Solid Polarized Targets for Nuclear and Particle Physics Experiments
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(E) Slac Measurement of the Neutron Spin Structure
Sr.AC-PUB-b217 _ _ "" --7 (- 7 _ -_ • / April 1993 (E) DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsi- bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Refer- ence herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom- mendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. SLAC MEASUREMENT OF THE NEUTRON SPIN STRUCTURE FUNCTION Emlyn llughes Representing the Efd2 Collaboration Stanford l,inear Accelerator Center Stanford, CA 94309, USA ABSTRACT A measurement of the nucleon spin asymmetries from deep inelastic scattering of polarized electrons by polarize.d alle has been performed. The neutron spin structure flmction gn is extracted and used to test the Bjorken sum rule. The neutron integral assuming a simple Regge theory extrapolation at low x is fo_gr_(x)dx = -0.022 + 0.011. Combined with the EMC proton results, the l_jorken sum rule predicts a neutron integral of ._ .qr_(x)dx = -0.065:t:0.018. Presented at the 2Sth Rencontres de Moriond QCD and Hi@ Energy tJadronic Interactiot's l.es Arcs, France, March 20-28,1993 *Work supported l.y Deparlment of Energy contract I-)ti-ACO3-7(,SI:(It}515 "' ': " "; ... -
Some Polarized Target Experiments for Elementary Particle Physics
SOME POLARIZED TARGET EXPERIMENTS FOR ELEMENTARY PARTICLE PHYSICS R.H. DALITZ Department of Theoretical Physics, Oxford INTRODUCTION At the present stage in elementary particle physics, there are three major areas of phenomena where the use of polarized targets may lead to especially illuminating information. a. High energy scattering, in the energy range where the dominant contributions to the processes observed may arise from Reggion ex change. The features of particular interest in these situjtions will be discussed at this meeting by Dr R.J.N. Phillips 1 • b. Tests of time-reversal (T) invariance for electrom~gnetic pro cesses, following the suggestion by Bernstein et al 2) that the CF-violation observed in the weak decay of kaons arises from the existence of an electromagnetic interaction which strongly viola tes T-invariance. Evidence for this hypothetical T-violating elec tromagnetic interaction can be sought most directly in the study of electromagnetic processes from a polarized proton target, for example in the study of the electro-excitation process e + N-+ e + N* , as discussed by Christ and Lee 3J. The experi~ents proposed will be discussed at this meeting by Dr M. Jacob 4J. c. Hadron spectroscopy. Very many resonant states have been obser ved for masonic and baryonic states. These hadronic states are be lieved to correspond to the patterns appropriate to unitary multi plets of states, and these unitary multiplets appear to be grouped in supermultiplet patterns. In our attempt to classify and under stand all these hadronic states, our first need is for the deter mination of the spin and parity for each state. -
The Spin of the Proton
The spin of the proton Bo-Qiang Ma (马伯强) Peking Univ (北京大学) ? The 7th Workshop on Hadron Physics in China and Opportunities Worldwide August 3-7, 2015, Duke Kunshan University Collaborators: Enzo Barone, Stan Brodsky, Jacques Soffer, Andreas Schafer, Ivan Schmidt, Jian-Jun Yang, Qi-Ren Zhang and students: Bowen Xiao, Zhun Lu, Bing Zhang, Jun She, Jiacai Zhu, Xinyu Zhang, Tianbo Liu 3 It has been 30 years of the proton “spin crisis” or “spin puzzle” • Spin Structure: experimentally u d s 0.020 u d s 0.3 spin “crisis” or “puzzle”: where is the proton’s missing spin? The Proton “Spin Crisis” In contradiction with the naïve quark model expectation: u d s 0.3 Why there is the proton spin puzzle/crisis? • The quark model is very successful for the classification of baryons and mesons • The quark model is good to explain the magnetic moments of octet baryons • The quark model gave the birth of QCD as a theory for strong interaction So why there is serious problem with spin of the proton in the quark model? The parton model (Feynman 1969) Infinite • photon scatters incoherently off Momentum massless, pointlike, spin-1/2 quarks Frame • probability that a quark carries fraction of parent proton’s momentum is q(), (0< < 1) 1 2 2 F2 (x) d eq q( ) (x ) eq x q(x) 0 q,q q,q 4 1 1 xu(x) x d(x) x s(x) ... 9 9 9 •the functions u(x), d(x), s(x), … are called parton distribution functions (pdfs) - they encode information about the proton’s deep structure •Parton model is established under the collinear approxiamtion: The transversal motion of partons is neglected or integrated over. -
A Peek Into Spin Physics
A Peek into Spin Physics Dustin Keller University of Virginia Colloquium at Kent State Physics Outline ● What is Spin Physics ● How Do we Use It ● An Example Physics ● Instrumentation What is Spin Physics The Physics of exploiting spin - Spin in nuclear reactions - Nucleon helicity structure - 3D Structure of nucleons - Fundamental symmetries - Spin probes in beyond SM - Polarized Beams and Targets,... What is Spin Physics What is Spin Physics ● The Physics of exploiting spin : By using Polarized Observables Spin: The intrinsic form of angular momentum carried by elementary particles, composite particles, and atomic nuclei. The Spin quantum number is one of two types of angular momentum in quantum mechanics, the other being orbital angular momentum. What is Spin Physics What Quantum Numbers? What is Spin Physics What Quantum Numbers? Internal or intrinsic quantum properties of particles, which can be used to uniquely characterize What is Spin Physics What Quantum Numbers? Internal or intrinsic quantum properties of particles, which can be used to uniquely characterize These numbers describe values of conserved quantities in the dynamics of a quantum system What is Spin Physics But a particle is not a sphere and spin is solely a quantum-mechanical phenomena What is Spin Physics Stern-Gerlach: If spin had continuous values like the classical picture we would see it What is Spin Physics Stern-Gerlach: Instead we see spin has only two values in the field with opposite directions: or spin-up and spin-down What is Spin Physics W. Pauli (1925) -
Polarized Target for the Measurement of the Gluon Contribution to the Nucleon Spin in the COMPASS Experiment
Polarized target for the measurement of the gluon contribution to the nucleon spin in the COMPASS experiment Nagoya University Thesis for the degree Doctor of Philosophy in Physics by Naoki TAKABAYASHI 1 2002 1 Supported by Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists. CONTENTS 1. Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 1 2. Spin structure of the nucleon : : : : : : : : : : : : : : : : : : : : : 5 2.1 Deep inelastic scattering . 5 2.2 Cross section and structure functions in unpolarized DIS . 7 2.3 Cross section and structure functions in polarized DIS . 9 2.4 Structure functions and spin puzzle in Parton Model picture . 13 2.4.1 Parton distribution . 14 2.4.2 Spin puzzle in Parton Model picture . 16 2.5 Structure functions and spin puzzle in QCD evolved Parton Model . 18 2.5.1 Unpolarized structure functions . 18 2.5.2 Factorization schemes . 20 2.5.3 DGLAP equation and Scaling violation . 22 2.5.4 Spin-dependent structure functions and polarized DGLAP equation . 23 2.6 Interpretation of small ∆Σ. Is gluon contribution large? . 24 2.6.1 Sum rules . 25 2.6.2 Axial anomaly . 26 3. COMPASS experiment : : : : : : : : : : : : : : : : : : : : : : : : : 30 3.1 Open charm lepto-production via photon-gluon fusion . 30 3.2 Expectations . 35 3.2.1 Luminosity . 35 3.2.2 Reconstruction of the open charm events . 35 3.2.3 Statistical accuracy . 37 3.3 Comparison with the other experiments on ∆g . 40 3.3.1 High pT hadron pairs . 40 3.3.2 pp¯ collision . 41 3.3.3 Comparison of the expected precisions and the kine- matic ranges . -
Hadron Spin Dynamics∗
SLAC-PUB-9107 January 2002 Hadron Spin Dynamics¤ Stanley J. Brodsky Stanford Linear Accelerator Center, Stanford University Stanford, California 94309 e-mail: [email protected] Abstract Spin effects in exclusive and inclusive reactions provide an essential new dimension for testing QCD and unraveling hadron structure. Remarkable new experiments from SLAC, HERMES (DESY), and Jefferson Lab present many challenges to theory, including measurements at HERMES and SMC of the sin- gle spin asymmetries in ep ! e0¼X where the proton is polarized normal to the scattering plane. This type of single spin asymmetry may be due to the effects of rescattering of the outgoing quark on the spectators of the target proton, an effect usually neglected in conventional QCD analyses. Many aspects of spin, such as single-spin asymmetries and baryon magnetic moments are sensitive to the dynamics of hadrons at the amplitude level, rather than probability dis- tributions. I will illustrate the novel features of spin dynamics for relativistic systems by examining the explicit form of the light-front wavefunctions for the two-particle Fock state of the electron in QED, thus connecting the Schwinger anomalous magnetic moment to the spin and orbital momentum carried by its Fock state constituents and providing a transparent basis for understand- ing the structure of relativistic composite systems and their matrix elements in hadronic physics. I also present a survey of outstanding spin puzzles in QCD, particularly ANN in elastic pp scattering, the J=Ã ! ½¼ puzzle, and J=Ã polarization at the Tevatron. Concluding Theory Talk, presented at the 3rd Circum-Pan-Pacific Symposium On High Energy Spin Physics (SPIN 2001) Beijing, China 8–13 October 2001 ¤Work supported by the Department of Energy, contract DE–AC03–76SF00515. -
DEUTERON POLARIZED TARGET for Nd EXPERIMENTS at THE
DEUTERON FROZEN SPIN POLARIZED TARGET FOR nd EXPERIMENTS AT THE VdG ACCELERATOR OF CHARLES UNIVERSITY N.S. Borisov1, N.A. Bazhanov1, A.A. Belyaev4, J. Brož2, J. Černý2, Z. Doležal2, A.N. Fedorov1, G.M. Gurevich3, M.P. Ivanov1, P. Kodyš2, P. Kubík2, E.S. Kuzmin1, A.B. Lazarev1, F. Lehar5,6 , O.O. Lukhanin4, V.N. Matafonov†1, A.B. Neganov1, I.L. Pisarev1, J. Švejda2, S.N. Shilov1, Yu.A. Usov1 and I.Wilhelm2 1Joint Institute for Nuclear Research, Dubna, Russia; 2Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University in Prague; V Holešovičkách 2, CZ18000 Prague 8, Czech Republic; 3Institute for Nuclear Research, Russian Academy of Sciences, Moscow, Russia; 4NSC KIPT, Kharkov, 5SPP DAPNIA CEA Saclay, F-91190 Gif sur Yvette, France 6IEAP CTU, Horska 3a/22 CZ 12800 Prague 2, Czech Republic Abstract. A frozen spin polarized deuteron target cooled by the 3He/4He dilution refrigerator is described. Fully deuterated 1,2-propanediol was used as a target material. Deuteron vector polarization about 40% was obtained for the target in the shape of a cylinder of 2 cm diameter and 6 cm length. The target is intended for a study of 3N interactions at the polarized neutron beam generated by the Van de Graaff accelerator at the Charles University in Prague. 1. Introduction The Charles University proton polarized target (PPT) [1] has been used previously to measure spin–dependent total cross section differences ∆σT and ∆σL in neutron-proton scattering at the 16.2 MeV polarized neutron beam of the VdG accelerator (Fig.1) [2, 3]. -
The Electron Ion Collider (EIC)
7/18/16 EIC Lecture 2 at NNPSS 2016 at MIT 1 The Electron Ion Collider (EIC) Abhay Deshpande Lecture 2: What do we need polarized beams? Nucleon Spin Structure: What’s the problem? 2. Quantum Chromodynamics: The Fundamental Description of the Heart of Visible Matter Sidebar 2.6: Nucleon Spin: So Simple and Yet So Complex The simple fact that the proton carries spin 1/2, quark spins to account for most of the proton’s spin measured in units of Planck’s famous constant, is but were quite surprised when experiments at CERN exploited daily in thousands of magnetic resonance and other laboratories showed that the spins of all imaging images worldwide. Because the proton is a quarks and antiquarks combine to account for no more composite system, its spin is generated from its quark than about 30% of the total. This result has led nuclear 7/18/16 EIC Lecture 2 at NNPSS 2016 at MIT and gluon constituents. Physicists’ evolving appreciation scientists2. Quantum to address Chromodynamics: the more daunting The Fundamental challenges2 Description of the Heart of Visible Matter of how the spin might be generated, and of how much involved in measuring the other possible contributions to we have yet to understand about it, is an illustrative the spin illustrated in Figure 1. The gluons also have an Thecase study nucleon of how seemingly simple spin properties of visible intrinsic spin (1 unit) and might be “polarized” (i.e., might matter emerge from complex QCD interactions. have a preferential orientation of their spins along or puzzle…. -
Measurements of the Nucleon Spin- Structure Functions in and Above the Resonance Region for the Hall-B Eg1experiment at Jefferson Laboratory
Measurements of the Nucleon Spin- Structure Functions in and Above the Resonance Region for the Hall-B EG1Experiment at Jefferson Laboratory Robert Fersch Christopher Newport University Jefferson Laboratory (CLAS Collaboration) Structure of the Nucleon Unpolarized distributions q, g f(x) Transversity δq δf(x) 3 d.o.f. completely Helicity describe the nucleon at Δf(x) leading twist when kT = 0 Δq, Δg Structure of the Nucleon Unpolarized distributions q, g f(x) Transversity δq δf(x) 3 d.o.f. completely Helicity describe the nucleon at Δf(x) leading twist when kT = 0 Δq, Δg Helicity: Δq = q+ – q– Incident electron couples to quarks of opposite longitudinal spin 2 Structure function g1(x,Q ) ~ σ1/2 – σ3/2 Requires longitudinally polarized beam and target The EG1 experiment ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV) CEBAF Large Acceptance Spectrometer (Hall-B) at Jefferson Lab (~70%) polarized electron beam in energies up to 6 GeV The EG1 experiment ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV) CEBAF Large Acceptance Spectrometer (Hall-B) at Jefferson Lab Drift Chambers (momentum reconstruction) Scintillation Counters (time- of-flight, PID) Cherenkov Counters and Electromagnetic Calorimeters (separation of electrons from light hadrons) The EG1 experiment ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV) CLAS Longitudinally Polarized Target 15 15 - NH3 and ND3 target cells - Typical polarizations of 75% (H) and 30% (D) 12 - C and LHe target cells for unpolarized background subtraction ammonia target cell The EG1 experiment ran in CLAS for 7 months 2000-2001 4 beam energies used (1.6, 2.5, 4.2, 5.7 GeV) Kinematic coverage & statistics Many papers already published using EG1 data (including a study of Bloom-Gilman duality): • N. -
Transverse Spin Structure of the Nucleon
NS65CH18-Yuan ARI 9 September 2015 14:34 Transverse Spin Structure of the Nucleon Matthias Grosse Perdekamp1 and Feng Yuan2 1Physics Department, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801; email: [email protected] 2Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720; email: [email protected] Annu. Rev. Nucl. Part. Sci. 2015. 65:429–56 Annu. Rev. Nucl. Part. Sci. 2015.65:429-456. Downloaded from www.annualreviews.org Keywords Access provided by University of California - Berkeley on 10/21/15. For personal use only. First published online as a Review in Advance on transversity, QCD, parton distributions, deep-inelastic scattering August 3, 2015 The Annual Review of Nuclear and Particle Science Abstract is online at nucl.annualreviews.org We review the current status and future perspectives of theory and exper- This article’s doi: iments of transverse spin phenomena in high-energy scattering processes 10.1146/annurev-nucl-102014-021948 off nucleon targets and related issues in nucleon structure and QCD. Copyright c 2015 by Annual Reviews. ⃝ Systematic exploration of transverse spin effects requires measurements All rights reserved in polarized deep-inelastic scattering, polarized pp collisions, and e+e− annihilations. Sophisticated QCD-based techniques are also needed to analyze the experimental data sets. 429 NS65CH18-Yuan ARI 9 September 2015 14:34 Contents 1.INTRODUCTION............................................................ 430 2. TRANSVERSE SPIN PHENOMENA IN EXPERIMENTS. 432 2.1. Lepton–Nucleon Scattering . 432 2.2. e+e− Annihilations.......................................................... 434 2.3. Nucleon–Nucleon Scattering . 434 2.4. Transverse Spin Phenomena in High-Energy Experiments ................... 435 3. TRANSVERSE SPIN STRUCTURE OF THE NUCLEON . -
Helicity Density Matrix Formalism and Polarized Processes in QCD Jian Tang
Helicity Density Matrix Formalism and Polarized Processes in QCD by Jian Tang B.S., Peking University, P.R. China (1991) M.S., Peking University, P.R. China (1994) M.S., Massachusetts Institute of Technology (1996) Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY June 1999 © Massachusetts Institute of Technology 1999. All rights reserved. A uthor ........... ................... Department of Physics May 26, 1999 C ertified bA ............................... Robert L. Jaffe Professor Thesis Supervisor A ccepted by ......................... T(omas J. reytak Professor, Associate Department Head for ducation MASSACHUSETTS INSTITUTE T1999 LIBRARIES Helicity Density Matrix Formalism and Polarized Processes in QCD by Jian Tang Submitted to the Department of Physics on May 26, 1999, in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics Abstract In this thesis, we shall first present helicity density matrix formalism to deal with the polarized processes in quantum chromodynamics(QCD), in which the calculations of the desired cross sections (or asymmetries in many cases) are simplified to take traces of products of helicity density matrices in the underlying particles' (partons, hadrons, etc.) helicity spaces. The parton distribution and fragmentation functions turn out to be the helicity density matrix elements which survive the QCD symmetries. The main advantages of this formalism are that it has very clear physical pictures, simplifies the calculation, and, most importantly, can be easily used to deal with interference effects between different partial waves in multiparticle production in semi-inclusive processes. Then this formalism will be used to propose new ways to measure nu- cleon's transversity, the least known quark distribution function inside the nucleon at leading twist (twist-two). -
Internal Spin Structure of the Nucleon in Polarized Deep Inelastic Muon-Nucleon Scattering
ISSN 1232-5309 INSTYTUT PROBLEMOW J^DROWYCH im. ANDRZEJA SOLTANA SOLTAN INSTITUTE FOR NUCLEAR STUDIES PL0002280 RAPORT SINS-23/VI INTERNAL SPIN STRUCTURE OF THE NUCLEON IN POLARIZED DEEP INELASTIC MUON-NUCLEON SCATTERING WOJCIECH WI§LICKI Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk, Poland 1/46 OTWOCK - SWIERK INSTYTUT PROBLEMOW J4DROWYCH im. ANDRZEJA SOLTANA SOLTAN INSTITUTE FOR NUCLEAR STUDIES RAPORT SINS-23/VI INTERNAL SPIN STRUCTURE OF THE NUCLEON IN POLARIZED DEEP INELASTIC MUON-NUCLEON SCATTERING WOJCIECH Wl£LICKI Soltan Institute for Nuclear Studies, 05-400 Otwock-Swierk, Poland OTWOCK-SWIERK 1998 Wojciech Wislicki: Internal Spin Structure of the Nucleon in Polarized Deep Inelastic Muon-Nucleon Scattering. We present the study of the internal spin structure of the nucleon in spin- dependent deep inelastic scattering of nruons on nucleons. The data were taken by the NA47 experiment of the Spin Muon Collaboration (SMC) on the high en- ergy muon beam at CERN. The experiment used the polarized proton and deuteron targets. The structure functions gf(x) and gf(x) were determined from the asymmetries of the spin-dependent event rates in the range of 0.003 < x < 0.7 and for < Q2 >= 10 GeV2. Using the first moments of these structure functions an agreement with the Bjorken sum rule prediction was found within one standard deviation. The first moments of fifi(x), for both proton and deuteron, are smaller than the Ellis-Jaffe sum rule prediction. This disagreement can be interpreted in terms of negative polarization of the strange sea in the nucleon. The singlet part of the axial current matrix element can be interpreted as an overall spin carried by quarks in the nucleon.