Preparation and Analysis of Crosslinked
Total Page:16
File Type:pdf, Size:1020Kb
PREPARATION AND ANALYSIS OF CROSSLINKED LIGNOCELLULOSIC FIBERS AND CELLULOSE NANOWHISKERS WITH POLY(METHYL-VINYL ETHER CO MALEIC ACID) – POLYETHYLENE GLYCOL TO CREATE NOVEL WATER ABSORBING MATERIALS A Dissertation Presented to The Academic Faculty by Lee Ann Goetz In Partial Fulfillment of the Requirements for the Degree Doctorate of Philosophy in the School of Chemistry and Biochemistry Georgia Institute of Technology December 2012 Copyright © Lee Ann Goetz 2012 PREPARATION AND ANALYSIS OF CROSSLINKED LIGNOCELLULOSIC FIBERS AND CELLULOSE NANOWHISKERS WITH POLY(METHYL-VINYL ETHER CO MALEIC ACID) – POLYETHYLENE GLYCOL TO CREATE NOVEL WATER ABSORBING MATERIALS Approved by: Dr. Arthur Ragauskas, Advisor Dr. Lawrence A. Bottomley School of Chemistry and Biochemistry School of Chemistry and Biochemistry Georgia Institute of Technology Georgia Institute of Technology Dr. Facundo Fernandez Dr. Yulin Deng School of Chemistry and Biochemistry College of Engineering, Chemical and Georgia Institute of Technology Biomolecular Engineering Georgia Institute of Technology Dr. Preet Singh College of Engineering, Materials Science and Engineering Georgia Institute of Technology Date Approved: December 2012 This is dedicated to my family and friends for their constant love, support, and encouragement of me throughout this journey. I couldn’t have done it without you. ACKNOWLEDGEMENTS I wish to thank everyone who has helped me through the process of completing my doctoral studies. I would also like to thank my advisor, Arthur Ragauskas, the IPST@GT Foundation for my IPST GRA, and my committee members. Thank you to Kristiina Oksman and Aji Mathew for sponsoring me at Lulea University, Skelleftea, Sweden and Kristina Knutson for initially writing and receiving the NSF grant that allowed me to travel and study with them. I am grateful to the Georgia Tech Undergraduate Research Opportunities Program GRA sponsorship and the Georgia Tech School of Chemistry and Biochemistry Graduate Teaching Assistantship program. iv TABLE OF CONTENTS ACKNOWLEDGEMENTS ............................................................................................... iv LIST OF TABLES .............................................................................................................. x LIST OF FIGURES .......................................................................................................... xii LIST OF SYMBOLS AND ABBREVIATIONS ............................................................ xvi SUMMARY .................................................................................................................. xix CHAPTER ONE INTRODUCTION .................................................................................. 1 CHAPTER TWO LITERATURE REVIEW ...................................................................... 4 2.1 Problem Statement. ................................................................................................... 4 2.2 Chemical composition of cell wall. ........................................................................... 4 2.2.1 Cellulose. ........................................................................................................... 7 2.2.2 Hemicellulose. ................................................................................................. 11 2.2.3 Lignin. ............................................................................................................. 13 2.3 Cellulose Whiskers. ................................................................................................ 16 2.3.1 Acid hydrolysis methods to produce cellulose whiskers. ............................... 22 2.3.2 Physical properties of cellulose whiskers. ...................................................... 28 2.3.3 Incorporation of cellulose whiskers in composite-type materials. ................. 30 2.3.4 Surface and chemical modification of cellulose whiskers. ............................ 32 2.4 Grafting lignocellulosic fibers with carboxylic acids to improve water absorption.37 2.5 Microwave-assisted synthesis and crosslinking. ..................................................... 52 2.5.1 Introduction to microwaves ............................................................................ 52 2.5.2 Microwave assisted reactions of cellulosic materials. .................................... 57 CHAPTER THREE EXPERIMENTAL MATERIALS AND METHODS ..................... 65 3.1 Materials. ................................................................................................................ 65 3.1.1 Chemicals. ....................................................................................................... 65 3.1.2 Pulp. ................................................................................................................ 65 3.1.2.1 Fiber analysis using the Fiber Quality Analyzer. ...................................... 67 3.2 Experimental procedures for the preparation of the pulp fiber hydrogels materials. ....................................................................................................................... 68 v 3.2.1 Preparation of water absorbing pulp fibers. .................................................... 68 3.2.2 Water and 0.1 M NaCl absorption and retention – Tea Bag method. ............. 71 3.2.3 Scanning electron microscopy. ....................................................................... 72 3.2.4 Inverted light microscopy. .............................................................................. 73 3.2.5 FT-IR analysis of pulp fibers and crosslinked fibers. .................................... 73 3.2.6 Soxhlet extraction to determine grafting ratio. .............................................. 74 3.3 Preparation of cellulose whisker crosslinked hydrogels. ........................................ 74 3.3.1 Preparation of cellulose whiskers with microcrystalline cellulose. ................ 74 3.3.2 Characterization of cellulose whiskers. .......................................................... 77 3.3.2.1 Flow birefringence of cellulose whisker solutions. ................................. 77 3.3.3 Preparation of crosslinked cellulose whisker film hydrogels. ....................... 78 3.4 Characterization of crosslinked cellulose whisker hydrogels. ................................ 79 3.4.1 Fourier transform infrared spectroscopy. ........................................................ 79 3.4.2 Nuclear magnetic resonance (NMR) analysis. ............................................... 80 3.4.2.1 NMR analysis of starting materials. ........................................................ 80 3.4.2.2 NMR analysis of cellulose whisker films. ............................................... 80 3.4.3 Atomic force microscopy. Cellulose whiskers and films. .............................. 81 3.4.4 Tensile measurements of cellulose whisker films. ......................................... 82 3.4.5 Water sorption studies. Whisker films. .......................................................... 83 3.4.6 Gel content of whisker films. ......................................................................... 84 3.4.7 Percent extractable content. Cellulose whisker films Soxhlet extraction. ..... 85 3.4.8 Scanning electron microscopy. Solution cast cellulose whisker films. .......... 85 3.4.9 Scanning electron microscopy. Water swollen cellulose whisker films. ....... 85 3.4.10 Thermogravitmetric analysis. ........................................................................ 86 CHAPTER FOUR COMPARISON OF THERMALLY-ASSISTED AND MICROWAVE-ASSISTED CROSSLINKING TECHNIQUES IN PREPARATION OF ENHANCED WATER ABSORBING POLYMER-GRAFTED ECF BLEACHED KRAFT SOFTWOOD PULP FIBERS ............................................................................. 87 4.1 Introduction. ............................................................................................................ 87 4.2 Materials and methods. ........................................................................................... 89 4.2.1 Preparation of absorbent hydrogels. ................................................................ 90 4.2.2 Characterization. ............................................................................................. 90 4.2.2.1 FT-IR. ........................................................................................................ 90 vi 4.2.2.2 Grafting ratio. ............................................................................................ 90 4.2.2.3 Water absorbency. ..................................................................................... 90 4.2.2.4 Scanning electron microscopy. ................................................................. 91 4.3 Results and discussion. ........................................................................................... 91 4.3.1 Preparation of the superabsorbent hydrogels – determination of microwave settings and reaction time. ........................................................................................ 91 4.3.2 Effect of PMVEMA on water absorption and retention. ................................ 99 4.3.3 Behavior of pulp hydrogels in 0.10 M NaCl. ................................................ 103 4.3.4 Effect of the size of pulp fibers on water absorption and retention. ............. 104 4.3.5 FT-IR spectroscopy. ...................................................................................... 107 4.3.6 Scanning electron microscopy. ....................................................................