 Yale et al. ........................... 260/333 sic agents. 3,714,201 1/1973 Yale et al. ........................... 260/333 3,758,528 9/1973 Malen et al.
    [Show full text]
  • Effects of Sodium Formate and Calcium Propionate Additives On
    animals Article Effects of Sodium Formate and Calcium Propionate Additives on the Fermentation Quality and Microbial Community of Wet Brewers Grains after Short-Term Storage Jingyi Lv, Xinpeng Fang, Guanzhi Feng, Guangning Zhang , Chao Zhao, Yonggen Zhang and Yang Li * College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; [email protected] (J.L.); [email protected] (X.F.); [email protected] (G.F.); [email protected] (G.Z.); [email protected] (C.Z.); [email protected] (Y.Z.) * Correspondence: [email protected]; Tel./Fax: +86-0451-5519-0840 Received: 27 July 2020; Accepted: 7 September 2020; Published: 9 September 2020 Simple Summary: The objective of this study was to examine the effect of sodium formate and calcium propionate on the fermentation quality and microbial community of wet brewers grains (WBG) after short-term storage. Both additives improved the silage quality of WBG ensiled for 20 days to different extents. However, ensiled WBG treated with sodium formate had higher contents of dry matter, water-soluble carbohydrates, and neutral detergent fibers and better fermentation quality, rumen degradation, and microbial composition. The addition of sodium formate enhances the abundance of desirable Lactobacillus and reduces the abundance of undesirable microorganisms, including Clostridium. In summary, during short-term storage of high-moisture feed, sodium formate has a more beneficial preservation effect than an equivalent dose of calcium propionate. Abstract: The objective of this research was to examine the effect of sodium formate (SF) and calcium propionate (CAP) on the fermentation characteristics and microbial community of wet brewers grains (WBG) after short-term storage.
    [Show full text]
  • List of Toxic Chemicals Within the Glycol Ethers Category
    United States Office of Environmental Revised December 2000 Environmental Protection Information EPA 745-R-00-004 Agency Washington, DC 20460 TOXICS RELEASE INVENTORY List of Toxic Chemicals within the Glycol Ethers Category Section 313 of the Emergency Planning and Community Right-to-Know Act (EPCRA) requires certain facilities manufacturing, processing, or otherwise using listed toxic chemicals to report their environmental releases of such chemicals annually. Beginning with the 1991 reporting year, such facilities also must report pollution prevention and recycling data for such chemicals, pursuant to section 6607 of the Pollution Prevention Act, 42 U.S.C. 13106. When enacted, EPCRA section 313 established an initial list of toxic chemicals that was comprised of more than 300 chemicals and 20 chemical categories. EPCRA section 313(d) authorizes EPA to add chemicals to or delete chemicals from the list, and sets forth criteria for these actions. CONTENTS Section 1. Introduction ...................................................... 3 Section 2. CAS Number List of Some Chemicals within the Glycol Ethers Category ........ 6 Section 3. CAS Number List of Some Mixtures That Contain Glycol Ethers within the Category .............................................. 185 Section 4. CAS Number List of Some Oligomeric or Polymeric Chemicals That Might Contain Glycol Ether Components within the Category .......................... 187 FOREWORD This document is an updated version of the previous document, EPA 745-R-99-006, June 1999. This version has the following updates: • The titles to Table 1 on page 6, Table 2 on page 185, and Table 3 on 187 are modified; and • The CAS number of second listing in Table 3 (Poly(oxy-1,2-ethanediyl), .alpha.- (phenylsulfonyl)-.omega.-methoxy-) on page 187 is changed from 7664-41-7 to 67584-43-4.
    [Show full text]
  • Revised Group Additivity Values for Enthalpies of Formation (At 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds
    Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon– Hydrogen and Carbon–Hydrogen–Oxygen Compounds Cite as: Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 Submitted: 17 January 1996 . Published Online: 15 October 2009 N. Cohen ARTICLES YOU MAY BE INTERESTED IN Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties The Journal of Chemical Physics 29, 546 (1958); https://doi.org/10.1063/1.1744539 Critical Evaluation of Thermochemical Properties of C1–C4 Species: Updated Group- Contributions to Estimate Thermochemical Properties Journal of Physical and Chemical Reference Data 44, 013101 (2015); https:// doi.org/10.1063/1.4902535 Estimation of the Thermodynamic Properties of Hydrocarbons at 298.15 K Journal of Physical and Chemical Reference Data 17, 1637 (1988); https:// doi.org/10.1063/1.555814 Journal of Physical and Chemical Reference Data 25, 1411 (1996); https://doi.org/10.1063/1.555988 25, 1411 © 1996 American Institute of Physics for the National Institute of Standards and Technology. Revised Group Additivity Values for Enthalpies of Formation (at 298 K) of Carbon-Hydrogen and Carbon-Hydrogen-Oxygen Compounds N. Cohen Thermochemical Kinetics Research, 6507 SE 31st Avenue, Portland, Oregon 97202-8627 Received January 17, 1996; revised manuscript received September 4, 1996 A program has been undertaken for the evaluation and revision of group additivity values (GAVs) necessary for predicting, by means of Benson's group additivity method, thermochemical properties of organic molecules. This review reports on the portion of that program dealing with GAVs for enthalpies of formation at 298.15 K (hereinafter abbreviated as 298 K) for carbon-hydrogen and carbon-hydrogen-oxygen compounds.
    [Show full text]
  • (Hexamine) Formaldehyde (Formalin) Pentaerythritol Sodium Formate
    Hexamethylenetetramine (Hexamine) ▶Hexamethylenetetramine (Hexamine) White crystalline or powder compound that easily dissolves in water. It releases heat when dissolving in Characteristics water, with solubility decreasing as the temperature increases. This product has a larger crystalline piece size compared to other companies made possible by setting the granularity distribution during manufacturing. Key Used phenol-formaldehyde resin hardeners, RDX, fuel, gas absorbent and rubber vulcanizing agents, etc. applications Formaldehyde (Formalin) ▶Formaldehyde (Formalin) Aldehyde substance in a simple structure stored and sold in an aqueous solution state (37~42%) since it Characteristics exists as gas at room temperature. It has the property of becoming polymerized at a low temperature, so methanol has been added as an additive (content in the range of 2 ~ 12%). Key Used in insecticides, disinfectants, germicides, medical drugs, raw ingredient of synthetic resins and applications raw organic synthetic materials, etc. Pentaerythritol ▶Pentaerythritol Odorless white crystalline compound without hygroscopicity and non-volatile, making it a safe substance in Characteristics the air. Although there is a risk of explosion with the fine powder, the minimum explosion powder concentration in air is 30mg/㎥, with the minimum ignition temperature being 450℃. Key Used in alkyd resin, raw material for polyurethane, rosin ester, synthetic drying oil, reagent, applications PVC plasticizer and surfactant, etc. Sodium Formate ▶Sodium Formate Product generated as a byproduct in the pentaerythritol manufacturing process. This is a colorless crystal or Characteristics white crystalline powder that can be dissolved in water easily due to its hygroscopicity, but it does not dissolve easily in ethyl alcohol. Used in analysis of precipitants for precious metals, as an astringent, in textile dyes and printing, formic acid, Key electroplating agent, acidifier for leather manufacturing, reductant, organic chemical substance, analytic applications reagent, etc..
    [Show full text]