Claudin Multigene Family Encoding Four-Transmembrane Domain Protein Components of Tight Junction Strands

Total Page:16

File Type:pdf, Size:1020Kb

Claudin Multigene Family Encoding Four-Transmembrane Domain Protein Components of Tight Junction Strands Proc. Natl. Acad. Sci. USA Vol. 96, pp. 511–516, January 1999 Cell Biology Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands KAZUMASA MORITA*†,MIKIO FURUSE*, KAZUSHI FUJIMOTO‡, AND SHOICHIRO TSUKITA*§ Departments of *Cell Biology, †Dermatology, and ‡Anatomy, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606, Japan Communicated by Setsuro Ebashi, National Institute for Physiological Sciences, Okazaki, Japan, November 9, 1998 (received for review September 4, 1998) ABSTRACT Two related integral membrane proteins, well as fence functions of TJs (24–27). Recently, gene knock- claudin-1 and -2, recently were identified as novel components out of occludin was performed successfully, but, unexpectedly, of tight junction (TJ) strands. Here, we report six more occludin-deficient epithelial cells still demonstrated a well claudin-like proteins, indicating the existence of a claudin developed network of TJ strands (28). gene family. Three of these were reported previously as RVP1, Most recently, as the second and third components of TJ Clostridium perfringens enterotoxin receptor, and TMVCF, but strand, claudin-1 and -2, '22-kDa integral membrane proteins their physiological functions were not determined. Through that are structurally related (38% identical at the amino acid similarity searches followed by PCR, we isolated full length sequence level), were identified (29). These two proteins also cDNAs of mouse RVP1, Clostridium perfringens enterotoxin bear four transmembrane domains but do not show any receptor, and TMVCF as well as three mouse claudin-like sequence similarity to occludin. Furthermore, it was shown proteins and designated them as claudin-3 to -8, respectively. that claudin-1 and -2 have an ability to induce the formation All of these claudin family members showed similar patterns of networks of strandsygrooves at cell–cell contact sites when on hydrophilicity plots, which predicted four transmembrane introduced into fibroblasts lacking TJs (30). Because occludin domains in each molecule. Northern blotting showed that the induced only a small number of short strands at cell–cell tissue distribution pattern varied significantly, depending on contact sites in fibroblasts (30), these findings suggest that claudin species. Similarly to claudin-1 and -2, when these claudin-1 and -2 function as major structural components of TJ claudins were HA-tagged and introduced into cultured Madin– strands and that occludin is an accessory protein in terms of TJ Darby canine kidney cells, all showed a tendency to concen- strand formation. trate at TJs. Immunofluorescence and immunoelectron mi- So far, intensive efforts have failed to identify isotypes of croscopy with polyclonal antibodies specific for claudin-3, -4, occludin in any species. In contrast, identification of claudin-1 or -8 revealed that these molecules were exclusively concen- and -2 indicated the existence of a gene family that could be trated at TJs in the liver andyor kidney. These findings called the ‘‘claudin family.’’ Questions, then, naturally have indicated that multiple claudin family members are involved arisen as to how many members constitute this gene family and in the formation of TJ strands in various tissues. whether all of the members are directly involved in TJ forma- tion. To date, three full length cDNAs, RVP1, Clostridium The tight junction (TJ) is a specialized membrane domain at perfringens enterotoxin receptor (CPE-R), and TMVCF, with the most apical region of polarized epithelial and endothelial sequence similarity to claudin-1 and -2 cDNAs, have been cells that not only creates a primary barrier to prevent para- reported, although physiological functions have not been cellular transport of solutes (barrier function) but also restricts determined for any of their products. Rat RVP1 was isolated the lateral diffusion of membrane lipids and proteins to as a cDNA expression that was elevated in regressing ventral maintain the cellular polarity (fence function) (for reviews, see prostate by subtraction cDNA cloning (31), and its human refs. 1–4). Freeze fracture techniques demonstrate that TJs homologue also was identified recently (32, 33). Monkey CPE-R was shown to encode a receptor for the Clostridium represent a continuous network of interconnected rows of y intramembranous particles that appear as strands with com- perfringens enterotoxin (CPE) (32), and, recently, human plementary grooves, which are thought to be directly involved mouse CPE-R as well as human RVP1 products were shown both in barrier and fence functions of TJs (5, 6). To date, to specifically bind to CPE (32). The human TMVCF (trans- several unique peripheral membrane proteins have been iden- membrane protein deleted in Velo-cardio-facial syndrome) gene was localized to chromosome 22q11, which frequently is tified as concentrated at the cytoplasmic surface of TJs: ZO-1 y (7–9), ZO-2 (10, 11), ZO-3 (12, 13), cingulin (14), 7H6 antigen deleted in Velo-cardio-facial DiGeorge syndrome patients (15), and symplekin (16). Among these, ZO-1, ZO-2, and ZO-3 (35). Furthermore, several sequences similar to claudin-1 and are related to each other and belong to the membrane- -2 were found in expressed sequence tag (EST) databases. In associated guanylate kinase homologues gene family, which this study, we isolated mouse RVP1, CPE-R, and TMVCF and contains PDZ, SH3, and GUK (guanylate kinase-like) do- three full length cDNAs that encoded members of the claudin mains (17–19). family. Similarly to claudin-1 and -2, when HA-tagged mouse By contrast, the TJ-specific integral membrane protein, i.e., RVP1, CPE-R, TMVCF, and three other claudin members the components of TJ strands, only recently were identified. As were introduced into Madin–Darby canine kidney (MDCK) the first component of TJ strand, occludin, an '65-kDa integral membrane protein bearing four transmembrane do- Abbreviations: TJ, tight junction; MDCK cells, Madin–Darby canine mains, was identified (20, 21). There is now accumulating kidney cells; CPE, Clostridium perfringens enterotoxin; CPE-R, CPE receptor; pAb, polyclonal antibody; EST, expressed sequence tag; evidence that occludin is a component of the TJ strand itself GST, glutathione S-transferase. (22, 23) and that occludin is directly involved in the barrier as Data deposition: The sequences reported in this paper have been deposited in the GenBank database (accession nos. AF072127, The publication costs of this article were defrayed in part by page charge AF072128, AF087821, AF087822, AF087823, AF087824, AF087825, and AF087826). payment. This article must therefore be hereby marked ‘‘advertisement’’ in A Commentary on this article begins on page 319. accordance with 18 U.S.C. §1734 solely to indicate this fact. §To whom reprint requests should be addressed. e-mail: htsukita@ PNAS is available online at www.pnas.org. mfour.med.kyoto-u.ac.jp. 511 Downloaded by guest on September 27, 2021 512 Cell Biology: Morita et al. Proc. Natl. Acad. Sci. USA 96 (1999) cells, all of them showed a tendency to concentrate at preex- cysteine to keyhole limpet hemocyanin. These conjugated isting TJs. Furthermore, we obtained polyclonal antibodies peptides were used as antigens to generate pAbs in rabbits. The (pAbs) specific for three members of the claudin family, which antiserum specific for claudin-3, -4, or -8 was affinity-purified specifically labeled TJs in the liver andyor kidney. These with glutathione S-transferase (GST) fusion protein with the results indicate that claudin family members play a central role COOH-terminal cytoplasmic domain of claudin-3, -4, or -8, in TJ formation in various tissues. respectively. To express the GSTyclaudin fusion proteins in Escherichia coli, DNA fragments were amplified by PCR from MATERIALS AND METHODS cDNAs encoding COOH-terminal cytoplasmic domains of mouse claudins, and the amplified fragments were subcloned Antibodies and Cells. Rat anti-mouse occludin mAb into pGEX4T-1 (Pharmacia) in frame. (MOC37) was raised and characterized as described (36). Rat Immunofluorescence Microscopy and Immunoelectron Mi- anti-mouse E-cadherin mAb (ECCD2) kindly was provided by croscopy. Stable MDCK transfectants plated on glass cover- M. Takeichi (Kyoto University). Mouse anti-HA-tag mAb slips and frozen sections of mouse liver and kidney were (12CA5) was purchased from Boehringer Mannheim. MDCK stained immunofluorescently as described (20, 30). Immuno- cells were grown in DMEM supplemented with 10% fetal calf electron microscopy to examine freeze-fracture replicas was serum. performed as described (22, 29, 30). cDNA Cloning and Sequencing. Mouse liver or kidney total RNA was isolated according to the method described by 1 RESULTS Chomczynski and Sacchi (37). Poly(A) RNA was prepared from the total RNA by using oligo(dT)-cellulose (New Cloning and Characterization of cDNAs Encoding Claudin England Biolabs). First strand cDNA was prepared from this Family Members. Claudin-1 and -2 were identified (29). As poly(A)1 RNA with Superscript II reverse transcriptase mentioned above, similarity searches identified three previ- (GIBCOyBRL) and was used for PCR. ously reported full length cDNAs encoding integral membrane As described in detail in Results, 15 mouse EST clones with proteins that showed homology to claudin-1 and –2: RVP1 (31, sequence homology to claudin-1 were found, which enabled us 33), CPE-R (32, 34), and TMVCF (35), which are designated to amplify cDNAs encoding ORFs of claudin-3, -5, -6, -7, and here as claudin-3, -4, and -5, respectively. Among these, only -8 from mouse liver or kidney first strand DNA by PCR. CPE-R cDNA was isolated from mouse (ORF 5 210 amino Claudin-4 cDNA also was amplified from mouse kidney first acids; calculated molecular mass 5 22.3 kDa) whereas RVP1 strand DNA by PCR using the previously reported sequence and TMVCF cDNAs were obtained from ratyhuman and of mouse CPE-R (32). Furthermore, human claudin-5 (human human, respectively. We then searched for mouse RVP1 TMVCF) was obtained from human genomic DNA isolated (mRVP1) sequences in databases and identified four overlap- from peripheral blood cells by PCR.
Recommended publications
  • Src Regulation of Cx43 Phosphorylation and Gap Junction Turnover
    biomolecules Article Src Regulation of Cx43 Phosphorylation and Gap Junction Turnover Joell L. Solan 1 and Paul D. Lampe 1,2,* 1 Translational Research Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; [email protected] 2 Department of Global Health, Pathobiology Program, University of Washington, Seattle, WA 98109, USA * Correspondence: [email protected] Received: 27 October 2020; Accepted: 22 November 2020; Published: 24 November 2020 Abstract: The gap junction protein Connexin43 (Cx43) is highly regulated by phosphorylation at over a dozen sites by probably at least as many kinases. This Cx43 “kinome” plays an important role in gap junction assembly and turnover. We sought to gain a better understanding of the interrelationship of these phosphorylation events particularly related to src activation and Cx43 turnover. Using state-of-the-art live imaging methods, specific inhibitors and many phosphorylation-status specific antibodies, we found phospho-specific domains in gap junction plaques and show evidence that multiple pathways of disassembly exist and can be regulated at the cellular and subcellular level. We found Src activation promotes formation of connexisomes (internalized gap junctions) in a process involving ERK-mediated phosphorylation of S279/282. Proteasome inhibition dramatically and rapidly restored gap junctions in the presence of Src and led to dramatic changes in the Cx43 phospho-profile including to increased Y247, Y265, S279/282, S365, and S373 phosphorylation. Lysosomal inhibition, on the other hand, nearly eliminated phosphorylation on Y247 and Y265 and reduced S368 and S373 while increasing S279/282 phosphorylation levels. We present a model of gap junction disassembly where multiple modes of disassembly are regulated by phosphorylation and can have differential effects on cellular signaling.
    [Show full text]
  • Claudin-2: Roles Beyond Permeability Functions
    International Journal of Molecular Sciences Review Claudin-2: Roles beyond Permeability Functions Shruthi Venugopal, Shaista Anwer and Katalin Szászi * Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital and Department of Surgery, University of Toronto, Toronto, ON M5B 1W8, Canada; [email protected] (S.V.); [email protected] (S.A.) * Correspondence: [email protected]; Tel.: +1-416-8471752 Received: 13 October 2019; Accepted: 9 November 2019; Published: 12 November 2019 Abstract: Claudin-2 is expressed in the tight junctions of leaky epithelia, where it forms cation-selective and water permeable paracellular channels. Its abundance is under fine control by a complex signaling network that affects both its synthesis and turnover in response to various environmental inputs. Claudin-2 expression is dysregulated in many pathologies including cancer, inflammation, and fibrosis. Claudin-2 has a key role in energy-efficient ion and water transport in the proximal tubules of the kidneys and in the gut. Importantly, strong evidence now also supports a role for this protein as a modulator of vital cellular events relevant to diseases. Signaling pathways that are overactivated in diseases can alter claudin-2 expression, and a good correlation exists between disease stage and claudin-2 abundance. Further, loss- and gain-of-function studies showed that primary changes in claudin-2 expression impact vital cellular processes such as proliferation, migration, and cell fate determination. These effects appear to be mediated by alterations in key signaling pathways. The specific mechanisms linking claudin-2 to these changes remain poorly understood, but adapters binding to the intracellular portion of claudin-2 may play a key role.
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Computational Modeling of Claudin Structure and Function
    International Journal of Molecular Sciences Review Computational Modeling of Claudin Structure and Function Shadi Fuladi 1, Ridaka-Wal Jannat 1 , Le Shen 2,3 , Christopher R. Weber 2,* and Fatemeh Khalili-Araghi 1,* 1 Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA; [email protected] (S.F.); [email protected] (R.-W.J.) 2 Department of Pathology, University of Chicago, Chicago, IL 60637, USA; [email protected] 3 Department of Surgery, University of Chicago, Chicago, IL 60637, USA * Correspondence: [email protected] (C.R.W.); [email protected] (F.K.-A.) Received: 15 December 2019; Accepted: 16 January 2020; Published: 23 January 2020 Abstract: Tight junctions form a barrier to control passive transport of ions and small molecules across epithelia and endothelia. In addition to forming a barrier, some of claudins control transport properties of tight junctions by forming charge- and size-selective ion channels. It has been suggested claudin monomers can form or incorporate into tight junction strands to form channels. Resolving the crystallographic structure of several claudins in recent years has provided an opportunity to examine structural basis of claudins in tight junctions. Computational and theoretical modeling relying on atomic description of the pore have contributed significantly to our understanding of claudin pores and paracellular transport. In this paper, we review recent computational and mathematical modeling of claudin barrier function. We focus on dynamic modeling of global epithelial barrier function as a function of claudin pores and molecular dynamics studies of claudins leading to a functional model of claudin channels. Keywords: claudin; molecular dynamics; tight junction; ion transport; ion channel 1.
    [Show full text]
  • Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease
    Downloaded from http://cshperspectives.cshlp.org/ on October 1, 2021 - Published by Cold Spring Harbor Laboratory Press Cell Biology of Tight Junction Barrier Regulation and Mucosal Disease Aaron Buckley and Jerrold R. Turner Departments of Pathology and Medicine (Gastroenterology), Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts 02115 Correspondence: [email protected] Mucosal surfaces are lined by epithelial cells. In the intestine, the epithelium establishes a selectively permeable barrier that supports nutrient absorption and waste secretion while preventing intrusion by luminal materials. Intestinal epithelia therefore play a central role in regulating interactions between the mucosal immune system and luminal contents, which include dietary antigens, a diverse intestinal microbiome, and pathogens. The paracellular space is sealed by the tight junction, which is maintained by a complex network of protein interactions. Tight junction dysfunction has been linked to a variety of local and systemic diseases. Two molecularly and biophysically distinct pathways across the intestinal tight junc- tion are selectively and differentially regulated by inflammatory stimuli. This review discusses the mechanisms underlying these events, their impact on disease, and the potential of using these as paradigms for development of tight junction-targeted therapeutic interventions. ucosal surfaces and the epithelial cells that adherens). The tight junction is a selectively Mline them are present at sites where tissues permeable barrier that generally represents the interface directly with the external environment rate-limiting step of paracellular transport. The or internal compartments that are contiguous adherens junction and desmosome provide es- with the external environment. Examples in- sential adhesive and mechanical properties that clude the gastrointestinal tract, the pulmonary contribute to barrier function but do not seal tree, and the genitourinary tract.
    [Show full text]
  • Quinone Oxidoreductase-1 in the Tight Junctions of Colonic Epithelial Cells
    BMB Rep. 2014; 47(9): 494-499 BMB www.bmbreports.org Reports Role of NADH: quinone oxidoreductase-1 in the tight junctions of colonic epithelial cells Seung Taek Nam1,#, Jung Hwan Hwang2,#, Dae Hong Kim1, Mi Jung Park1, Ik Hwan Lee1, Hyo Jung Nam1, Jin Ku Kang1, Sung Kuk Kim1, Jae Sam Hwang3, Hyo Kyun Chung4, Minho Shong4, Chul-Ho Lee2,* & Ho Kim1,* 1Department of Life Science, College of Natural Science, Daejin University, Pocheon 487-711, 2Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, 3Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Suwon 441-707, 4Department of Internal Medicine, Chungnam National University, Daejon 301-721, Korea NADH:quinone oxidoreductase 1 (NQO1) is known to be lating the intracellular ratio of NAD and NADH (two funda- involved in the regulation of energy synthesis and metabolism, mental mediators of energy metabolism) in various cell and the functional studies of NQO1 have largely focused on systems. NQO1 is also known as an antioxidant flavoprotein metabolic disorders. Here, we show for the first time that that scavenges reactive oxygen species (ROS) (3). Having pre- compared to NQO1-WT mice, NQO1-KO mice exhibited a viously shown that NQO1 activity is associated with cancer (4) marked increase of permeability and spontaneous inflammation and metabolic disorders, including diabetes and obesity (5), in the gut. In the DSS-induced colitis model, NQO1-KO mice we herein focused on the possible role of NQO1 in the gastro- showed more severe inflammatory responses than NQO1-WT intestinal tract. We report for the first time that the expression mice.
    [Show full text]
  • Changes in Expression of P2X1 Receptors and Connexin 43 in the Rat Myometrium During Pregnancy
    Changes in expression of P2X1 receptors and connexin 43 in the rat myometrium during pregnancy Tina Khanam, B.Sc., and Geoffrey Burnstock, Ph.D., D.Sc. Autonomic Neuroscience Centre, Royal Free and University College Medical School, London, United Kingdom Objective: To investigate the expression of P2X1 receptors and connexin 43 in gap junctions between smooth mus- cle cells. Contraction mediated by P2X receptors is known to occur in the bladder and male reproductive tract, and cell–cell coupling of smooth muscle via gap junctions is essential for synchronized rhythmic activity of these tissues. Design: We selected for this study rat myometrial smooth muscle during pregnancy and at postpartum day l. Setting: University medical school. Animal(s): Laboratory rats. Intervention(s): Rats were mated and became pregnant. Main Outcome Measure(s): Immunostaining and fluorescence and confocal microscopy. Result(s): The level of P2X1 receptor expression remained low throughout pregnancy (days 4 to 20) but was greatly up-regulated at day 22 (postpartum day 1). Connexin 43 expression showed a pattern of up-regulation, with progression through pregnancy and peaking near labor, but exhibited a rapid down-regulation after parturition. Conclusion(s): The functional significance of the changes in connexin 43 and P2X1 receptor expression that have been observed is discussed in relation to triggering and modulation of uterine contractility during and after preg- nancy. (Fertil SterilÒ 2007;88(Suppl 2):1174–9. Ó2007 by American Society for Reproductive Medicine.) Key Words: P2X1 receptor, connexin 43, myometrium, rat, confocal microscopy, immunofluorescence A recent article has shown that P2X1 receptors are closely as- connexins and P2 receptor-mediated processes.
    [Show full text]
  • Defenders and Challengers of Endothelial Barrier Function
    REVIEW published: 18 December 2017 doi: 10.3389/fimmu.2017.01847 Defenders and Challengers of Endothelial Barrier Function Nader Rahimi* Department of Pathology, Boston University School of Medicine, Boston, MA, United States Regulated vascular permeability is an essential feature of normal physiology and its dysfunction is associated with major human diseases ranging from cancer to inflam- mation and ischemic heart diseases. Integrity of endothelial cells also play a prominent role in the outcome of surgical procedures and organ transplant. Endothelial barrier function and integrity are regulated by a plethora of highly specialized transmembrane receptors, including claudin family proteins, occludin, junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier function. While claudins and occludin regulate cell–cell junction via recruitment of zonula occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein inter- Edited by: acting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function Thomas Luft, is moderated by the function of transmembrane receptors and signaling events that act University Hospital Heidelberg, Germany to defend or destabilize it. Here, I highlight recent advances that have provided new Reviewed by: insights into endothelial barrier function and mechanisms involved. Further investigation Luiza Guilherme, of these mechanisms could lead to the discovery of novel therapeutic targets for human University of São Paulo, Brazil diseases associated with endothelial dysfunction.
    [Show full text]
  • Estudio Del Receptor 2 De La Dopamina En Ovario Humano Y Efecto De Su Modulación Sobre El Síndrome De Hiperestimulación Ovárica”
    Facultad de Medicina y Odontología Departamento de Pediatría, Obstetricia y Ginecología. “Estudio del receptor 2 de la dopamina en ovario humano y efecto de su modulación sobre el Síndrome de Hiperestimulación Ovárica” Tesis doctoral presentada por: Francisco Manuel Delgado Rosas Dirigida por: Prof. Antonio Pellicer Martínez Dr. Raúl Gómez Gallego Prof. Francisco Gaytán Luna Tutor: Prof. Carlos Simón Vallés 290 F OBSTETRICIA I GINECOLOGIA II Valencia 2012 D. Antonio Pellicer Martínez, Catedrático del Departamento de Pediatría, Obstetricia y Ginecología de la Facultad de Medicina de la Universidad de Valencia. D. Raúl Gómez Gallego, Doctor en Ciencias Biológicas e Investigador contratado por la Fundación IVI. Valencia D. Francisco Gaytán Luna, Catedrático del Departamento de Biología Celular, Fisiología e Inmunología de la Facultad de Medicina de la Universidad de Córdoba. CERTIFICAN: Que el trabajo titulado: “Estudio del receptor 2 de la dopamina en ovario humano y efecto de su modulación sobre el Síndrome de Hiperestimulación Ovárica” ha sido realizado íntegramente por D. Francisco Manuel Delgado Rosas bajo nuestra supervisión. Dicho trabajo está concluido y reúne todos los requisitos para su presentación y defensa como TESIS DOCTORAL ante un tribunal. Y para que conste así a los efectos oportunos, firmamos la presente certificación en Valencia a 22 de Febrero de 2012. Fdo. Prof. Antonio Pellicer Martínez Fdo. Dr. Raúl Gómez Gallego Fdo. Prof. Francisco Gaytán Luna LISTA DE ABREVIATURAS AII: Angiotensina II ACE: Enzima convertidora de
    [Show full text]
  • 1 No. Affymetrix ID Gene Symbol Genedescription Gotermsbp Q Value 1. 209351 at KRT14 Keratin 14 Structural Constituent of Cyto
    1 Affymetrix Gene Q No. GeneDescription GOTermsBP ID Symbol value structural constituent of cytoskeleton, intermediate 1. 209351_at KRT14 keratin 14 filament, epidermis development <0.01 biological process unknown, S100 calcium binding calcium ion binding, cellular 2. 204268_at S100A2 protein A2 component unknown <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 3. 33323_r_at SFN stratifin/14-3-3σ binding <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 4. 33322_i_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 5. 201820_at KRT5 keratin 5 filament, epidermis development <0.01 structural constituent of cytoskeleton, intermediate 6. 209125_at KRT6A keratin 6A filament, ectoderm development <0.01 regulation of progression through cell cycle, extracellular space, cytoplasm, cell proliferation, protein kinase C inhibitor activity, protein domain specific 7. 209260_at SFN stratifin/14-3-3σ binding <0.01 structural constituent of cytoskeleton, intermediate 8. 213680_at KRT6B keratin 6B filament, ectoderm development <0.01 receptor activity, cytosol, integral to plasma membrane, cell surface receptor linked signal transduction, sensory perception, tumor-associated calcium visual perception, cell 9. 202286_s_at TACSTD2 signal transducer 2 proliferation, membrane <0.01 structural constituent of cytoskeleton, cytoskeleton, intermediate filament, cell-cell adherens junction, epidermis 10. 200606_at DSP desmoplakin development <0.01 lectin, galactoside- sugar binding, extracellular binding, soluble, 7 space, nucleus, apoptosis, 11. 206400_at LGALS7 (galectin 7) heterophilic cell adhesion <0.01 2 S100 calcium binding calcium ion binding, epidermis 12. 205916_at S100A7 protein A7 (psoriasin 1) development <0.01 S100 calcium binding protein A8 (calgranulin calcium ion binding, extracellular 13.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M
    14 The Open Dermatology Journal, 2010, 4, 14-20 Open Access Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M. Brandner1,§, Marek Haftek*,2,§ and Carien M. Niessen3,§ 1Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany 2University of Lyon, EA4169 Normal and Pathological Functions of Skin Barrier, E. Herriot Hospital, Lyon, France 3Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany Abstract: The skin is an indispensable barrier which protects the body from the uncontrolled loss of water and solutes as well as from chemical and physical assaults and the invasion of pathogens. In recent years several studies have suggested an important role of intercellular junctions for the barrier function of the epidermis. In this review we summarize our knowledge of the impact of adherens junctions, (corneo)-desmosomes and tight junctions on barrier function of the skin. Keywords: Cadherins, catenins, claudins, cell polarity, stratum corneum, skin diseases. INTRODUCTION ADHERENS JUNCTIONS The stratifying epidermis of the skin physically separates Adherens junctions are intercellular structures that couple the organism from its environment and serves as its first line intercellular adhesion to the cytoskeleton thereby creating a of structural and functional defense against dehydration, transcellular network that coordinate the behavior of a chemical substances, physical insults and micro-organisms. population of cells. Adherens junctions are dynamic entities The living cell layers of the epidermis are crucial in the and also function as signal platforms that regulate formation and maintenance of the barrier on two different cytoskeletal dynamics and cell polarity.
    [Show full text]