Non-Commercial Use Only

Total Page:16

File Type:pdf, Size:1020Kb

Non-Commercial Use Only Dermatology Reports 2009; volume 1:e1 Tight junctions in Hailey-Hailey rare blistering skin diseases inherited as an autosomal dominant trait. HHD results in Correspondence: Laura Raiko, Department of and Darier’s diseases mutations in the ATP2C1 gene, which Dermatology, University of Turku, 20520 Turku, encodes the Golgi secretory pathway Finland. E-mail: [email protected] 1 2,3 Laura Raiko, Pekka Leinonen, Ca2+/Mn2+ ATPase (hSPCA1).1,2 DD is caused Päivi M. Hägg,3 Juha Peltonen,4 by mutations in the ATP2A2 gene encoding Key words: adherens junction, claudin, Darier- Aarne Oikarinen,3 Sirkku Peltonen1 Ca2+-ATPase type 2 (SERCA2, sarcoplasm- White disease, tight junction, zonula occludens protein 1. 1Department of Dermatology, University ic/endoplasmic reticulum Ca2+-transport ATPase isoform 2b).3 The most prominent of Turku and Turku University Central Acknowledgments: we thank Dr Lauri Talve, Hospital, Turku, Finland; 2Department of common epidermal histological feature of DD Department of Pathology, Turku University Anatomy and Cell Biology and and HHD is suprabasal acantholysis, which Central Hospital for providing the archival tissue results from desmosomal disintegration. In 3Department of Dermatology, University material. This study was supported financially by addition DD and HHD epidermis show differ- grants from the Finnish Medical Foundation, of Oulu, Oulu, Finland; 4Institute of entiation and keratinization defects.4-6 Finnish Cultural Foundation, Academy of Finland, Biomedicine, Department of Anatomy, Specifically transition of keratin 14 to keratin the Turku University Foundation, the Southwest University of Turku, Turku, Finland 10 is abnormal as demonstrated by the pres- Finland Hospital District, and Northern ence of suprabasal keratinocytes expressing Ostrobothnia Hospital District, Finland. both cytokeratins that usually are exclusive in Contributions: LR, immunolabeling, confocal normal epidermis.6 Although the primary microscopy, writing the manuscript, and design- Abstract abnormalities in calcium metabolism in HHD ing the figures; PL, TEWL measurements, and DD are known, the sequence of events immunolabeling for frozen sections; PMH, obtain- Hailey-Hailey disease (HHD) and Darier’s leading to acantholysis is not understood fully 2+ ing patient samples in Oulu, TEWL measure- disease (DD) are caused by mutations in Ca - yet. ments; JP, writing the manuscript and supervising ATPases with the end result of desmosomal In normal human epidermis, tight junc- the work; AO, patient samples and supervising the disruption and suprabasal acantholysis. Tight tions (TJ) are located in the granular layer7,8 work in Oulu; SP, coordinating the work and par- junctions (TJ) are located in the granular cell where they contribute to the epidermal barri- onlyticipating in all parts except TEWL measurements. layer in normal skin and contribute to the epi- er function, especially the diffusion of water dermal barrier. Aberrations in the epidermal from inside out.9-11 The most important trans- Conflict of interest: the authors reported no con- differentiation, such as in psoriasis, have been membrane proteins of epidermal TJ are the flicts of interest. shown to lead to changes in the expression of members of the claudin family;use namely Received for publication: 1 October 2009. TJ components. Our aim was to elucidate the claudins-1 and -4, which are expressed in all Revision received: 2 November 2009. expression and dynamics of the TJ proteins 8,12 vital epidermal layers. Transmembrane pro- Accepted for publication: 3 November 2009. during the disruption of desmosomes in HHD tein occludin and intracellular linking mole- and DD lesions. Indirect immunofluorescence cule zonula occludens protein 1 (ZO-1) are This work is licensed under a Creative Commons and avidin-biotin labeling for TJ, desmosomal restricted to the granular layer normally.7 Attribution 3.0 License (by-nc 3.0). and adherens junction proteins, and subse- Previously we have shown that abnormal epi- ©Copyright L. Raiko et al., 2009 quent analyses with the confocal laser scan- dermal differentiation is associated with dis- Licensee PAGEPress, Italy ning microscope were carried out on 14 HHD 13 turbances in distribution of TJ proteins. Dermatology Reports 2009; 1:e1 and 14 DD skin samples. Transepidermal water Examples of aberrant differentiation include doi:10.4081/dr.2009.e1 loss (TEWL) was measured in normal and psoriatic epidermis and hypertrophic edges of lesional epidermis of nine HHD and eight DD healing blisters, which show spreading of ZO- patients to evaluate the function of the epider- 1 and occludin to the acanthotic spinous cell mal barrier in HHD and DD skin. The localiza- layers.7,13,14 Up-regulation of ZO-1 and occludin teins has not been studied in acantholysis. tion of TJ proteins claudin-1, claudin-4, ZO-1, is reversible and disappears during the heal- Studies on epidermal cadherin knockout mice and occludin in perilesional HHD and DD epi- ing of the psoriasis lesion.13 Regulation of TJ suggest the importance of cadherins in dermis was similar to that previously described proteins in epidermis is not well known but assembly and/or stability of TJ and desmo- in normal skin. In HHD lesions theNon-commercial tissue dis- the presence of TJ in the granular cell layers somes.17,18 Thus desmosomes and TJ seem to tribution of ZO-1 expanded to the acantholytic suggests that the prerequisite for the forma- be at least partly co-regulated. spinous cells. In agreement with previous find- tion of TJ is high extracellular calcium con- The aims of this study were: (1) to eluci- ings, desmoplakin was localized intracellularly. centration. In fact studies on cultured ker- date the role of TJ in the epidermal barrier in In contrast claudin-1 and ZO-1 persisted in the atinocytes have shown that development of TJ blistering disease; (2) to study the localiza- cell-cell contact sites of acantholytic cells. is calcium-inducible.7,15 We have demonstrat- tion of TJ in an abnormal epidermal calcium TEWL was increased in the lesional skin. The ed recently that in HHD and DD lesions the gradient; (3) to see whether the aberrant dif- current results suggest that TJ components fol- calcium concentration in the basal layer is ferentiation in DD has an effect on TJ in the low different dynamics in acantholysis of HHD lower than in normal skin.6 In addition to analogy of psoriatic skin and healing wounds; and DD compared to desmosomal and being decreased in the basal cells in the (4) to compare the dynamics of TJ compo- adherens junction proteins. lesional HH and DD epidermis, the calcium nents to that of desmosomal and adherens content was decreased in non-lesional DD junction proteins at the cellular level in the epidermis, probably linking to the keratiniza- acantholytic process. Specifically we investi- tion defect seen especially in DD.6 gated the localization of TJ components Introduction The localization of adherens junction and claudin-1, claudin-4, ZO-1, and occludin in desmosomal proteins in acantholytic lesions frozen and paraffin-embedded skin of 14 HHD Hailey-Hailey disease (HHD, OMIM 16960) of DD and HHD has been studied in detail and 14 DD patients using commercial anti- and Darier’s disease (DD, OMIM 124200) are previously.16 However the dynamics of TJ pro- bodies for indirect immunofluorescence and [Dermatology Reports 2009; 1:e1] [page 1] Article avidin-biotin immunolabeling. Co-localiza- Indirect immunofluorescence labeling confocal microscope. Confocal laser scanning tion of TJ proteins with adherens junction Punch biopsy samples were cut into 7 µm microscopy was carried out using a Zeiss LSM and desmosomal components was demon- cryosections, mounted on silanated glass 510 META confocal microscope equipped with strated using the confocal laser scanning slides, and fixed in 100% methyl alcohol at argon-ion and helium-neon lasers (Zeiss; microscope. In addition transepidermal water -20°C for 10 min. To prevent nonspecific bind- Jena, Germany) and LSM 3.0 software. The loss (TEWL) was elucidated by measuring ing, the samples were preincubated in 1% objectives were 40X (oil immersion, numeric TEWL in apparently normal and lesional HH bovine serum albumin (BSA) in phosphate aperture 1.3) and 63X (oil immersion, numer- and DD skin. The results showed that in both buffered saline (PBS) for 15 min. Antibodies ic aperture 1.4). For excitation, the 405-nm diseases the tissue localization of TJ proteins were diluted in 1% BSA-PBS, and incubated on line was used for Hoechst, the 488-nm line for TM remained apparently normal in the lesional the samples at 4°C for 20 h. Either primary Alexa Fluor 488, and the 543-nm line for TM and perilesional epidermis, while acantholy- antibodies were used alone or antibodies Alexa Fluor 568 and Cy3. The images were sis was associated with changes in the distri- raised in mouse and rabbit were mixed for saved in an LSM image browser program and bution of TJ proteins at the cellular level. double labeling. Following five 5-min washes exported to Adobe Photoshop in jpg format. in PBS, the samples were incubated with sec- ondary antibodies and Hoechst nuclear stain TEWL measurements (dilution 1:10,000) at 20°C for 1 h. Secondary The VapoMeter with a closed cylindrical Materials and Methods antibodies used were Alexa Fluor 568 conjugat- chamber (Delfin Technologies Ltd, Kuopio, ed goat anti-rabbit IgG (A11011) or Alexa Fluor Finland) was used for TEWL analyses. TEWL Biopsy samples 488 conjugated goat anti-mouse IgG (A11029) was measured from lesional skin of nine The skin biopsies were taken at the from Molecular Probes Inc. (Eugene, OR, patients with HHD and eight patients with DD. Department of Dermatology, Turku University USA). In double labeling the secondary anti- Measurements were obtained from lesional Central Hospital and the Department of bodies for mouse and rabbit were mixed. The and a corresponding healthy abdominal skin Dermatology, Oulu University Hospital, samples were washed in PBS, dipped in dou- area of each patient.
Recommended publications
  • Claudin-2: Roles Beyond Permeability Functions
    International Journal of Molecular Sciences Review Claudin-2: Roles beyond Permeability Functions Shruthi Venugopal, Shaista Anwer and Katalin Szászi * Keenan Research Centre for Biomedical Science of the St. Michael’s Hospital and Department of Surgery, University of Toronto, Toronto, ON M5B 1W8, Canada; [email protected] (S.V.); [email protected] (S.A.) * Correspondence: [email protected]; Tel.: +1-416-8471752 Received: 13 October 2019; Accepted: 9 November 2019; Published: 12 November 2019 Abstract: Claudin-2 is expressed in the tight junctions of leaky epithelia, where it forms cation-selective and water permeable paracellular channels. Its abundance is under fine control by a complex signaling network that affects both its synthesis and turnover in response to various environmental inputs. Claudin-2 expression is dysregulated in many pathologies including cancer, inflammation, and fibrosis. Claudin-2 has a key role in energy-efficient ion and water transport in the proximal tubules of the kidneys and in the gut. Importantly, strong evidence now also supports a role for this protein as a modulator of vital cellular events relevant to diseases. Signaling pathways that are overactivated in diseases can alter claudin-2 expression, and a good correlation exists between disease stage and claudin-2 abundance. Further, loss- and gain-of-function studies showed that primary changes in claudin-2 expression impact vital cellular processes such as proliferation, migration, and cell fate determination. These effects appear to be mediated by alterations in key signaling pathways. The specific mechanisms linking claudin-2 to these changes remain poorly understood, but adapters binding to the intracellular portion of claudin-2 may play a key role.
    [Show full text]
  • Computational Modeling of Claudin Structure and Function
    International Journal of Molecular Sciences Review Computational Modeling of Claudin Structure and Function Shadi Fuladi 1, Ridaka-Wal Jannat 1 , Le Shen 2,3 , Christopher R. Weber 2,* and Fatemeh Khalili-Araghi 1,* 1 Department of Physics, University of Illinois at Chicago, Chicago, IL 60607, USA; [email protected] (S.F.); [email protected] (R.-W.J.) 2 Department of Pathology, University of Chicago, Chicago, IL 60637, USA; [email protected] 3 Department of Surgery, University of Chicago, Chicago, IL 60637, USA * Correspondence: [email protected] (C.R.W.); [email protected] (F.K.-A.) Received: 15 December 2019; Accepted: 16 January 2020; Published: 23 January 2020 Abstract: Tight junctions form a barrier to control passive transport of ions and small molecules across epithelia and endothelia. In addition to forming a barrier, some of claudins control transport properties of tight junctions by forming charge- and size-selective ion channels. It has been suggested claudin monomers can form or incorporate into tight junction strands to form channels. Resolving the crystallographic structure of several claudins in recent years has provided an opportunity to examine structural basis of claudins in tight junctions. Computational and theoretical modeling relying on atomic description of the pore have contributed significantly to our understanding of claudin pores and paracellular transport. In this paper, we review recent computational and mathematical modeling of claudin barrier function. We focus on dynamic modeling of global epithelial barrier function as a function of claudin pores and molecular dynamics studies of claudins leading to a functional model of claudin channels. Keywords: claudin; molecular dynamics; tight junction; ion transport; ion channel 1.
    [Show full text]
  • Defenders and Challengers of Endothelial Barrier Function
    REVIEW published: 18 December 2017 doi: 10.3389/fimmu.2017.01847 Defenders and Challengers of Endothelial Barrier Function Nader Rahimi* Department of Pathology, Boston University School of Medicine, Boston, MA, United States Regulated vascular permeability is an essential feature of normal physiology and its dysfunction is associated with major human diseases ranging from cancer to inflam- mation and ischemic heart diseases. Integrity of endothelial cells also play a prominent role in the outcome of surgical procedures and organ transplant. Endothelial barrier function and integrity are regulated by a plethora of highly specialized transmembrane receptors, including claudin family proteins, occludin, junctional adhesion molecules (JAMs), vascular endothelial (VE)-cadherin, and the newly identified immunoglobulin (Ig) and proline-rich receptor-1 (IGPR-1) through various distinct mechanisms and signaling. On the other hand, vascular endothelial growth factor (VEGF) and its tyrosine kinase receptor, VEGF receptor-2, play a central role in the destabilization of endothelial barrier function. While claudins and occludin regulate cell–cell junction via recruitment of zonula occludens (ZO), cadherins via catenin proteins, and JAMs via ZO and afadin, IGPR-1 recruits bullous pemphigoid antigen 1 [also called dystonin (DST) and SH3 protein inter- Edited by: acting with Nck90/WISH (SH3 protein interacting with Nck)]. Endothelial barrier function Thomas Luft, is moderated by the function of transmembrane receptors and signaling events that act University Hospital Heidelberg, Germany to defend or destabilize it. Here, I highlight recent advances that have provided new Reviewed by: insights into endothelial barrier function and mechanisms involved. Further investigation Luiza Guilherme, of these mechanisms could lead to the discovery of novel therapeutic targets for human University of São Paulo, Brazil diseases associated with endothelial dysfunction.
    [Show full text]
  • Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M
    14 The Open Dermatology Journal, 2010, 4, 14-20 Open Access Adherens Junctions, Desmosomes and Tight Junctions in Epidermal Barrier Function Johanna M. Brandner1,§, Marek Haftek*,2,§ and Carien M. Niessen3,§ 1Department of Dermatology and Venerology, University Hospital Hamburg-Eppendorf, Hamburg, Germany 2University of Lyon, EA4169 Normal and Pathological Functions of Skin Barrier, E. Herriot Hospital, Lyon, France 3Department of Dermatology, Center for Molecular Medicine, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Germany Abstract: The skin is an indispensable barrier which protects the body from the uncontrolled loss of water and solutes as well as from chemical and physical assaults and the invasion of pathogens. In recent years several studies have suggested an important role of intercellular junctions for the barrier function of the epidermis. In this review we summarize our knowledge of the impact of adherens junctions, (corneo)-desmosomes and tight junctions on barrier function of the skin. Keywords: Cadherins, catenins, claudins, cell polarity, stratum corneum, skin diseases. INTRODUCTION ADHERENS JUNCTIONS The stratifying epidermis of the skin physically separates Adherens junctions are intercellular structures that couple the organism from its environment and serves as its first line intercellular adhesion to the cytoskeleton thereby creating a of structural and functional defense against dehydration, transcellular network that coordinate the behavior of a chemical substances, physical insults and micro-organisms. population of cells. Adherens junctions are dynamic entities The living cell layers of the epidermis are crucial in the and also function as signal platforms that regulate formation and maintenance of the barrier on two different cytoskeletal dynamics and cell polarity.
    [Show full text]
  • Tight Junction-Based Epithelial Microenvironment and Cell Proliferation
    Oncogene (2008) 27, 6930–6938 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $32.00 www.nature.com/onc REVIEW Tight junction-based epithelial microenvironment and cell proliferation S Tsukita1, Y Yamazaki, T Katsuno, A Tamura and S Tsukita2 Laboratory of Biological Science, Graduate School of Frontier Biosciences/Graduate School of Medicine, Osaka University, Suita, Osaka, Japan Belt-like tight junctions (TJs), referred to as zonula bodies of multicellular organisms. The sheet-like divi- occludens, have long been regarded as a specialized sions allow diffusion barrier formation and selective differentiation of epithelial cell membranes. They are permeation of substances and ions (permselectivity), required for cell adhesion and paracellular barrier func- both excluding unnecessary or toxic molecules and tions, and are now thought to be partly involved in fence including necessary components to maintain home- functions and in cell polarization. Recently, the molecular ostasis. The combination of the belt-like adherens bases of TJs have gradually been unveiled. TJs are junctions (AJs) and tight junctions (TJs) have important constructed by TJ strands, whose basic frameworks are functions in the formation of epithelial cell sheets and composed of integral membrane proteins with four also in the formation of paracellular permselective transmembrane domains, designated claudins. The claudin barriers through their functions as septa (Mitic and family is supposedly composed of at least 24 members in Anderson, 1998; Tsukita and Furuse, 1999; Hartsock mice and humans. Other types of integral membrane and Nelson, 2008). Paracellular barrier functions with proteins with four transmembrane domains, namely occlu- permselectivity are unique to the epithelial cell system din and tricellulin, as well as the single transmembrane and regulate the internal homeostasis of ions and solutes proteins, JAMs (junctional adhesion molecules)and CAR in the body.
    [Show full text]
  • An EMT-Primary Cilium-GLIS2 Signaling Axis Regulates Mammogenesis and Claudin-Low Breast Tumorigenesis
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.29.424695; this version posted December 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 An EMT-primary cilium-GLIS2 signaling axis regulates mammogenesis 2 and claudin-low breast tumorigenesis 3 4 5 6 7 Molly M. Wilson1, Céline Callens2, Matthieu Le Gallo3,4, Svetlana Mironov2, Qiong Ding5, 8 Amandine Salamagnon2, Tony E. Chavarria1, Abena D. Peasah6, Arjun Bhutkar1, Sophie 9 Martin3,4, Florence Godey3,4, Patrick Tas3,4, Anton M. Jetten8, Jane E. Visvader7, Robert A. 10 Weinberg9, Massimo Attanasio5, Claude Prigent2, Jacqueline A. Lees1, Vincent J Guen2* 11 12 13 14 1Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts 15 Institute of Technology, Cambridge, MA, USA. 16 2Institut de Génétique et Développement de Rennes - Centre National de la Recherche 17 Scientifique, Rennes, France. 18 3INSERM U1242, Rennes 1 University, Rennes, France. 19 4Centre de Lutte Contre le Cancer Eugène Marquis, Rennes, France. 20 5Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA, 21 USA. 22 6Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, 23 USA. 24 7Stem Cells and Cancer Division, The Walter and Eliza Hall Institute of Medical Research and 25 Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia. 26 8Cell Biology Section, Division of Intramural Research, National Institute of Environmental Health 27 Sciences, National Institutes of Health, Research Triangle Park, NC, USA. 28 9MIT Department of Biology and the Whitehead Institute, Cambridge, MA, USA.
    [Show full text]
  • Restoration of Desmosomal Junction Protein Expression and Inhibition Of
    MOLECULAR AND CLINICAL ONCOLOGY 3: 171-178, 2015 Restoration of desmosomal junction protein expression and inhibition of H3K9‑specifichistone demethylase activity by cytostatic proline‑rich polypeptide‑1 leads to suppression of tumorigenic potential in human chondrosarcoma cells KARINA GALOIAN1, AMIR QURESHI1, GINA WIDEROFF1 and H.T. TEMPLE2 1Department of Orthopaedic Surgery; 2University of Miami Tissue Bank Division, Miller School of Medicine, University of Miami, Miami, FL 33136, USA Received September 18, 2014; Accepted October 8, 2014 DOI: 10.3892/mco.2014.445 Abstract. Disruption of cell-cell junctions and the concomi- and inhibits H3K9 demethylase activity, contributing to the tant loss of polarity, downregulation of tumor-suppressive suppression of tumorigenic potential in chondrosarcoma cells. adherens junctions and desmosomes represent hallmark phenotypes for several different cancer cells. Moreover, a Introduction variety of evidence supports the argument that these two common phenotypes of cancer cells directly contribute to Chondrosarcoma is a highly aggressive bone cancer of tumorigenesis. In this study, we aimed to determine the status mesenchymal origin, which is resistant to chemo- and radia- of intercellular junction proteins expression in JJ012 human tion therapies, leaving surgical resection as the only option. malignant chondrosarcoma cells and investigate the effect Metastatic spread of malignant cells eventually develops of the antitumorigenic cytokine, proline-rich polypeptide-1 following surgical resection. The malignant progression to (PRP-1) on their expression. The cell junction pathway array chondrosarcoma has been suggested to involve a degree of data indicated downregulation of desmosomal proteins, mesenchymal-to-epithelial transition (MET) and it has been such as desmoglein (1,428-fold), desmoplakin (620-fold) and demonstrated in an in vitro model that chondrosarcoma cells plakoglobin (442-fold).
    [Show full text]
  • Epcam As Modulator of Tissue Plasticity
    cells Review EpCAM as Modulator of Tissue Plasticity François Fagotto CRBM, University of Montpellier and CNRS, 34293 Montpellier, France; [email protected] Received: 27 July 2020; Accepted: 14 September 2020; Published: 19 September 2020 Abstract: The Epithelial Cell Adhesion Molecule or EpCAM is a well-known marker highly expressed in carcinomas and showing a strong correlation with poor cancer prognosis. While its name relates to its proposed function as a cell adhesion molecule, EpCAM has been shown to have various signalling functions. In particular, it has been identified as an important positive regulator of cell adhesion and migration, playing an essential role in embryonic morphogenesis as well as intestinal homeostasis. This activity is not due to its putative adhesive function, but rather to its ability to repress myosin contractility by impinging on a PKC signalling cascade. This mechanism confers EpCAM the unique property of favouring tissue plasticity. I review here the currently available data, comment on possible connections with other properties of EpCAM, and discuss the potential significance in the context of cancer invasion. Keywords: Epithelial Cell Adhesion Molecule; Trop1; Trop2; TACSD; metastasis; cell–cell adhesion; cell–matrix adhesion; intercellular migration; actomyosin contractility; cortical tension 1. Introduction The Epithelial Cell Adhesion Molecule (EpCAM) is cell membrane protein originally identified as an antigen derived from tumours. In parallel, it was also identified through its enrichment in the placenta, thus acquired its alternate name Trop1 for Trophoblast cell surface antigen 1 [1]. In mammals, EpCAM is expressed in embryonic epithelia, but the levels usually drop as cells reach terminal differentiation [2,3].
    [Show full text]
  • Ouabain Modulates Ciliogenesis in Epithelial Cells
    Ouabain modulates ciliogenesis in epithelial cells Isabel Larrea, Aida Castilloa, Catalina Flores-Maldonadoa, Ruben G. Contrerasa, Ivan Galvanb, Jesus Muñoz-Estradaa, and Marcelino Cereijidoa,1 aDepartment of Physiology, Biophysics and Neurosciences, and bCentral Laboratories, Center for Research and Advanced Studies of the National Polytechnic Institute, Mexico City, DF 07300, Mexico Edited* by Lutz Birnbaumer, National Institute of Environmental Health Sciences, Research Triangle Park, NC, and approved October 27, 2011 (received for review February 24, 2011) The exchange of substances between higher organisms and the Results environment occurs across transporting epithelia whose basic Ouabain Accelerates Ciliogenesis. MDCK cells display procilia features are tight junctions (TJs) that seal the intercellular space, some 12 h after reaching confluence (Fig. 1A). Procilia pro- and polarity, which enables cells to transport substances vecto- gressively lengthen until they become mature cilia. At the third rially. In a previous study, we demonstrated that 10 nM ouabain day almost all cells have a cilium (Fig. 1B). Ouabain increases modulates TJs, and we now show that it controls polarity as well. the length of the cilium (Fig. 1C) but not its thickness (Fig. 1D). We gauge polarity through the development of a cilium at the We also followed ciliogenesis by staining the cells with an anti- apical domain of Madin-Darby canine kidney cells (MDCK, epithe- body against acetylated α-tubulin and counting the number of lial dog kidney). Ouabain accelerates ciliogenesis in an ERK1/2- E F + cells at stages without cilium (Fig. 1 ), with procilium (Fig. 1 ), dependent manner. Claudin-2, a molecule responsible for the Na and with a mature cilium (Fig.
    [Show full text]
  • Relocalization of Cell Adhesion Molecules During Neoplastic Transformation of Human Fibroblasts
    INTERNATIONAL JOURNAL OF ONCOLOGY 39: 1199-1204, 2011 Relocalization of cell adhesion molecules during neoplastic transformation of human fibroblasts CRISTINA BELGIOVINE, ILARIA CHIODI and CHIARA MONDELLO Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Via Abbiategrasso 207, 27100 Pavia, Italy Received May 6, 2011; Accepted June 10, 2011 DOI: 10.3892/ijo.2011.1119 Abstract. Studying neoplastic transformation of telomerase cell-cell contacts (1,2). Cadherins are transmembrane glyco- immortalized human fibroblasts (cen3tel), we found that the proteins mediating homotypic cell-cell adhesion via their transition from normal to tumorigenic cells was associated extracellular domain. Through their cytoplasmic domain, with the loss of growth contact inhibition, the acquisition of an they bind to catenins, which mediate the connection with the epithelial-like morphology and a change in actin organization, actin cytoskeleton. Different types of cadherins are expressed from stress fibers to cortical bundles. We show here that these in different cell types; e.g. N-cadherin is typically expressed variations were paralleled by an increase in N-cadherin expres- in mesenchymal cells, such as fibroblasts, while E-cadherin sion and relocalization of different adhesion molecules, such participates in the formation of adherens junctions in cells of as N-cadherin, α-catenin, p-120 and β-catenin. These proteins epithelial origin. The role of E-cadherin and β-catenin in the presented a clear membrane localization in tumorigenic cells development and progression of tumors of epithelial origin compared to a more diffuse, cytoplasmic distribution in is well documented (3). In particular, loosening of cell-cell primary fibroblasts and non-tumorigenic immortalized cells, contacts because of loss of E-cadherin expression and nuclear suggesting that tumorigenic cells could form strong cell-cell accumulation of β-catenin are hallmarks of the epithelial- contacts and cell contacts did not induce growth inhibition.
    [Show full text]
  • Connexins and the Epithelial Tissue Barrier: a Focus on Connexin 26
    biology Review Connexins and the Epithelial Tissue Barrier: A Focus on Connexin 26 Laura Garcia-Vega, Erin M. O’Shaughnessy, Ahmad Albuloushi and Patricia E. Martin * Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK; [email protected] (L.G.-V.); [email protected] (E.M.O.); [email protected] (A.A.) * Correspondence: [email protected] Simple Summary: Tissues that face the external environment are known as ‘epithelial tissue’ and form barriers between different body compartments. This includes the outer layer of the skin, linings of the intestine and airways that project into the lumen connecting with the external environment, and the cornea of the eye. These tissues do not have a direct blood supply and are dependent on exchange of regulatory molecules between cells to ensure co-ordination of tissue events. Proteins known as connexins form channels linking cells directly and permit exchange of small regulatory signals. A range of environmental stimuli can dysregulate the level of connexin proteins and or protein function within the epithelia, leading to pathologies including non-healing wounds. Mutations in these proteins are linked with hearing loss, skin and eye disorders of differing severity. As such, connexins emerge as prime therapeutic targets with several agents currently in clinical trials. This review outlines the role of connexins in epithelial tissue and how their dysregulation contributes to pathological pathways. Abstract: Epithelial tissue responds rapidly to environmental triggers and is constantly renewed. This tissue is also highly accessible for therapeutic targeting. This review highlights the role of connexin mediated communication in avascular epithelial tissue.
    [Show full text]
  • Claudin Multigene Family Encoding Four-Transmembrane Domain Protein Components of Tight Junction Strands
    Proc. Natl. Acad. Sci. USA Vol. 96, pp. 511–516, January 1999 Cell Biology Claudin multigene family encoding four-transmembrane domain protein components of tight junction strands KAZUMASA MORITA*†,MIKIO FURUSE*, KAZUSHI FUJIMOTO‡, AND SHOICHIRO TSUKITA*§ Departments of *Cell Biology, †Dermatology, and ‡Anatomy, Faculty of Medicine, Kyoto University, Sakyo-ku, Kyoto 606, Japan Communicated by Setsuro Ebashi, National Institute for Physiological Sciences, Okazaki, Japan, November 9, 1998 (received for review September 4, 1998) ABSTRACT Two related integral membrane proteins, well as fence functions of TJs (24–27). Recently, gene knock- claudin-1 and -2, recently were identified as novel components out of occludin was performed successfully, but, unexpectedly, of tight junction (TJ) strands. Here, we report six more occludin-deficient epithelial cells still demonstrated a well claudin-like proteins, indicating the existence of a claudin developed network of TJ strands (28). gene family. Three of these were reported previously as RVP1, Most recently, as the second and third components of TJ Clostridium perfringens enterotoxin receptor, and TMVCF, but strand, claudin-1 and -2, '22-kDa integral membrane proteins their physiological functions were not determined. Through that are structurally related (38% identical at the amino acid similarity searches followed by PCR, we isolated full length sequence level), were identified (29). These two proteins also cDNAs of mouse RVP1, Clostridium perfringens enterotoxin bear four transmembrane domains but do not show any receptor, and TMVCF as well as three mouse claudin-like sequence similarity to occludin. Furthermore, it was shown proteins and designated them as claudin-3 to -8, respectively. that claudin-1 and -2 have an ability to induce the formation All of these claudin family members showed similar patterns of networks of strandsygrooves at cell–cell contact sites when on hydrophilicity plots, which predicted four transmembrane introduced into fibroblasts lacking TJs (30).
    [Show full text]