SLAC-PUB-9107 January 2002 Hadron Spin Dynamics¤ Stanley J. Brodsky Stanford Linear Accelerator Center, Stanford University Stanford, California 94309 e-mail:
[email protected] Abstract Spin effects in exclusive and inclusive reactions provide an essential new dimension for testing QCD and unraveling hadron structure. Remarkable new experiments from SLAC, HERMES (DESY), and Jefferson Lab present many challenges to theory, including measurements at HERMES and SMC of the sin- gle spin asymmetries in ep ! e0¼X where the proton is polarized normal to the scattering plane. This type of single spin asymmetry may be due to the effects of rescattering of the outgoing quark on the spectators of the target proton, an effect usually neglected in conventional QCD analyses. Many aspects of spin, such as single-spin asymmetries and baryon magnetic moments are sensitive to the dynamics of hadrons at the amplitude level, rather than probability dis- tributions. I will illustrate the novel features of spin dynamics for relativistic systems by examining the explicit form of the light-front wavefunctions for the two-particle Fock state of the electron in QED, thus connecting the Schwinger anomalous magnetic moment to the spin and orbital momentum carried by its Fock state constituents and providing a transparent basis for understand- ing the structure of relativistic composite systems and their matrix elements in hadronic physics. I also present a survey of outstanding spin puzzles in QCD, particularly ANN in elastic pp scattering, the J=Ã ! ½¼ puzzle, and J=Ã polarization at the Tevatron. Concluding Theory Talk, presented at the 3rd Circum-Pan-Pacific Symposium On High Energy Spin Physics (SPIN 2001) Beijing, China 8–13 October 2001 ¤Work supported by the Department of Energy, contract DE–AC03–76SF00515.