Patch Exploitation Behaviour of the Tephritid Parasitoid Fopius Arisanus
Total Page:16
File Type:pdf, Size:1020Kb
Patch exploitation behaviour of the tephritid parasitoid Fopius arisanus, a candidate for the biological control of mango flies KATHARINA MERKEL JULY 2014 Patch exploitation behaviour of the tephritid parasitoid Fopius arisanus, a candidate for the biological control of mango flies Katharina Merkel Front cover: A female of Fopius arisanus (from the laboratory colony at icipe, Kenya) that parasitizes eggs of Bactrocera invadens in a mango. © T. S. Hoffmeister Patch exploitation behaviour of the tephritid parasitoid Fopius arisanus, a candidate for the biological control of mango flies Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften ‐ Dr. rer. nat. – dem Fachbereich 2 Biologie / Chemie der Universität Bremen vorgelegt von Katharina Merkel Bremen, Juli 2014 Table of Contents Summary ...................................................................................................................... vii Zusammenfassung ......................................................................................................... xi 1 General Introduction ............................................................................................... 1 1.1. Density dependent processes in host‐parasitoid systems ..................................... 4 1.1.1. The functional response .................................................................................. 5 1.1.2. Mutual interference ........................................................................................ 8 1.1.3. Foraging behaviour ......................................................................................... 9 1.2. Classical biological control .................................................................................... 12 1.2.1. Classical biological control in the past .......................................................... 12 1.2.2. Classical biological control today .................................................................. 14 1.2.3. Contribution of functional response studies and behavioural experiments to biological control ......................................................................................................... 15 1.3. Fruit fly pests – a global problem ......................................................................... 17 1.3.1. The Bactrocera dorsalis complex .................................................................. 17 1.3.2. Biological control of pest species within the genus Bactrocera ................... 18 1.4. Objectives ............................................................................................................. 21 2 General Methods ................................................................................................... 23 2.1. The insects ............................................................................................................ 24 2.2. Experimental set‐up ............................................................................................. 26 3 Compensation for spatial host refuges by reward‐dependent mechanisms ........... 29 3.1. Introduction .......................................................................................................... 30 3.2. Materials and methods......................................................................................... 34 3.3. Results ................................................................................................................... 39 v 3.4. Discussion ............................................................................................................. 44 4 Mutual interference in Fopius arisanus .................................................................. 49 4.1. Introduction .......................................................................................................... 50 4.2. Material and methods .......................................................................................... 55 4.3. Results ................................................................................................................... 60 4.4. Discussion ............................................................................................................. 64 4.4.1. Mutual interference ...................................................................................... 64 4.4.2. Encounters with conspecifics ........................................................................ 65 4.4.3. Host spatial distribution ................................................................................ 66 4.4.4. Conclusion ..................................................................................................... 67 5 General Discussion ................................................................................................. 69 5.1. Density dependent processes .............................................................................. 70 5.2. Behavioural adaptations ....................................................................................... 72 5.3. Classical biological control .................................................................................... 74 Conclusion .................................................................................................................... 77 Appendix ...................................................................................................................... 81 References ....................................................................................................................... 82 Acknowledgements ......................................................................................................... 99 ERKLÄRUNG ............................................................................................................... ‐ 101 ‐ vi Summary vii Summary The rationale behind successful pest control by natural enemies is based on theory developed for population dynamics. Thus, it is also not surprising that many empirical data on the interactions in host‐parasitoid systems stem from pest species and their biological control agents. An important feature of host‐parasitoid dynamics is the density dependence in a parasitoid’s attack rate. To describe the dynamics one can study how the attack rate depends on the host’s (functional response) and on the parasitoid’s density. Although often considered separately the two processes are strongly interconnected. The underlying causes of both, the host density and parasitoid density dependence of the parasitoid response, provide additional information that may help to understand what drives host‐parasitoid dynamics. Among them, the proximate mechanisms that lead to foraging decisions in parasitoid females can be studied by behavioural experiments. Thus, studies on the functional response and mutual interference complemented with detailed behavioural analysis may provide new insight into population dynamics. In this study I analysed the functional response of the parasitoid, Fopius arisanus that was introduced into Kenya, as a biological control candidate for the tephritid pest Bactrocera invadens. I further estimated the effect of mutual interference among parasitoids exploiting one patch at the same time, by measuring the reduction of the search rate with increased parasitoid density. The presented study thus aimed at linking individual traits of the parasitoid Fopius arisanus with population phenomena. After providing a brief introduction into biological control and the biological system I worked with in chapter one and two, chapter three addresses the functional response of F. arisanus and the potential effect of a spatial host refuge on this response. The shape of the functional response displayed by F. arisanus followed a type II response, characterized by an increasing number of hosts parasitized at a decelerating rate with increasing host density. Interestingly, the influence of the handling time was negligible. Adding parameters to the model accounting for a host‐density dependent spatial host refuge seemed to better explain the data. The results highlight that the outcome of biological control efforts with F. arisanus may depend on the targeted crop‐system. Mangos are comparatively large and therefore attract large clutches, and hence generate larger host refuges, than for example coffee berries or guava. viii Summary Chapter four covers the effect of mutual interference among females simultaneously searching host patches on the search rate. Following expectations the search rate decreased with increasing parasitoid density, demonstrating parasitoid interference. The results further suggest that the level of interference depends on the host distribution and that it will be highest in habitats with clumped host distributions. This indicates that mutual interference may be severe in control efforts with mass releases that create locally high parasitoid densities in mango systems that allow for large host refuges. The results in both, chapter three and four, show how F. arisanus uses information on host encounters in order to adapt the time spent searching on a patch. The parasitoids showed a decreased tendency to leave a patch after experiencing successful host encounters. This is in line with predictions from foraging theory that increases in the searching time upon successful host encounters lead to fitness maximization in habitats with aggregated hosts. Surprisingly, F. arisanus seemed to also employ an incremental mechanism when rejecting hosts. Such a response has rarely been described before.