Pre-Main Sequence Star Is Optically Visible, but Has No Central Hydrogen Burning

Total Page:16

File Type:pdf, Size:1020Kb

Pre-Main Sequence Star Is Optically Visible, but Has No Central Hydrogen Burning Definitions • A protostar is the object that forms in the center of a collapsing molecular cloud core, before it finishes the main accretion phase and becomes “optically visible". • A pre-main sequence star is optically visible, but has no central hydrogen burning. • A main sequence star is the result after subsequent contraction and significant increase in central density and temperature, when the star begins to burn hydrogen in its core. Trueism: Gravity always wins • Free-fall time = time for protostellar collapse 1/ 2 $ 3π ' t ff = & ) % 32Gρ( 7 −1/ 2 t ff = 3.4 ×10 n yrs n = 102 cm-3 => free-fall time = 3 x 106 yrs n = 106 cm-3 => free-fall time = 3 x 104 yrs • Too short!! What else can hold up the cloud? € 2 – Magnetic field threading the cloud has pressure Pmag = B /8π 2 – Turbulent velocities in cloud provide pressure Pturb ~ ρvturb Hosokawa Protostellar Infall dM/dt ~ M / tff core is isothermal (n è ∞ polytrope) until it becomes optically thick to own radiation, increasing central temperature. We have ideal gas at this stage, but not yet polytropic. M is increasing with time as object gains mass from infall. van der Tak * van der Tak Recall E = (4-3 γ)U van der Tak Time Scales and Luminosities (as usual, dynamical timescale is the shortest) 5 (few 10 years for 1 Mo) 7 (few 10 years for 1 Mo) (star evolves normally towards the main sequence) = Hosokawa Hosokawa Hosokawa (shock boundary condition) van der Tak van der Tak Hayashi Limit – The Classic Picture Pols Initial Radius – The Classic Picture 3/10 x x 3/10 (R = 36 Rsun at 1 Msun) However, protostellar accretion geometry and accretion history modifies this simple picture. Pols Hayashi limit = minimum Teff given M, R Hydrostatic equilibrium reached, so radiation can get out. Rather than Rinit = ∞, there is an Rmax(M) also called “the stellar birthline”. Initial Radius – The Modern Picture Hayashi Hayashi track for pre-MS evolution: Stars follow track of declining luminosity at roughly fixed temperature. Area to the right of the track is `forbidden’ in sense of not being in H.S.E. Early-Stage Nuclear Burning Note that these are “classic” tracks with large initial radii, and not “birthline” tracks. The birthline is above, but close to, the deuterium sequence. Paxton et al. (2010) Lithium Burning Lithium Indicates Age (over a limited time) Pre-main sequence evolution is still an open area of research, with different calculations obtaining very different HRD results. Differences are mainly due to: - implementation of mixing length theory - choice of opacities Hillenbrand and White (2004) Evolution of R, g, T with Stellar Mass Evolution of R, g, T with Stellar Mass Age increasing to the left here – sorry! Evolution at the Lowest Masses Paxton et al. (2010) Evolution at the Lowest Masses Paxton et al. (2010) Effects of Composition Hosokawa Effects of Composition Hosokawa Effects of Composition Effects of Composition Clayton.
Recommended publications
  • Exors and the Stellar Birthline Mackenzie S
    A&A 600, A133 (2017) Astronomy DOI: 10.1051/0004-6361/201630196 & c ESO 2017 Astrophysics EXors and the stellar birthline Mackenzie S. L. Moody1 and Steven W. Stahler2 1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544, USA e-mail: [email protected] 2 Astronomy Department, University of California, Berkeley, CA 94720, USA e-mail: [email protected] Received 6 December 2016 / Accepted 23 February 2017 ABSTRACT We assess the evolutionary status of EXors. These low-mass, pre-main-sequence stars repeatedly undergo sharp luminosity increases, each a year or so in duration. We place into the HR diagram all EXors that have documented quiescent luminosities and effective temperatures, and thus determine their masses and ages. Two alternate sets of pre-main-sequence tracks are used, and yield similar results. Roughly half of EXors are embedded objects, i.e., they appear observationally as Class I or flat-spectrum infrared sources. We find that these are relatively young and are located close to the stellar birthline in the HR diagram. Optically visible EXors, on the other hand, are situated well below the birthline. They have ages of several Myr, typical of classical T Tauri stars. Judging from the limited data at hand, we find no evidence that binarity companions trigger EXor eruptions; this issue merits further investigation. We draw several general conclusions. First, repetitive luminosity outbursts do not occur in all pre-main-sequence stars, and are not in themselves a sign of extreme youth. They persist, along with other signs of activity, in a relatively small subset of these objects.
    [Show full text]
  • POSTERS SESSION I: Atmospheres of Massive Stars
    Abstracts of Posters 25 POSTERS (Grouped by sessions in alphabetical order by first author) SESSION I: Atmospheres of Massive Stars I-1. Pulsational Seeding of Structure in a Line-Driven Stellar Wind Nurdan Anilmis & Stan Owocki, University of Delaware Massive stars often exhibit signatures of radial or non-radial pulsation, and in principal these can play a key role in seeding structure in their radiatively driven stellar wind. We have been carrying out time-dependent hydrodynamical simulations of such winds with time-variable surface brightness and lower boundary condi- tions that are intended to mimic the forms expected from stellar pulsation. We present sample results for a strong radial pulsation, using also an SEI (Sobolev with Exact Integration) line-transfer code to derive characteristic line-profile signatures of the resulting wind structure. Future work will compare these with observed signatures in a variety of specific stars known to be radial and non-radial pulsators. I-2. Wind and Photospheric Variability in Late-B Supergiants Matt Austin, University College London (UCL); Nevyana Markova, National Astronomical Observatory, Bulgaria; Raman Prinja, UCL There is currently a growing realisation that the time-variable properties of massive stars can have a funda- mental influence in the determination of key parameters. Specifically, the fact that the winds may be highly clumped and structured can lead to significant downward revision in the mass-loss rates of OB stars. While wind clumping is generally well studied in O-type stars, it is by contrast poorly understood in B stars. In this study we present the analysis of optical data of the B8 Iae star HD 199478.
    [Show full text]
  • Stellar Rotation in Young Clusters: the First 4 Million Years L
    The Astronomical Journal, 127:1029–1051, 2004 February A # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. STELLAR ROTATION IN YOUNG CLUSTERS: THE FIRST 4 MILLION YEARS L. M. Rebull,1,2 S. C. Wolff,3 and S. E. Strom3 Received 2003 June 3; accepted 2003 October 16 ABSTRACT To investigate what happens to angular momentum during the earliest observable phases of stellar evolution, we searched the literature for periods (P), projected rotational velocities (v sin i), and supporting data on K5–M2 stars (corresponding to masses 0.25–1 M ) from the Orion Nebula Cluster and environs, Ophiuchi, TW Hydra, Taurus-Auriga, NGC 2264, Chamaeleon, Lupus, and Chamaeleonis. We combine these measures of rotation with the stellar R (as determined from Lbol and Teff) to compare the data with two extreme cases: conservation of stellar angular velocity and conservation of stellar angular momentum. Analysis of the P data set suggests that the frequency distribution of periods among the youngest and oldest stars in the sample is indistinguishable, while the v sin i data set reveals a decrease in mean v sin i as a function of age. Both results suggest that a significant fraction of all pre–main-sequence (PMS) stars must evolve at nearly constant angular velocity during the first 3–5 Myr after they begin their evolution down the convective tracks. Hence, the angular momenta of a significant fraction of pre–main-sequence (PMS) stars must be tightly regulated during the first few million years after they first become observable. This result seems surprising at first glance, because observations of young main-sequence stars reveal a population (30%–40%) of rapidly rotating stars that must begin to spin up at ages tT5 Myr.
    [Show full text]
  • Arxiv:1910.04776V2 [Astro-Ph.SR] 2 Dec 2019 Lion Years
    Astronomy & Astrophysics manuscript no. smsmax c ESO 2019 December 3, 2019 Letter to the Editor Maximally accreting supermassive stars: a fundamental limit imposed by hydrostatic equilibrium L. Haemmerle´1, G. Meynet1, L. Mayer2, R. S. Klessen3;4, T. E. Woods5, A. Heger6;7 1 Departement´ d’Astronomie, Universite´ de Geneve,` chemin des Maillettes 51, CH-1290 Versoix, Switzerland 2 Center for Theoretical Astrophysics and Cosmology, Institute for Computational Science, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland 3 Universitat¨ Heidelberg, Zentrum fur¨ Astronomie, Institut fur¨ Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg, Germany 4 Universitat¨ Heidelberg, Interdisziplinares¨ Zentrum fur¨ Wissenschaftliches Rechnen, Im Neuenheimer Feld 205, D-69120 Heidelberg, Germany 5 National Research Council of Canada, Herzberg Astronomy & Astrophysics Research Centre, 5071 West Saanich Road, Victoria, BC V9E 2E7, Canada 6 School of Physics and Astronomy, Monash University, VIC 3800, Australia 7 Tsung-Dao Lee Institute, Shanghai 200240, China Received ; accepted ABSTRACT Context. Major mergers of gas-rich galaxies provide promising conditions for the formation of supermassive black holes (SMBHs; 5 4 5 −1 & 10 M ) by direct collapse because they can trigger mass inflows as high as 10 − 10 M yr on sub-parsec scales. However, the channel of SMBH formation in this case, either dark collapse (direct collapse without prior stellar phase) or supermassive star (SMS; 4 & 10 M ), remains unknown. Aims. Here, we investigate the limit in accretion rate up to which stars can maintain hydrostatic equilibrium. −1 Methods. We compute hydrostatic models of SMSs accreting at 1 – 1000 M yr , and estimate the departures from equilibrium a posteriori by taking into account the finite speed of sound.
    [Show full text]
  • Pre-Main-Sequence Star
    Pre-main-sequence star A pre-main-sequence star (also known as a PMS star and PMS object) is a star in the stage when it has not yet reached the main sequence. Earlier in its life, the object is a protostar that grows by acquiring mass from its surrounding envelope of interstellar dust and gas. After the protostar blows away this envelope, it is optically visible, and appears on the stellar birthline in the Hertzsprung-Russell diagram. At this point, the star has acquired nearly all of its mass but has not yet started hydrogen burning (i.e. nuclear fusion of hydrogen). The star then contracts, its internal temperature rising until it begins hydrogen burning on the zero age main sequence. This period of contraction is the pre-main sequence stage.[1][2][3][4] An observed PMS object can either be a T Tauri star, if it has fewer than 2 solar masses (M☉), or else a Herbig Ae/Be star, if it has 2 to 8 M☉. Yet more massive stars have no pre-main-sequence stage because they contract too quickly as protostars. By the time they become visible, the hydrogen in their centers is already fusing and they are main-sequence objects. The energy source of PMS objects is gravitational contraction, as opposed to hydrogen burning in main-sequence stars. In the Hertzsprung–Russell diagram, pre-main-sequence stars with more than 0.5 M☉ first move vertically downward along Hayashi tracks, then leftward and horizontally along Henyey tracks, until they finally halt at the main sequence.
    [Show full text]
  • ASTR3007/4007/6007, Class 10: Low Mass Stellar Evolution 24 March
    ASTR3007/4007/6007, Class 10: Low Mass Stellar Evolution 24 March Our topic for today is the first of three classes about post-main sequence evolution. Today the topic is low mass stars, with the line between low and high mass to be discussed in a bit. I. Leaving the Main Sequence A. Main Sequence Lifetime Stars remain on the main sequence as long as their hydrogen fuel lasts. While on the main sequence, their properties do not change much, but they do change some due to the gradual conversion of H into He. As a result of this conversion, the hydrogen mass fraction X decreases, while the helium mass fraction Y increases. As a result, the mean atomic weight changes. Recall that 1 1 1 − X − Y ≈ X + Y + (1) µI 4 hAi 1 1 ≈ (1 + X) (2) µe 2 1 1 1 = + : (3) µ µI µe Insterstellar gas out of which stars forms has roughly X = 0:74 and Y = 0:24 (in contrast to X = 0:707 and Y = 0:274 in the Sun, which has processed some of its H into He), which gives µ = 0:60. In contrast, once all the H has been turned into He, X = 0 and Y = 0:98, which gives µ = 1:34. In stars like the Sun that are radiative in their cores, the changes occur shell by shell, so different shells have different compositions depending on their rate of burning. In stars that are convective in their cores, convection homogenises the composition of the different shells, so the entire convective core has a uniform composition.
    [Show full text]
  • Hayashi Limit
    HAYASHI LIMIT Let us consider a simple ”model atmosphere” of a star. The equation of hydrostatic equilibrium and the definition of optical depth are dP dτ = −gρ, = −κρ, (s2.24) dr dr and may be combined to write dP g = . (s2.25) dτ κ Assuming κ = const we may integrate this equation to obtain 2 g GM Pτ=2/3 = , g ≡ 2 , (s2.26) 3 κτ=2/3 R where the subscript τ =2/3 indicates that we evaluate the particular quantity at the photosphere. Let us consider a cool star with the negative hydrogen ion H− dominating opacity in the atmosphere. When temperature is low we may neglect radiation pressure in the atmosphere. Adopting k 0.5 7.7 −25 0.5 P = ρT, κ = κ0ρ T , κ0 = 10 Z , (s2.27) µH we may write the equation (s2.26) as k 2 1 GM ρT = 0 5 7 7 2 , (s2.28) µH 3 κ0ρ . T . R which may be rearranged to have 1.5 8.7 2 µH G M ρ T = 2 . (s2.29) 3 k κ0 R We know that a star with the H− opacity in the atmosphere becomes convective below optical depth τ =0.775, i.e. very close to the photosphere. Let us suppose that the convection extends all the way to the stellar center, and let us ignore here all complications due to hydrogen and helium ionization. Convective star is adiabatic, and if it is made of a perfect gas with the equation of state (s2.27) then it is a polytrope with an index n =1.5.
    [Show full text]
  • 3. Stellar Radial Pulsation and Stability
    Rolf Kudritzki SS 2017 3. Stellar radial pulsation and stability mV δ Cephei Teff spectral type vrad ∆R = vdt Z stellar disk Δ from R 1 Rolf Kudritzki SS 2015 1.55 1.50 1.45 1.40 LD Angular diam. (mas) A 1.35 0.04 0.0 0.5 1.0 0.02 0.00 −0.02 res. (mas) B −0.04 0.0 0.5 1.0 Phase Interferometric observations of δ Cep (Mérand et al. 2005) M. Groenewegen2 MIAPP, 17 June 2014 – p.8/50 Rolf Kudritzki SS 2017 instability strip Hayashi limit of low mass fully convective stars main sequence 3 Rolf Kudritzki SS 2017 the instability strip stars in instability strip have significant layers not too deep, not too superficial, where ↵ stellar opacity increases with T. T , ↵ 0 ⇠ ≥ This is caused by the excitation and ionization of H and He. Consider a perturbation causing a local compression à T increase à κ increase à perturbation heat not radiated away but stored à expansion beyond equilibrium point à then cooling and T decreasing à gravity pulls gas masses back à cyclically pulsation 4 Rolf Kudritzki SS 2017 ↵ stars to the left of instability strip T − , ↵ 0 are hotter and H and He are ionized ⇠ ≥ in the interior. The opacity decreases with increasing T. For a perturbation causing a local compression we have again à T increase but now à κ decreases à perturbation heat is quickly radiated away à perturbation is damped, no pulsation To the right of the instability strip the energy transport is dominated by very effective convection and not by radiation transport.
    [Show full text]
  • Understanding Stellar Evolution
    Astronomy 531 University of Washington Spring 2014 Understanding Stellar Evolution Henny J.G.L.M. Lamers Visiting Professor, University of Amsterdam, NL Email: [email protected] Tel: 206-543-4858 1 Astronomy 531 University of Washington Spring 2014 Preface These are the lecture notes of my graduate class “Understanding Stellar Evolution” (AST531) that I have been giving at the University of Washington in Seattle in the spring quarter of almost every other year since 2004. These notes have developed over the years due to comments and suggestions by students and requests by the staff. (I am sure they will keep evolving). They are written as “lecture notes” rather than in the form of a book. I have chosen for this form because I find it more easy to teach from them, and I think it is easier for the students to quickly see the important points in explanations and descriptions. I have avoided (long) purely mathematical explanations. Although these may be appealing, straight forward and physically correct, they often obscure the physical processes behind them. So, where possible, I explain concepts in simple (?) or intuitive physical terms, giving the reference where the more rigorous explanations and derivations can be found. My goal is to give the students a “feeling” and “understanding” of stellar evolution. From the reactions of the students, I sense that this is appreciated. I am grateful for my Utrecht colleague Onno Pols, for his lecture notes on “Stellar structure and evolution” and the more recent one on “Binary evolution”. They often formed the skeleton of my lectures.
    [Show full text]
  • Thesis Rybizki.Pdf
    INFERENCEFROMMODELLINGTHECHEMODYNAMICAL EVOLUTION OF THE MILKY WAY DISC jan rybizki Printed in October 2015 Cover picture: Several Circles, Wassily Kandinsky (1926) Dissertation submitted to the Combined Faculties of Natural Sciences and Mathematics of the Ruperto-Carola-University of Heidelberg, Germany for the degree of Doctor of Natural Sciences Put forward by Jan Rybizki born in: Rüdersdorf Oral examination: December 8th, 2015 INFERENCEFROMMODELLINGTHECHEMODYNAMICAL EVOLUTION OF THE MILKY WAY DISC Referees: Prof. Dr. Andreas Just Prof. Dr. Norbert Christlieb ZUSAMMENFASSUNG-RÜCKSCHLÜSSEAUSDER MODELLIERUNGDERCHEMODYNAMISCHEN ENTWICKLUNG DER MILCHSTRAßENSCHEIBE In der vorliegenden Arbeit werden die anfängliche Massenfunktion (IMF) von Feldster- nen und Parameter zur chemischen Anreicherung der Milchstraße, unter Verwendung von Bayesscher Statistik und Modellrechnungen, hergeleitet. Ausgehend von einem lokalen Milchstraßenmodell [Just and Jahreiss, 2010] werden, für verschiedene IMF-Parameter, Sterne synthetisiert, die dann mit den entsprechenden Hip- parcos [Perryman et al., 1997](Hipparcos) Beobachtungen verglichen werden. Die abgelei- tete IMF ist in dem Bereich von 0.5 bis 8 Sonnenmassen gegeben durch ein Potenzgesetz mit einer Steigung von -1.49 0.08 für Sterne mit einer geringeren Masse als 1.39 0.05 M ± ± und einer Steigung von -3.02 0.06 für Sterne mit Massen darüber. ± Im zweiten Teil dieser Arbeit wird die IMF für Sterne mit Massen schwerer als 6 M be- stimmt. Dazu wurde die Software Chempy entwickelt, mit der man die chemische Anrei- cherung der Galaktischen Scheibe simulieren und auch die Auswahl von beobachteten Ster- nen nach Ort und Sternenklasse reproduzieren kann. Unter Berücksichtigung des systema- tischen Eekts der unterschiedlichen in der Literatur verfügbaren stellaren Anreicherungs- tabellen ergibt sich eine IMF-Steigung von -2.28 0.09 für Sterne mit Massen über 6 M .
    [Show full text]
  • MHD Simulation of Inner 0.5 AU of FU Ori, Zhu Et Al
    Star Formation and the Origins of Planetary Systems Lecture 6: Pre-main sequence stars MHD simulation of inner 0.5 AU of FU Ori, Zhu et al. (2020) Background reading: (Crete II) Hartmann (2008) book, Chapters: 4.1-4.2, 8.4-8.8, all of 9, all of 11 !1 Summary Lecture 5 ▪Census of high-mass YSOs in Milky Way now possible due to new observational facilities ▪Spitzer, Herschel, masers, radio ▪Earliest pre-stellar core phase still elusive ▪Two theories for massive star formation ▪Scaled-up version low-mass: turbulent core accretion ▪Competitive accretion ▪Scenario (under debate) ▪IRDC → HMPO→ hot core→UC HII ▪Long lifetime and range of morphologies UC HII regions due to combination of effects ▪No optically visible pre-main sequence phase !2 Summary Image Credit: Cormac Purcell •Hyper-compact HII regions (eg Observed as cold, dense cores Kurtz et al. 2005) •Infrared-dark clouds •Ultra-compact HII regions - well •“mm-only” cores studied (see Churchwell and co.) Q: What is wrong with this picture? A: It has all of these stages separately, whereas in reality one finds observationally a hot core next to an ultra compact H II region. SPF course progress: where are we now? Date Who Lecture 18 Feb. EvD Motivation, history, & observational facilities (Star formation) 20 Feb. EvD Pre-stellar cores, cloud collapse 25 Feb. EvD SEDs, embedded protostars Has links to core courses: 27 Feb. EvD Outflows & jets • ISM • Stellar structure & evolution 3 Mar. EvD High mass star formation 10 Mar. MM Pre-main sequence star types, stellar birthline 12 Mar.
    [Show full text]
  • Ast 777: Star and Planet Formation Pre-Main Sequence Stars and the IMF
    Ast 777: Star and Planet Formation Pre-main sequence stars and the IMF https://universe-review.ca/F08-star05.htm The main phases of star formation https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf The star has formed* but is not yet on the MS * it has attained its final mass (or ~99% of it) https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf The star is optically visible and is a Class II or III star (or TTS or HAeBe) https://www.americanscientist.org/sites/americanscientist.org/files/2005223144527_306.pdf PMS evolution is described by the equations of stellar evolution But there are differences from MS evolution: ‣ initial conditions are very different from the MS (and have significant uncertainties) ‣ energy is produced by gravitational collapse and deuterium burning (This was mostly figured out 30-50 years ago so the references are old, but important for putting current work in context) But see later… How big is a star when the core stops collapsing? Upper limit can be determined by assuming that all the gravitational energy of the core is used to dissociate and ionized the H2+He gas (i.e., no radiative losses during collapse) Each H2 requires 4.48eV to dissociate —> this produces a short-lived intermediate step along the way to a protostar, called the first hydrostatic core (hinted at, though not definitively confirmed, through FIR/mm observations) How big is a star when the core stops collapsing? Upper limit can be determined by assuming that all the gravitational
    [Show full text]