Statistical Tests, P Values, Confidence Intervals, and Power

Total Page:16

File Type:pdf, Size:1020Kb

Statistical Tests, P Values, Confidence Intervals, and Power Eur J Epidemiol (2016) 31:337–350 DOI 10.1007/s10654-016-0149-3 ESSAY Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations 1 2 3 4 Sander Greenland • Stephen J. Senn • Kenneth J. Rothman • John B. Carlin • 5 6 7 Charles Poole • Steven N. Goodman • Douglas G. Altman Received: 9 April 2016 / Accepted: 9 April 2016 / Published online: 21 May 2016 Ó The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Misinterpretation and abuse of statistical tests, literature. In light of this problem, we provide definitions confidence intervals, and statistical power have been and a discussion of basic statistics that are more general decried for decades, yet remain rampant. A key problem is and critical than typically found in traditional introductory that there are no interpretations of these concepts that are at expositions. Our goal is to provide a resource for instruc- once simple, intuitive, correct, and foolproof. Instead, tors, researchers, and consumers of statistics whose correct use and interpretation of these statistics requires an knowledge of statistical theory and technique may be attention to detail which seems to tax the patience of limited but who wish to avoid and spot misinterpretations. working scientists. This high cognitive demand has led to We emphasize how violation of often unstated analysis an epidemic of shortcut definitions and interpretations that protocols (such as selecting analyses for presentation based are simply wrong, sometimes disastrously so—and yet on the P values they produce) can lead to small P values these misinterpretations dominate much of the scientific even if the declared test hypothesis is correct, and can lead to large P values even if that hypothesis is incorrect. We Editor’s note This article has been published online as then provide an explanatory list of 25 misinterpretations of supplementary material with an article of Wasserstein RL, Lazar NA. P values, confidence intervals, and power. We conclude The ASA’s statement on p-values: context, process and purpose. The with guidelines for improving statistical interpretation and American Statistician 2016. reporting. Albert Hofman, Editor-in-Chief EJE. & Sander Greenland 3 RTI Health Solutions, Research Triangle Institute, [email protected] Research Triangle Park, NC, USA Stephen J. Senn 4 Clinical Epidemiology and Biostatistics Unit, Murdoch [email protected] Children’s Research Institute, School of Population Health, University of Melbourne, Melbourne, VIC, Australia John B. Carlin [email protected] 5 Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, Charles Poole USA [email protected] 6 Meta-Research Innovation Center, Departments of Medicine Steven N. Goodman and of Health Research and Policy, Stanford University [email protected] School of Medicine, Stanford, CA, USA Douglas G. Altman 7 Centre for Statistics in Medicine, Nuffield Department of [email protected] Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK 1 Department of Epidemiology and Department of Statistics, University of California, Los Angeles, CA, USA 2 Competence Center for Methodology and Statistics, Luxembourg Institute of Health, Strassen, Luxembourg 123 338 S. Greenland et al. Keywords Confidence intervals Á Hypothesis testing Á Null analyzed, and how the analysis results were selected for testing Á P value Á Power Á Significance tests Á Statistical presentation. The full set of assumptions is embodied in a testing statistical model that underpins the method. This model is a mathematical representation of data variability, and thus ideally would capture accurately all sources of such vari- Introduction ability. Many problems arise however because this statis- tical model often incorporates unrealistic or at best Misinterpretation and abuse of statistical tests has been unjustified assumptions. This is true even for so-called decried for decades, yet remains so rampant that some ‘‘non-parametric’’ methods, which (like other methods) scientific journals discourage use of ‘‘statistical signifi- depend on assumptions of random sampling or random- cance’’ (classifying results as ‘‘significant’’ or not based on ization. These assumptions are often deceptively simple to a P value) [1]. One journal now bans all statistical tests and write down mathematically, yet in practice are difficult to mathematically related procedures such as confidence satisfy and verify, as they may depend on successful intervals [2], which has led to considerable discussion and completion of a long sequence of actions (such as identi- debate about the merits of such bans [3, 4]. fying, contacting, obtaining consent from, obtaining Despite such bans, we expect that the statistical methods cooperation of, and following up subjects, as well as at issue will be with us for many years to come. We thus adherence to study protocols for treatment allocation, think it imperative that basic teaching as well as general masking, and data analysis). understanding of these methods be improved. Toward that There is also a serious problem of defining the scope of a end, we attempt to explain the meaning of significance model, in that it should allow not only for a good repre- tests, confidence intervals, and statistical power in a more sentation of the observed data but also of hypothetical general and critical way than is traditionally done, and then alternative data that might have been observed. The ref- review 25 common misconceptions in light of our expla- erence frame for data that ‘‘might have been observed’’ is nations. We also discuss a few more subtle but nonetheless often unclear, for example if multiple outcome measures or pervasive problems, explaining why it is important to multiple predictive factors have been measured, and many examine and synthesize all results relating to a scientific decisions surrounding analysis choices have been made question, rather than focus on individual findings. We after the data were collected—as is invariably the case further explain why statistical tests should never constitute [33]. the sole input to inferences or decisions about associations The difficulty of understanding and assessing underlying or effects. Among the many reasons are that, in most sci- assumptions is exacerbated by the fact that the statistical entific settings, the arbitrary classification of results into model is usually presented in a highly compressed and ‘‘significant’’ and ‘‘non-significant’’ is unnecessary for and abstract form—if presented at all. As a result, many often damaging to valid interpretation of data; and that assumptions go unremarked and are often unrecognized by estimation of the size of effects and the uncertainty sur- users as well as consumers of statistics. Nonetheless, all rounding our estimates will be far more important for statistical methods and interpretations are premised on the scientific inference and sound judgment than any such model assumptions; that is, on an assumption that the classification. model provides a valid representation of the variation we More detailed discussion of the general issues can be found would expect to see across data sets, faithfully reflecting in many articles, chapters, and books on statistical methods and the circumstances surrounding the study and phenomena their interpretation [5–20]. Specific issues are covered at length occurring within it. in these sources and in the many peer-reviewed articles that In most applications of statistical testing, one assump- critique common misinterpretations of null-hypothesis testing tion in the model is a hypothesis that a particular effect has and ‘‘statistical significance’’ [1, 12, 21–74]. a specific size, and has been targeted for statistical analysis. (For simplicity, we use the word ‘‘effect’’ when ‘‘associa- tion or effect’’ would arguably be better in allowing for noncausal studies such as most surveys.) This targeted Statistical tests, P values, and confidence intervals: assumption is called the study hypothesis or test hypothe- a caustic primer sis, and the statistical methods used to evaluate it are called statistical hypothesis tests. Most often, the targeted effect Statistical models, hypotheses, and tests size is a ‘‘null’’ value representing zero effect (e.g., that the study treatment makes no difference in average outcome), Every method of statistical inference depends on a complex in which case the test hypothesis is called the null web of assumptions about how data were collected and hypothesis. Nonetheless, it is also possible to test other 123 Statistical tests, P values, confidence intervals, and power: a guide to misinterpretations 339 effect sizes. We may also test hypotheses that the effect Specifically, the distance between the data and the does or does not fall within a specific range; for example, model prediction is measured using a test statistic (such as we may test the hypothesis that the effect is no greater than a t-statistic or a Chi squared statistic). The P value is then a particular amount, in which case the hypothesis is said to the probability that the chosen test statistic would have be a one-sided or dividing hypothesis [7, 8]. been at least as large as its observed value if every model Much statistical teaching and practice has developed a assumption were correct, including the test hypothesis. strong (and unhealthy) focus on the idea that the main aim This definition embodies a crucial
Recommended publications
  • THE HISTORY and DEVELOPMENT of STATISTICS in BELGIUM by Dr
    THE HISTORY AND DEVELOPMENT OF STATISTICS IN BELGIUM By Dr. Armand Julin Director-General of the Belgian Labor Bureau, Member of the International Statistical Institute Chapter I. Historical Survey A vigorous interest in statistical researches has been both created and facilitated in Belgium by her restricted terri- tory, very dense population, prosperous agriculture, and the variety and vitality of her manufacturing interests. Nor need it surprise us that the successive governments of Bel- gium have given statistics a prominent place in their affairs. Baron de Reiffenberg, who published a bibliography of the ancient statistics of Belgium,* has given a long list of docu- ments relating to the population, agriculture, industry, commerce, transportation facilities, finance, army, etc. It was, however, chiefly the Austrian government which in- creased the number of such investigations and reports. The royal archives are filled to overflowing with documents from that period of our history and their very over-abun- dance forms even for the historian a most diflScult task.f With the French domination (1794-1814), the interest for statistics did not diminish. Lucien Bonaparte, Minister of the Interior from 1799-1800, organized in France the first Bureau of Statistics, while his successor, Chaptal, undertook to compile the statistics of the departments. As far as Belgium is concerned, there were published in Paris seven statistical memoirs prepared under the direction of the prefects. An eighth issue was not finished and a ninth one * Nouveaux mimoires de I'Acadimie royale des sciences et belles lettres de Bruxelles, t. VII. t The Archives of the kingdom and the catalogue of the van Hulthem library, preserved in the Biblioth^que Royale at Brussells, offer valuable information on this head.
    [Show full text]
  • This History of Modern Mathematical Statistics Retraces Their Development
    BOOK REVIEWS GORROOCHURN Prakash, 2016, Classic Topics on the History of Modern Mathematical Statistics: From Laplace to More Recent Times, Hoboken, NJ, John Wiley & Sons, Inc., 754 p. This history of modern mathematical statistics retraces their development from the “Laplacean revolution,” as the author so rightly calls it (though the beginnings are to be found in Bayes’ 1763 essay(1)), through the mid-twentieth century and Fisher’s major contribution. Up to the nineteenth century the book covers the same ground as Stigler’s history of statistics(2), though with notable differences (see infra). It then discusses developments through the first half of the twentieth century: Fisher’s synthesis but also the renewal of Bayesian methods, which implied a return to Laplace. Part I offers an in-depth, chronological account of Laplace’s approach to probability, with all the mathematical detail and deductions he drew from it. It begins with his first innovative articles and concludes with his philosophical synthesis showing that all fields of human knowledge are connected to the theory of probabilities. Here Gorrouchurn raises a problem that Stigler does not, that of induction (pp. 102-113), a notion that gives us a better understanding of probability according to Laplace. The term induction has two meanings, the first put forward by Bacon(3) in 1620, the second by Hume(4) in 1748. Gorroochurn discusses only the second. For Bacon, induction meant discovering the principles of a system by studying its properties through observation and experimentation. For Hume, induction was mere enumeration and could not lead to certainty. Laplace followed Bacon: “The surest method which can guide us in the search for truth, consists in rising by induction from phenomena to laws and from laws to forces”(5).
    [Show full text]
  • (STROBE) Statement: Guidelines for Reporting Observational Studies
    Policy and practice The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: guidelines for reporting observational studies* Erik von Elm,a Douglas G Altman,b Matthias Egger,a,c Stuart J Pocock,d Peter C Gøtzsche e & Jan P Vandenbroucke f for the STROBE Initiative Abstract Much biomedical research is observational. The reporting of such research is often inadequate, which hampers the assessment of its strengths and weaknesses and of a study’s generalizability. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Initiative developed recommendations on what should be included in an accurate and complete report of an observational study. We defined the scope of the recommendations to cover three main study designs: cohort, case-control and cross-sectional studies. We convened a two-day workshop, in September 2004, with methodologists, researchers and journal editors to draft a checklist of items. This list was subsequently revised during several meetings of the coordinating group and in e-mail discussions with the larger group of STROBE contributors, taking into account empirical evidence and methodological considerations. The workshop and the subsequent iterative process of consultation and revision resulted in a checklist of 22 items (the STROBE Statement) that relate to the title, abstract, introduction, methods, results and discussion sections of articles. Eighteen items are common to all three study designs and four are specific for cohort, case-control, or cross-sectional studies. A detailed Explanation and Elaboration document is published separately and is freely available on the web sites of PLoS Medicine, Annals of Internal Medicine and Epidemiology. We hope that the STROBE Statement will contribute to improving the quality of reporting of observational studies.
    [Show full text]
  • The Theory of the Design of Experiments
    The Theory of the Design of Experiments D.R. COX Honorary Fellow Nuffield College Oxford, UK AND N. REID Professor of Statistics University of Toronto, Canada CHAPMAN & HALL/CRC Boca Raton London New York Washington, D.C. C195X/disclaimer Page 1 Friday, April 28, 2000 10:59 AM Library of Congress Cataloging-in-Publication Data Cox, D. R. (David Roxbee) The theory of the design of experiments / D. R. Cox, N. Reid. p. cm. — (Monographs on statistics and applied probability ; 86) Includes bibliographical references and index. ISBN 1-58488-195-X (alk. paper) 1. Experimental design. I. Reid, N. II.Title. III. Series. QA279 .C73 2000 001.4 '34 —dc21 00-029529 CIP This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the author and the publisher cannot assume responsibility for the validity of all materials or for the consequences of their use. Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage or retrieval system, without prior permission in writing from the publisher. The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for creating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for such copying. Direct all inquiries to CRC Press LLC, 2000 N.W.
    [Show full text]
  • Statistical Inference: Paradigms and Controversies in Historic Perspective
    Jostein Lillestøl, NHH 2014 Statistical inference: Paradigms and controversies in historic perspective 1. Five paradigms We will cover the following five lines of thought: 1. Early Bayesian inference and its revival Inverse probability – Non-informative priors – “Objective” Bayes (1763), Laplace (1774), Jeffreys (1931), Bernardo (1975) 2. Fisherian inference Evidence oriented – Likelihood – Fisher information - Necessity Fisher (1921 and later) 3. Neyman- Pearson inference Action oriented – Frequentist/Sample space – Objective Neyman (1933, 1937), Pearson (1933), Wald (1939), Lehmann (1950 and later) 4. Neo - Bayesian inference Coherent decisions - Subjective/personal De Finetti (1937), Savage (1951), Lindley (1953) 5. Likelihood inference Evidence based – likelihood profiles – likelihood ratios Barnard (1949), Birnbaum (1962), Edwards (1972) Classical inference as it has been practiced since the 1950’s is really none of these in its pure form. It is more like a pragmatic mix of 2 and 3, in particular with respect to testing of significance, pretending to be both action and evidence oriented, which is hard to fulfill in a consistent manner. To keep our minds on track we do not single out this as a separate paradigm, but will discuss this at the end. A main concern through the history of statistical inference has been to establish a sound scientific framework for the analysis of sampled data. Concepts were initially often vague and disputed, but even after their clarification, various schools of thought have at times been in strong opposition to each other. When we try to describe the approaches here, we will use the notions of today. All five paradigms of statistical inference are based on modeling the observed data x given some parameter or “state of the world” , which essentially corresponds to stating the conditional distribution f(x|(or making some assumptions about it).
    [Show full text]
  • Dictionary Epidemiology
    A Dictionary ofof Epidemiology Fifth Edition Edited for the International Epidemiological Association by Miquel Porta Professor of Preventive Medicine & Public Health, School of Medicine, Universitat Autònoma de Barcelona; Senior Scientist, Institut Municipal d’Investigació Mèdica, Barcelona, Spain; Adjunct Professor of Epidemiology, School of Public Health, University of North Carolina at Chapel Hill Associate Editors Sander Greenland John M. Last 1 2008 PPorta_FM.inddorta_FM.indd iiiiii 44/16/08/16/08 111:51:201:51:20 PPMM 1 Oxford University Press, Inc., publishes works that further Oxford University’s objective excellence in research, schollarship, and education Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi Shanghai Taipei Toronto With offi ces in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 1983, 1988, 1995, 2001, 2008 International Epidemiological Association, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup-usa.org All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. This edition was prepared with support from Esteve Foundation (Barcelona, Catalonia, Spain) (http://www.esteve.org) Library of Congress Cataloging-in-Publication Data A dictionary of epidemiology / edited for the International Epidemiological Association by Miquel Porta; associate editors, John M. Last . [et al.].—5th ed. p. cm. Includes bibliographical references and index.
    [Show full text]
  • Front Matter
    Cambridge University Press 978-1-107-61967-8 - Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction Bradley Efron Frontmatter More information Large-Scale Inference We live in a new age for statistical inference, where modern scientific technology such as microarrays and fMRI machines routinely produce thousands and sometimes millions of parallel data sets, each with its own estimation or testing problem. Doing thousands of problems at once involves more than repeated application of classical methods. Taking an empirical Bayes approach, Bradley Efron, inventor of the bootstrap, shows how information accrues across problems in a way that combines Bayesian and frequentist ideas. Estimation, testing, and prediction blend in this framework, producing opportunities for new methodologies of increased power. New difficulties also arise, easily leading to flawed inferences. This book takes a careful look at both the promise and pitfalls of large-scale statistical inference, with particular attention to false discovery rates, the most successful of the new statistical techniques. Emphasis is on the inferential ideas underlying technical developments, illustrated using a large number of real examples. bradley efron is Max H. Stein Professor of Statistics and Biostatistics at the Stanford University School of Humanities and Sciences, and the Department of Health Research and Policy at the School of Medicine. © in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-1-107-61967-8 - Large-Scale Inference: Empirical Bayes Methods for Estimation, Testing, and Prediction Bradley Efron Frontmatter More information INSTITUTE OF MATHEMATICAL STATISTICS MONOGRAPHS Editorial Board D. R. Cox (University of Oxford) B. Hambly (University of Oxford) S.
    [Show full text]
  • The Enigma of Karl Pearson and Bayesian Inference
    The Enigma of Karl Pearson and Bayesian Inference John Aldrich 1 Introduction “An enigmatic position in the history of the theory of probability is occupied by Karl Pearson” wrote Harold Jeffreys (1939, p. 313). The enigma was that Pearson based his philosophy of science on Bayesian principles but violated them when he used the method of moments and probability-values in statistics. It is not uncommon to see a divorce of practice from principles but Pearson also used Bayesian methods in some of his statistical work. The more one looks at his writings the more puzzling they seem. In 1939 Jeffreys was probably alone in regretting that Pearson had not been a bottom to top Bayesian. Bayesian methods had been in retreat in English statistics since Fisher began attacking them in the 1920s and only Jeffreys ever looked for a synthesis of logic, statistical methods and everything in between. In the 1890s, when Pearson started, everything was looser: statisticians used inverse arguments based on Bayesian principles and direct arguments based on sampling theory and a philosopher-physicist-statistician did not have to tie everything together. Pearson did less than his early guide Edgeworth or his students Yule and Gosset (Student) to tie up inverse and direct arguments and I will be look- ing to their work for clues to his position and for points of comparison. Of Pearson’s first course on the theory of statistics Yule (1938, p. 199) wrote, “A straightforward, organized, logically developed course could hardly then [in 1894] exist when the very elements of the subject were being developed.” But Pearson never produced such a course or published an exposition as integrated as Yule’s Introduction, not to mention the nonpareil Probability of Jeffreys.
    [Show full text]
  • The Future of Statistics
    THE FUTURE OF STATISTICS Bradley Efron The 1990 sesquicentennial celebration of the ASA included a set of eight articles on the future of statistics, published in the May issue of the American Statistician. Not all of the savants took their prediction duties seriously, but looking back from 2007 I would assign a respectable major league batting average of .333 to those who did. Of course it's only been 17 years and their average could still improve. The statistical world seems to be evolving even more rapidly today than in 1990, so I'd be wise not to sneeze at .333 as I begin my own prediction efforts. There are at least two futures to consider: statistics as a profession, both academic and industrial, and statistics as an intellectual discipline. (And maybe a third -- demographic – with the center of mass of our field moving toward Asia, and perhaps toward female, too.) We tend to think of statistics as a small profession, but a century of steady growth, accelerating in the past twenty years, now makes "middling" a better descriptor. Together, statistics and biostatistics departments graduated some 600 Ph.D.s last year, with no shortage of good jobs awaiting them in industry or academia. The current money-making powerhouses of industry, the hedge funds, have become probability/statistics preserves. Perhaps we can hope for a phalanx of new statistics billionaires, gratefully recalling their early years in the humble ranks of the ASA. Statistics departments have gotten bigger and more numerous around the U.S., with many universities now having two.
    [Show full text]
  • Statistics As a Condemned Building: a Demolition and Reconstruction Plan
    EPIDEMIOLOGY SEMINAR / WINTER 2019 THE DEPARTMENT OF EPIDEMIOLOGY, BIOSTATISTICS AND OCCUPATIONAL HEALTH, - SEMINAR SERIES IS A SELF-APPROVED GROUP LEARNING ACTIVITY (SECTION 1) AS DEFINED BY THE MAINTENANCE OF CERTIFICATION PROGRAM OF THE ROYAL COLLEGE OF PHYSICIANS AND SURGEONS OF CANADA Sander Greenland Emeritus Professor Epidemiology and Statistics University of California, Los Angeles Statistics as a Condemned Building: A Demolition and Reconstruction Plan MONDAY, 18 FEBRUARY 2019 / 4:00PM 5:00PM McIntyre Medical Building 3655 promenade Sir William Osler – Meakins Rm 521 ALL ARE WELCOME ABSTRACT: OBJECTIVES BIO: As part of the vast debate about how 1. To stop dichotomania Sander Greenland is Emeritus to reform statistics, I will argue that (unnecessary chopping of quan- Professor of Epidemiology and Sta- probability-centered statistics should tities into dichotomies); tistics at the University of California, be replaced by an integra- Los Angeles, specializing in the lim- 2. To stop nullism (unwarranted tion of cognitive science, caus- itations and misuse of statistical bias toward "null hypotheses" of al modeling, data descrip- methods, especially in observational no association or no effect); tion, and information transmis- studies. He has published over 400 sion, with probability entering as 3. To replace terms and concepts articles and book chapters in epide- one of the mathemati- like "statistical significance" and miology, statistics, and medicine, cal tools for delineating the pri- "confidence interval" with com- and given over 250 invited lectures, mary elements. Ironically, giv- patibility statements about hy- seminars and courses en the decades of treating it as potheses and models. worldwide in epidemiologic and scapegoat for all the ills of statistics, statistical methodology.
    [Show full text]
  • Dictionary of Epidemiology, 5Th Edition
    A Dictionary of Epidemiology This page intentionally left blank A Dictionary ofof Epidemiology Fifth Edition Edited for the International Epidemiological Association by Miquel Porta Professor of Preventive Medicine & Public Health School of Medicine, Universitat Autònoma de Barcelona Senior Scientist, Institut Municipal d’Investigació Mèdica Barcelona, Spain Adjunct Professor of Epidemiology, School of Public Health University of North Carolina at Chapel Hill Associate Editors Sander Greenland John M. Last 1 2008 1 Oxford University Press, Inc., publishes works that further Oxford University’s objective excellence in research, scholarship, and education Oxford New York Auckland Cape Town Dar es Salaam Hong Kong Karachi Kuala Lumpur Madrid Melbourne Mexico City Nairobi Shanghai Taipei Toronto With offi ces in Argentina Austria Brazil Chile Czech Republic France Greece Guatemala Hungary Italy Japan Poland Portugal Singapore South Korea Switzerland Thailand Turkey Ukraine Vietnam Copyright © 1983, 1988, 1995, 2001, 2008 International Epidemiological Association, Inc. Published by Oxford University Press, Inc. 198 Madison Avenue, New York, New York 10016 www.oup-usa.org All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of Oxford University Press. This edition was prepared with support from Esteve Foundation (Barcelona, Catalonia, Spain) (http://www.esteve.org) Library of Congress Cataloging-in-Publication Data A dictionary of epidemiology / edited for the International Epidemiological Association by Miquel Porta; associate editors, John M. Last . [et al.].—5th ed. p. cm. Includes bibliographical references and index. ISBN 978–0-19–531449–6 ISBN 978–0-19–531450–2 (pbk.) 1.
    [Show full text]
  • Statistics and Measurements
    Volume 106, Number 1, January–February 2001 Journal of Research of the National Institute of Standards and Technology [J. Res. Natl. Inst. Stand. Technol. 106, 279–292 (2001)] Statistics and Measurements Volume 106 Number 1 January–February 2001 M. Carroll Croarkin For more than 50 years, the Statistical En- survey of several thematic areas. The ac- gineering Division (SED) has been in- companying examples illustrate the im- National Institute of Standards and strumental in the success of a broad spec- portance of SED in the history of statistics, Technology, trum of metrology projects at NBS/NIST. measurements and standards: calibration Gaithersburg, MD 20899-8980 This paper highlights fundamental contribu- and measurement assurance, interlaboratory tions of NBS/NIST statisticians to statis- tests, development of measurement meth- [email protected] tics and to measurement science and tech- ods, Standard Reference Materials, statisti- nology. Published methods developed by cal computing, and dissemination of SED staff, especially during the early years, measurement technology. A brief look for- endure as cornerstones of statistics not ward sketches the expanding opportunity only in metrology and standards applica- and demand for SED statisticians created tions, but as data-analytic resources used by current trends in research and devel- across all disciplines. The history of statis- opment at NIST. tics at NBS/NIST began with the forma- tion of what is now the SED. Examples from the first five decades of the SED il- Key words: calibration and measure- lustrate the critical role of the division in ment assurance; error analysis and uncer- the successful resolution of a few of the tainty; design of experiments; history of highly visible, and sometimes controversial, NBS; interlaboratory testing; measurement statistical studies of national importance.
    [Show full text]