Flux Compactification

Total Page:16

File Type:pdf, Size:1020Kb

Flux Compactification SLAC-PUB-12131 hep-th/0610102 Flux Compactification October 2006 1, 2, 3, 4, Michael R. Douglas ∗ and Shamit Kachru † 1Department of Physics and Astronomy, Rutgers University, Piscataway NJ 08855 U.S.A. 2Institut des Hautes Etudes Scientifiques, 35 route des Chartres, Bures-sur-Yvette France 91440 3Department of Physics and SLAC, Stanford University, Stanford, CA 94305 4Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106 We review recent work in which compactifications of string and M theory are constructed in which all scalar fields (moduli) are massive, and supersymmetry is broken with a small positive cosmological constant, features needed to reproduce real world physics. We explain how this work implies that there is a “landscape” of string/M theory vacua, perhaps containing many candidates for describing real world physics, and present the arguments for and against this idea. We discuss statistical surveys of the landscape, and the prospects for testable consequences of this picture, such as observable effects of moduli, constraints on early cosmology, and predictions for the scale of supersymmetry breaking. Submitted to Reviews of Modern Physics. Contents 1. A warm-up: The twisted torus 43 2. A full example 44 I. INTRODUCTION 1 V. STATISTICS OF VACUA 45 II. A QUALITATIVE PICTURE 5 A. Methodology and basic definitions 45 A. Overview of string and M theory compactification 5 1. Approximate distributions and tuning factors 46 1. Supersymmetry 6 B. Counting flux vacua 47 2. Heterotic string 7 1. IIb vacua on a rigid CY 47 3. Brane models 9 2. General theory 49 B. Moduli fields 10 C. Scale of supersymmetry breaking 52 C. Calabi-Yau manifolds and moduli spaces 11 D. Other distributions 54 1. Examples 11 1. Gauge groups and matter content 54 2. Moduli space - general properties 12 2. Yukawa couplings and other potential terms 55 D. Flux compactification: Qualitative overview 12 3. Calabi-Yau manifolds 55 1. Freund-Rubin compactification 14 4. Absolute numbers 56 E. A solution of the cosmological constant problem 15 E. Model distributions and other arguments 57 1. Anthropic selection 16 1. Central limit theorem 57 F. Other physical consequences 17 2. Random matrix theory 58 1. Overview of spontaneous supersymmetry breaking 18 3. Other concentrations of measure 58 2. The moduli problem 19 4. Non-existence arguments 58 3. The scale of supersymmetry breaking 20 5. Finiteness arguments 59 4. Early universe cosmology 22 F. Interpretation 59 III. QUANTUM GRAVITY, THE EFFECTIVE VI. CONCLUSIONS 61 POTENTIAL AND STABILITY 23 A. The effective potential 23 Acknowledgements 62 B. Approximate effective potential 25 C. Subtleties in semiclassical gravity 26 References 62 D. Tunneling instabilities 27 E. Early cosmology and measure factors 27 F. Holographic and dual formulations 29 I. INTRODUCTION IV. EXPLICIT CONSTRUCTIONS 30 A. Type IIb D3/D7 vacua 30 It is an old idea that unification of the fundamental 1. 10d solutions 30 forces may be related to the existence of extra dimen- 2. 4d effective description 32 sions of space-time. Its first successful realization appears 3. Quantum IIb flux vacua 35 4. Supersymmetry Breaking 36 in the works of Kaluza (1921) and Klein (1926), which B. Type IIa flux vacua 40 postulated a fifth dimension of space-time, invisible to 1. Qualitative considerations 40 everyday experience. 2. 4d multiplets and K¨ahler potential 41 In this picture, all physics is described at a funda- 3. Fluxes and superpotential 42 mental level by a straightforward generalization of gen- 4. Comments on 10d description 42 C. Mirror symmetry and new classes of vacua 42 eral relativity to five dimensions, obtained by taking the metric tensor gµν to depend on five-dimensional in- dices µ = 0, 1, 2, 3, 4, and imposing general covariance in five dimensions. Such a theory allows five-dimensional ∗Electronic address: [email protected] Minkowski space-time as a solution, a possibility in ev- †Electronic address: [email protected] ident contradiction with experience. However, it also Submitted to Reviews of Modern Physics Work supported in part by the US Department of Energy contract DE-AC02-76SF00515 2 allows many other solutions with different or less sym- a six dimensional Ricci flat manifold, one of the so-called metry. As a solution which could describe our universe, Calabi-Yau manifolds. Performing a Kaluza-Klein type consider a direct product of four-dimensional Minkowski analysis, one obtains a four-dimensional theory unifying space-time, with a circle of constant periodicity, which we gravity with a natural extension of the Standard Model, denote 2πR. It is easy to check that at distances r>>R, from a single unified theory with no free parameters. the gravitational force law reduces to the familar inverse However, at this point, the problem we encountered square law. Furthermore, at energies E << ~/Rc, all above rears its ugly head. Just like the classical Einstein- quantum mechanical wave functions will be independent Maxwell equations, the classical supergravity equations of position on the circle, and thus if R is sufficiently small are scale invariant. Thus, if we can find any solution (in 1926, subatomic), the circle will be invisible. of the type we just described, by rescaling the size R The point of saying this is that the five dimensional of the compactification manifold, we can obtain a one- metric gµν , regarded as a field in four dimensions, con- parameter family of solutions, differing only in the value tains additional, non-metric degrees of freedom. In par- of R. Similarly, by making a rescaling of R with a weak ticular, the components gµ5 transform as a vector field, dependence on four-dimensional position, one obtains ap- which turns out to obey the Maxwell equations in a proximate solutions. Thus, again R corresponds to a curved background. Thus, one has a unified theory of massless field in four dimensions, which is again in fatal gravitation and electromagnetism. conflict with observation. The theory contains one more degree of freedom, the In fact, the situation is even worse. Considerations metric component g55, which parameterizes the radius R we will discuss show that typical solutions of this type of the extra-dimensional circle. Since the classical Ein- have not just one but hundreds of parameters, called stein equations are scale invariant, in the construction as moduli. Each will lead to a massless scalar field, and described, there is no preferred value for this radius R. its own potential conflict with observation. In addition, Thus, Kaluza and Klein simply postulated a value for it the interaction strength between strings is controlled by consistent with experimental bounds. another massless scalar field, which by a long-standing Just like the other metric components, the g55 com- quirk of terminology is called the dilaton. Since this field ponent is a field, which can vary in four-dimensional is present in all string theories and enters directly into space-time in any way consistent with the equations of the formulas for observable couplings, many proposals for motion. We will discuss these equations of motion in dealing with the other moduli problems, such as looking detail later, but their main salient feature is that they for special solutions without parameters, founder here. describe a (non-minimally coupled) massless scalar field. On further consideration, the moduli are tied up with We might expect such a field to lead to physical effects many other interesting physical questions. The simplest just as important as those of the Maxwell field we were of these is just the following: given the claim that all trying to explain. Further analysis bears this out, and of known physics can arise from a fundamental theory quickly leads to effects such as new long range forces, or with no free parameters, how do the particular values time dependence of parameters, in direct conflict with we observe for the fundamental parameters of physics, observation. such as the electron mass or the fine structure constant, All this would be a historical footnote were it not for actually emerge from within the theory? This question the discovery, which emerged over the period 1975–1985, has always seemed to lie near the heart of the matter and that superstring theory provides a consistent quantum has inspired all sorts of speculations and numerological theory of gravity coupled to matter in ten space-time observations, some verging on the bizarre. dimensions (Green et al., 1987a,b). At energies low com- This question has a clear answer within superstring pared to its fundamental scale (the string tension), this theory, and the moduli are central to this answer. The theory is well described by ten-dimensional supergravity, answer may not be to every reader’s liking, but let us a supersymmetric extension of general relativity coupled come back to this in due course. to Yang-Mills theory. But the nonrenormalizability of To recap, we now have a problem, a proliferation of that theory is cured by the extended nature of the string. massless scalar fields; and a question, the origin of fun- Clearly such a theory is a strong candidate for a higher damental parameters. Suppose we ignore the dynamics dimensional unified theory of the type postulated by of the massless scalar fields for a moment, and simply Kaluza and Klein. Around 1985, detailed arguments freeze the moduli to particular values, in other words re- were made, most notably by Candelas et al. (1985), that strict attention to one of the multi-parameter family of starting from the heterotic superstring theory, one could possible solutions in an ad hoc way. Now, if we carry derive supersymmetric grand unified theories (GUTs) of out the Kaluza-Klein procedure on this definite solution, the general class which, for completely independent rea- we will be able to compute physical predictions, includ- sons, had already been postulated as plausible extensions ing the fundamental parameters.
Recommended publications
  • Wall Crossing and M-Theory
    Wall Crossing and M-theory The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Aganagic, Mina, Hirosi Ooguri, Cumrun Vafa, and Masahito Yamazaki. 2011. Wall crossing and M-theory. Publications of the Research Institute for Mathematical Sciences 47(2): 569-584. Published Version doi:10.2977/PRIMS/44 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:7561260 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP CALT-68-2746 IPMU09-0091 UT-09-18 Wall Crossing and M-Theory Mina Aganagic1, Hirosi Ooguri2,3, Cumrun Vafa4 and Masahito Yamazaki2,3,5 1Center for Theoretical Physics, University of California, Berkeley, CA 94720, USA 2California Institute of Technology, Pasadena, CA 91125, USA 3 IPMU, University of Tokyo, Chiba 277-8586, Japan 4Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA 5Department of Physics, University of Tokyo, Tokyo 113-0033, Japan Abstract arXiv:0908.1194v1 [hep-th] 8 Aug 2009 We study BPS bound states of D0 and D2 branes on a single D6 brane wrapping a Calabi- Yau 3-fold X. When X has no compact 4-cyles, the BPS bound states are organized into a free field Fock space, whose generators correspond to BPS states of spinning M2 branes in M- theory compactified down to 5 dimensions by a Calabi-Yau 3-fold X.
    [Show full text]
  • Abdus Salam Educational, Scientific and Cultural XA0500266 Organization International Centre
    the united nations abdus salam educational, scientific and cultural XA0500266 organization international centre international atomic energy agency for theoretical physics 1 a M THEORY AND SINGULARITIES OF EXCEPTIONAL HOLONOMY MANIFOLDS Bobby S. Acharya and Sergei Gukov Available at: http://www.ictp.it/-pub-off IC/2004/127 HUTP-03/A053 RUNHETC-2003-26 United Nations Educational Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL PHYSICS M THEORY AND SINGULARITIES OF EXCEPTIONAL HOLONOMY MANIFOLDS Bobby S. Acharya1 The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy and Sergei Gukov2 Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA. Abstract M theory compactifications on Gi holonomy manifolds, whilst supersymmetric, require sin- gularities in order to obtain non-Abelian gauge groups, chiral fermions and other properties necessary for a realistic model of particle physics. We review recent progress in understanding the physics of such singularities. Our main aim is to describe the techniques which have been used to develop our understanding of M theory physics near these singularities. In parallel, we also describe similar sorts of singularities in Spin(7) holonomy manifolds which correspond to the properties of three dimensional field theories. As an application, we review how various aspects of strongly coupled gauge theories, such as confinement, mass gap and non-perturbative phase transitions may be given a
    [Show full text]
  • Open Gromov-Witten Invariants and Syz Under Local Conifold Transitions
    OPEN GROMOV-WITTEN INVARIANTS AND SYZ UNDER LOCAL CONIFOLD TRANSITIONS SIU-CHEONG LAU Abstract. For a local non-toric Calabi-Yau manifold which arises as smoothing of a toric Gorenstein singularity, this paper derives the open Gromov-Witten invariants of a generic fiber of the special Lagrangian fibration constructed by Gross and thereby constructs its SYZ mirror. Moreover it proves that the SYZ mirrors and disc potentials vary smoothly under conifold transitions, giving a global picture of SYZ mirror symmetry. 1. Introduction Let N be a lattice and P a lattice polytope in NR. It is an interesting classical problem in combinatorial geometry to construct Minkowski decompositions of P . P v On the other hand, consider the family of polynomials v2P \N cvz for cv 2 C with cv 6= 0 when v is a vertex of P . All these polynomials have P as their Newton polytopes. This establishes a relation between geometry and algebra, and the geometric problem of finding Minkowski decompositions is transformed to the algebraic problem of finding polynomial factorizations. One purpose of this paper is to show that the beautiful algebro-geometric correspondence between Minkowski decompositions and polynomial factorizations can be realized via SYZ mirror symmetry. A key step leading to the miracle is brought by a result of Altmann [3]. First of all, a lattice polytope corresponds to a toric Gorenstein singularity X. Altmann showed that Minkowski decompositions of the lattice polytope correspond to (partial) smoothings of X. From string- theoretic point of view different smoothings of X belong to different sectors of the same stringy K¨ahlermoduli.
    [Show full text]
  • Singlet Glueballs in Klebanov-Strassler Theory
    Singlet Glueballs In Klebanov-Strassler Theory A DISSERTATION SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY IVAN GORDELI IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Doctor of Philosophy ARKADY VAINSHTEIN April, 2016 c IVAN GORDELI 2016 ALL RIGHTS RESERVED Acknowledgements First of all I would like to thank my scientific adviser - Arkady Vainshtein for his incredible patience and support throughout the course of my Ph.D. program. I would also like to thank my committee members for taking time to read and review my thesis, namely Ronald Poling, Mikhail Shifman and Alexander Voronov. I am deeply grateful to Vasily Pestun for his support and motivation. Same applies to my collaborators Dmitry Melnikov and Anatoly Dymarsky who have suggested this research topic to me. I am thankful to my other collaborator - Peter Koroteev. I would like to thank Emil Akhmedov, A.Yu. Morozov, Andrey Mironov, M.A. Olshanetsky, Antti Niemi, K.A. Ter-Martirosyan, M.B. Voloshin, Andrey Levin, Andrei Losev, Alexander Gorsky, S.M. Kozel, S.S. Gershtein, M. Vysotsky, Alexander Grosberg, Tony Gherghetta, R.B. Nevzorov, D.I. Kazakov, M.V. Danilov, A. Chervov and all other great teachers who have shaped everything I know about Theoretical Physics. I am deeply grateful to all my friends and colleagues who have contributed to discus- sions and supported me throughout those years including A. Arbuzov, L. Kushnir, K. Kozlova, A. Shestov, V. Averina, A. Talkachova, A. Talkachou, A. Abyzov, V. Poberezh- niy, A. Alexandrov, G. Nozadze, S. Solovyov, A. Zotov, Y. Chernyakov, N.
    [Show full text]
  • String Cosmology
    ��������� � ������ ������ �� ��������� ��� ������������� ������� �� � �� ���� ���� ������ ��������� ���� � �� ������� ���������� �� �������� ���������� �� ������� ��������� �� ���������� ������ Lecture 2 Stabilization of moduli in superstring theory Fluxes NS (perturbative string theory) RR (non-perturbative string theory) Non-perturbative corrections to superpotential and Kahler potential Start 2008 Higgs?Higgs? MSSM?MSSM? SplitSplit susysusy?? NoNo susysusy?? IFIF SUSYSUSY ISIS THERETHERE…… The significance of discovery of supersymmetry in nature, which will manifests itself via existence of supersymmetric particles, would be a discovery of the fermionicfermionic dimensionsdimensions ofof spacetimespacetime ItIt willwill bebe thethe mostmost fundamentalfundamental discoverydiscovery inin physicsphysics afterafter EinsteinEinstein’’ss relativityrelativity SUPERSYMMETRY: GravityGravity Supergravity/StringSupergravity/String theorytheory There are no single scalars fields in susy models! Scalars come in pairs, they are always complex in supersymmetry. For example, axion and dilaton or axion and radial modulus. Generically, multi-dimensional moduli space. An effective inflaton may be a particular direction in moduli space. In string theory scalars often have geometrical meaning: distance between branes, size of internal dimensions, size of supersymmetric cycles on which branes can be wrapped, etc StabilizationStabilization ofof modulimoduli isis necessarynecessary forfor stringstring theorytheory toto describedescribe thethe effectiveeffective
    [Show full text]
  • Conifold Transitions and Five-Brane Condensation in M-Theory on Spin(7
    INSTITUTE OF PHYSICS PUBLISHING CLASSICAL AND QUANTUM GRAVITY Class. Quantum Grav. 20 (2003) 665–705 PII: S0264-9381(03)53801-1 Conifold transitions and five-brane condensation in M-theory on Spin(7) manifolds Sergei Gukov1,JamesSparks2 and David Tong3 1 Jefferson Physical Laboratory, Harvard University, Cambridge, MA 02138, USA 2 Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK 3 Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA E-mail: [email protected], [email protected] and [email protected] Received 23 September 2002, in final form 6 January 2003 Published 28 January 2003 Online at stacks.iop.org/CQG/20/665 Abstract We conjecture a topology-changing transition in M-theory on a non-compact asymptotically conical Spin(7) manifold, where a 5-sphere collapses and a CP2 bolt grows. We argue that the transition may be understood as the condensation of M5-branes wrapping S5.Upon reduction to ten dimensions, it has a physical interpretation as a transition of D6-branes lying on calibrated submanifolds of flat space. In yet another guise, it may be seen as a geometric transition between two phases of type IIA string theory on a G2 holonomy manifold with either wrapped D6-branes, or background Ramond–Ramond flux. This is the first non-trivial example of a topology-changing transition with only 1/16 supersymmetry. PACS numbers: 11.25.Mj, 11.30.Pb, 11.15.Tk Contents 1. Introduction 666 2. D6-branes, M-theory and Spin(7) conifolds 670 2.1.
    [Show full text]
  • Critical Non-Abelian Vortex in Four Dimensions and Little String Theory
    FTPI-MINN-17/06, UMN-TH-3622/17 Critical Non-Abelian Vortex in Four Dimensions and Little String Theory M. Shifman a and A. Yung a,b,c aWilliam I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN 55455 bNational Research Center “Kurchatov Institute”, Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia cSt. Petersburg State University, Universitetskaya nab., St. Petersburg 199034, Russia Abstract As was shown recently, non-Abelian vortex strings supported in four- dimensional = 2 supersymmetric QCD with the U(2) gauge group and N Nf = 4 quark multiplets (flavors) become critical superstrings. In addition to the translational moduli non-Abelian strings under consideration carry six orientational and size moduli. Together they form a ten-dimensional target space required for a superstring to be critical. The target space of the string sigma model is a product of the flat four-dimensional space and a Calabi-Yau non-compact threefold, namely, the conifold. We study closed string states which emerge in four dimensions (4D) and identify them with hadrons of arXiv:1704.00825v1 [hep-th] 3 Apr 2017 four-dimensional = 2 QCD. One massless state was found previously: it emerges as a masslessN hypermultiplet associated with the deformation of the complex structure of the conifold. In this paper we find a number of massive states. To this end we exploit the approach used in LST, “Little String Theory,” namely equivalence between the critical string on the conifold and non-critical c = 1 string with the Liouville field and a compact scalar at the self-dual radius. The states we find carry “baryonic” charge (its definition differs from standard).
    [Show full text]
  • Large-N Duality, Lens Spaces and the Chern-Simons Matrix Model
    Published by Institute of Physics Publishing for SISSA/ISAS Received: January 10, 2004 Accepted: April 6, 2004 Large-N duality, Lens spaces and the Chern-Simons matrix model JHEP04(2004)014 Nick Halmagyi,ab Takuya Okudac and Vadim Yasnova aDepartment of Physics and Astronomy, University of Southern California Los Angeles, CA 90089, U.S.A. bKavli Institute for Theoretical Physics, University of California Santa Barbara, CA 93106, U.S.A. cCalifornia Institute of Technology Pasadena, CA, 91125, U.S.A. E-mail: [email protected], [email protected], [email protected] Abstract: We demonsrate that the spectral curve of the matrix model for Chern-Simons 3 theory on the Lens space S =Zp is precisely the Riemann surface which appears in the mirror to the blownup, orbifolded conifold. This provides the ¯rst check of the A-model ¤ 3 large-N duality for T (S =Zp), p > 2. Keywords: 1/N Expansion, Chern-Simons Theories, Matrix Models. °c SISSA/ISAS 2004 http://jhep.sissa.it/archive/papers/jhep042004014 /jhep042004014.pdf Contents 1. Introduction 1 2. The matrix model spectral curve 2 3. The orbifold of the resolved conifold 4 A. Toric variety described by a fan 7 1. Introduction JHEP04(2004)014 The conifold transition is an example of an open/closed string duality. In the topological A-model, this is a duality between the open A-model on T ¤(S3) (which is equivalent to 3 1 Chern-Simons (CS) theory on S [1]), and Kahler gravity on O¡1 + O¡1 ! P . This was originally studied by taking the partition function of large-N Chern-Simons (CS) theory on S3 expanded in a 't Hooft limit and presenting it ¯rst in the form of an open string theory [2] (i.e.
    [Show full text]
  • CONIFOLDS from D-BRANES in the Aftermath of the Second Superstring
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server CONIFOLDS FROM D-BRANES SUBIR MUKHOPADHYAY AND KOUSHIK RAY Abstract. In this note we study the resolution of conifold singularity by D-branes by considering compact- 3 ification of D-branes on C /(Z2 × Z2). The resulting vacuum moduli space of D-branes is a toric variety 4 which turns out to be a resolved conifold, that is a nodal variety in C . This has the implication that all the corresponding phases of Type–II string theory are geometrical and are accessible to the D-branes, since they are related by flops. In the aftermath of the second superstring revolution the role of D-branes in the study of space-time has been widely appreciated. It has become quite apparent that one can probe sub-stringy scales in space- time using D-branes — the BPS states that carry Rammond-Rammond charges in string theory. D-branes have recently been used to understand the short-distance geometry of Calabi–Yau manifolds [1–3]. These studies discern rather directly, as compared to the studies with fundamental strings, the phase structure of Calabi–Yau manifolds [1,3]. It has been shown that the topological and geometric properties of Calabi–Yau manifolds studied using both D-branes and fundamental strings corroborate. More specifically, it has been shown [3] that the D0-branes do not allow for non-geometric phases to appear in the theory which is in keeping with the conclusion drawn earlier from the analysis of M–theory and F–theory [4].
    [Show full text]
  • Flux Compactifications, Dual Gauge Theories and Supersymmetry Breaking
    FLUX COMPACTIFICATIONS, DUAL GAUGE THEORIES AND SUPERSYMMETRY BREAKING BY GONZALO TORROBA A dissertation submitted to the Graduate School|New Brunswick Rutgers, The State University of New Jersey in partial ful¯llment of the requirements for the degree of Doctor of Philosophy Graduate Program in Physics and Astronomy Written under the direction of Professor Michael R. Douglas and approved by New Brunswick, New Jersey May, 2009 ABSTRACT OF THE DISSERTATION Flux compacti¯cations, dual gauge theories and supersymmetry breaking by Gonzalo Torroba Dissertation Director: Professor Michael R. Douglas The nonholomorphic sector of four dimensional theories with N = 1 supersymmetry that arises from string compacti¯cations is analyzed, and new models of supersymmetry breaking (both in string and ¯eld theory) are presented. The dissertation combines three complementary viewpoints. First, space-time e®ects in 4d supergravity are studied from type IIB string theory compacti- ¯ed on warped Calabi-Yau manifolds with fluxes. The vacuum structure of supersymmetric flux compacti¯cations is well understood and our aim is to extend this to include space-time depen- dence in the presence of nontrivial warping. Going beyond the static limit is required in order to compute kinetic terms and masses. We develop formalism for identifying the microscopic 10d fluctuations that give rise to ¯elds in the low energy 4d theory, and we present a general formula for their kinetic terms. As an application, the e®ective theories for the universal KÄahler modulus and the complex modulus of the warped deformed conifold are determined. The full e®ective action for warped compacti¯cations is calculated to quadratic order, including both 4d zero modes and their light Kaluza-Klein excitations.
    [Show full text]
  • JHEP11(2000)028 November 21, 2000 ) Was Recently Generalized to Accepted: )
    Received: October 20, 2000, Accepted: November 21, 2000 HYPER VERSION 3-branes on resolved conifold Leopoldo A. Pando Zayas Randall Laboratory of Physics, The University of Michigan Ann Arbor, MI 48109-1120, USA E-mail: [email protected] JHEP11(2000)028 Arkady A. Tseytlin∗ Department of Physics, The Ohio State University 174 West 18th Avenue, Columbus, OH 43210-1106, USA E-mail: [email protected] Abstract: The type-IIB supergravity solution describing a collection of regular and fractional D3-branes on the conifold (hep-th/0002159) was recently generalized to the case of the deformed conifold (hep-th/0007191). Here we present another gen- eralization — when the conifold is replaced by the resolved conifold. This solution can be found in two different ways: (i) by first explicitly constructing the Ricci-flat K¨ahler metric on resolved conifold and then solving the supergravity equations for the D3-brane ansatz with constant dilaton and (self-dual) 3-form fluxes; (ii) by gen- eralizing the “conifold” ansatz of hep-th/0002159 in a natural “asymmetric” way so that the 1-d action describing radial evolution still admits a superpotential and then solving the resulting 1-st order system. The superpotentials corresponding to the “re- solved” and “deformed” cases turn out to have essentially the same simple structure. The solution for the resolved conifold case has the same asymptotic UV behaviour as in the conifold case, but unlike the deformed conifold case is still singular in the IR. The naked singularity is of repulson type and may have a brane resolution. Keywords: D-branes, AdS/CFT Correspondance.
    [Show full text]
  • The Giant Inflaton
    PUPT-2114 SLAC-PUB-10326 SU-ITP-04/03 hep-th/0403123 The Giant Inflaton Oliver DeWolfe1, Shamit Kachru2 and Herman Verlinde1 1 Department of Physics, Princeton University, Princeton, NJ 08544 2 Department of Physics and SLAC, Stanford University, Stanford, CA 94305/94309 Abstract We investigate a new mechanism for realizing slow roll inflation in string theory, based on the dynamics of p anti-D3 branes in a class of mildly warped flux compactifications. Attracted to the bottom of a warped conifold throat, the anti-branes then cluster due to a novel mechanism wherein the background flux polarizes in an attempt to screen them. Once they are sufficiently close, the M units of flux cause the anti-branes to expand into a fuzzy NS5-brane, which for rather generic choices of p/M will unwrap around the geometry, decaying into D3-branes via a classical process. We find that the effective potential governing this evolution possesses several epochs that can potentially support slow-roll inflation, provided the process can be arranged to take place at a high enough energy scale, of about one or two orders of magnitude below the Planck energy; this scale, however, lies just outside the bounds of our approximations. Work supported in part by the Department of Energy contract DE-AC03-76SF00515. 1. Introduction Inflation is presently the most attractive scenario for early cosmology [1]. The as- sumption that the universe has gone through an early de Sitter phase, driven by a slowly rolling inflaton field, naturally predicts a flat universe and can produce a nearly scale- invariant spectrum of density perturbations, in agreement with current observations.
    [Show full text]