Water Super Absorbents Based on Copolymers of Acrylamide with Sodium Acrylate
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Study on Water Absorption–Dehydration Characteristics for SAP Composite Soil for Rainwater Harvesting
water Article Study on Water Absorption–Dehydration Characteristics for SAP Composite Soil for Rainwater Harvesting Youwei Qin 1, Tao Yang 1,*, Siyuan Wang 2, Fangling Hou 3, Pengfei Shi 1 and Zhenya Li 1 1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Centre for Global Change and Water Cycle, Hohai University, Nanjing 210098, China; [email protected] (Y.Q.); [email protected] (P.S.); [email protected] (Z.L.) 2 Shenzhen Water Planning and Design Institute, Shenzhen 518001, China; [email protected] 3 Nanjing Hydraulic Research Institute, Nanjing 210029, China; fl[email protected] * Correspondence: [email protected] Received: 4 June 2020; Accepted: 21 August 2020; Published: 25 August 2020 Abstract: As a water absorption material, superabsorbent polymer (SAP) has gained its popularity in agriculture and environmental remediations. This study conducted a comparative investigation on saturated water content of cinnamon soil mixed with SAP. Two SAPs, SAP1 and SAP2, with different behaviors were tested, where SAP1 is an organic superabsorbent polymer, and SAP2 is polyacrylic acid sodium salt polymer. The saturated water content of SAP composite cinnamon soil was investigated with the weighing method. The repeated water absorption capacity and dehydration behavior of SAP composite soil under different designed rainfall intensity were investigated with a soil column tester. The results showed that (1) cinnamon soil mixed with SAP increased the saturated soil water content, and SAP1 was more effective than SAP2; (2) SAP held strong water absorption ability and recycling efficiency with eight repeated absorption–dehydration tests; (3) the average dehydration time for SAP composite soil were 626 h and 1214 h under 5-year and 10-year design rainfall intensities. -
Acrylamide Polymerization — a Practical Approach
electrophoresis tech note 1156 Acrylamide Polymerization — A Practical Approach Paul Menter, Bio-Rad Laboratories, 2000 Alfred Nobel Drive, Polyacrylamide Gel Polymerization Hercules, CA 94547 USA AcrylamideBis Polyacrylamide Introduction The unparalleled resolution and flexibility possible with CH2 CH + CH2 CH CH2 CH CH2 CH CH2 CH polyacrylamide gel electrophoresis (PAGE) has led to its CO CO CO CO CO widespread use for the separation of proteins and nucleic NH2 NH NH2 NH2 NH acids. Gel porosity can be varied over a wide range to meet CH2 CH2 specific separation requirements. Electrophoresis gels and NH NH NH NH buffers can be chosen to provide separation on the basis of CO 2 2 CO CO C O charge, size, or a combination of charge and size. CH2 CH CH2 CH CH2 CH CH2 CH The key to mastering this powerful technique lies in the polymerization process itself. By understanding the important Purity of Gel-Forming Reagents parameters, and following a few simple guidelines, the novice Acrylamide can become proficient and the experienced user can optimize Gel-forming reagents include the monomers, acrylamide and bis, separations even further. as well as the initiators, usually ammonium persulfate and TEMED or, occasionally, riboflavin and TEMED. On a molar This bulletin takes a practical approach to the preparation of basis, acrylamide is by far the most abundant component in the polyacrylamide gels. Its purpose is to provide the information monomer solution. As a result, acrylamide may be the primary required to achieve reproducible, controllable polymerization. source of interfering contaminants (Dirksen and Chrambach For those users interested only in the “bare essentials,” the 1972). -
Dispersion Polymerization of Anionic Polyacrylamide in an Aqueous Salt Medium
410 Pet.Sci.(2010)7:410-415 DOI 10.1007/s12182-010-0086-9 Dispersion polymerization of anionic polyacrylamide in an aqueous salt medium Lu Jiao, Peng Bo , Li Mingyuan, Lin Meiqin and Dong Zhaoxia Enhanced Oil Recovery Research Center, China University of Petroleum, Beijing 102249, China © China University of Petroleum (Beijing) and Springer-Verlag Berlin Heidelberg 2010 Abstract: Anionic polyacrylamide dispersions were prepared by dispersion polymerization in an aqueous salt medium, using acrylamide(AM) and acrylic acid(AA) as monomers and anionic polyelectrolytes as stabilizer. Effects of salt concentration, and molecular weight and concentration of stabilizers on the stability of the dispersions were investigated using a HAAKE rheometer and optical microscopy. The results showed that stable anionic polyacrylamide dispersions, consisting of smooth, spherical, polydisperse particles, could be obtained under the conditions of salt concentration ranging from 26 wt% to 30 wt%, concentration of stabilizers from 1.2 wt% to 1.8 wt%, and intrinsic viscosity of stabilizers from 2.98 dL·g-1 to 3.74 dL·g-1. The apparent viscosity of the stable dispersions changed very little with the shear rate, showing Newton fl uid behavior. Key words: Dispersion polymerization, aqueous salt medium, stability, micromorphology, apparent viscosity 1 Introduction chain length during polymerization. The precipitated polymers form spherical micro-particles through aggregation Polyacrylamide (PAM) is an important water-soluble and the particles are suspended in the medium by the polymer. It can be used as a flocculant for water disposal, adsorption of stabilizer. There are several advantages of strength additives for paper manufacture, oil displacement dispersion polymerization, such as no secondary pollution, agents for enhanced oil recovery, and so on (Yan, 1998). -
Optimizing Chemically Enhanced Primary Treatment Processes for Simultaneous Carbon Redirection and Phosphorus Removal
water Article Optimizing Chemically Enhanced Primary Treatment Processes for Simultaneous Carbon Redirection and Phosphorus Removal Tianchen Dong 1, Wudneh Ayele Shewa 1, Kyle Murray 2 and Martha Dagnew 1,* 1 Department of Civil and Environmental Engineering, Western University, 1151 Richmond Street, London, ON N6A 3K7, Canada; [email protected] (T.D.); [email protected] (W.A.S.) 2 City of London, 300 Dufferin Avenue, London, ON N6B 1Z2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-519-661-2111 (ext. 87427) Received: 25 February 2019; Accepted: 13 March 2019; Published: 16 March 2019 Abstract: There has been increased interest towards maximizing wastewater energy recovery by enhancing the carbon captured through the primary treatment process such as chemically enhanced primary treatment (CEPT). This research was conducted to optimize the CEPT performance in terms of redirection of carbon and nutrients in both bench- and full-scale operations. In order to improve the CEPT process, the performance of ferric chloride and seven types of polymers were evaluated through jar testing. The optimal coagulant (15 mg/L ferric chloride) and flocculant (0.5 mg/L poly aluminum chloride (PACl)) combination achieved total COD, soluble COD, total suspended solids (TSS), and total phosphorus (TP) removal efficiencies of 76, 58, 89, and 84, respectively, in a full-scale primary clarifier operation. In doing so the organic matter and phosphorus were concentrated in CEPT sludge, making them available for recovery. Furthermore, the relationship between influent characteristics and removal rates under varying operating conditions was investigated. It was found that soluble COD removal appeared to be season-dependent, and TSS removals were independent of influent TSS concentrations in all scenarios. -
Chitosan Based Hydrogels and Their Applications for Drug Delivery in Wound Dressings: a Review T ⁎ Hamid Hamedi, Sara Moradi, Samuel M
Carbohydrate Polymers 199 (2018) 445–460 Contents lists available at ScienceDirect Carbohydrate Polymers journal homepage: www.elsevier.com/locate/carbpol Chitosan based hydrogels and their applications for drug delivery in wound dressings: A review T ⁎ Hamid Hamedi, Sara Moradi, Samuel M. Hudson, Alan E. Tonelli Textile Engineering Chemistry and Science, Fiber & Polymer Science Program, College of Textiles, North Carolina State University, Raleigh, North Carolina 27606-8301, United States ARTICLE INFO ABSTRACT Keywords: Advanced development of chitosan hydrogels has led to new drug delivery systems that can release their active Chitosan hydrogel ingredients in response to environmental stimuli. This review considers more recent investigation of chitosan Wound dressing hydrogel preparations and the application of these preparations for drug delivery in wound dressings. Drug delivery Applications and structural characteristics of different types of active ingredients, such as growth factors, na- Growth factor noparticles, nanostructures, and drug loaded chitosan hydrogels are summarized. Nanoparticles 1. Introduction 2012), pullulan (Li et al., 2011; Wong et al., 2011) and/or synthetic polymers like polyvinyl alcohol (Kokabi et al., 2007; Razzak, 2001; Hydrogels are three-dimensional, cross-linked networks which can Yang et al., 2008), polyacrylamide (Ezra et al., 2009; Risbud & Bhonde, absorb and retain significant amounts of water, without dissolving or 2000; Rosiak et al., 1983) and polyethylene glycol (Ajji et al., 2005; losing their three dimensional structures (Ahmed, 2015; Kashyap, 2005; Gupta et al., 2011; Lih et al., 2012) form hydrogels. Y.B. et al., 2008). The gelation and biodegradation are two key factors Hydrogels are classified into two categories: chemical or permanent affecting the fate of cells (Li et al., 2012). -
Poly(Sodium Acrylate)-Based Antibacterial Nanocomposite Materials
Poly(Sodium Acrylate)-Based Antibacterial Nanocomposite Materials Samaneh Khanlari Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Doctorate in Philosophy in Chemical Engineering Department of Chemical and Biological Engineering Faculty of Engineering UNIVERSITY OF OTTAWA © Samaneh Khanlari, Ottawa, Canada, 2015 i ii Abstract Polymer-based bioadhesives for sutureless surgery provide a promising alternative to conventional suturing. In this project, a new poly(sodium acrylate)-based nanocomposite with antibacterial properties was developed. Poly(sodium acrylate), was prepared using a redox solution polymerization at room temperature; this polymer served as a basis for a nanocomposite bioadhesive material using silver nanoparticles. In-situ polymerization was chosen as a nanocomposite synthesizing method and three methods were applied to quantify the distribution and loadings of nanofiller in the polymer matrices. These included the Voronoi Diagram, Euclidean Minimum Spanning Tree (EMST) method and pixel counting. Results showed that pixel counting combined with the EMST method would be most appropriate for nanocomposite morphology quantification. Real-time monitoring of the in-situ polymerization of poly(sodium acrylate)- based nanocomposite was investigated using in-line Attenuated Total Reflectance/Fourier Transform infrared (ATR-FTIR) technique. The ATR-FTIR spectroscopy method was shown to be valid in reaction conversion monitoring using a partial least squares (PLS) multivariate calibration method and the results were consistent with the data from off-line water removal gravimetric monitoring technique. Finally, a second, more degradable polymer (i.e., gelatin and poly(vinyl alcohol)) was used to modify the degradation rate and hydrophilicity of the nanocomposite bioadhesive. -
Superabsorbent Polymers
www.scifun.org Superabsorbent Polymers Absorbers and super absorbers If you spill a drink, your first impulse is probably to grab one or more paper napkins or paper towels to soak up, or absorb, the liquid. If the spill is large, several paper towels will be needed. Even a “quicker-picker-upper” can absorb only a small amount of liquid, before it is saturated (has absorbed all it can). What makes materials more or less absorbent in the first place? The answer is in their chemistry. We can harness the chemistry of polymers to build a better absorber: a super absorber. The word “polymer” means “many parts” (from the Greek: poly = many, meros = parts). A chemical polymer is a molecule made of many repeating units, monomers (mono = one, meros = parts), linked together through chemical bonds. It is useful to think of polymers as chains – a good analogy is a chain of paperclips (the monomers), Figure 1. Polymers are very versatile. They can form materials that are rigid like plastic water bottles or materials that are flexible, like plastic grocery bags. Note that polymeric materials are often called “plastics”. Figure 1. A chain of paperclips linked end-to-end like the individual molecules (monomers) that are chemically bonded to form a chemical polymer chain. Some polymers occur naturally. The most common polymer on Earth, cellulose, is a polymer of glucose molecules and is made (as a result of photosynthesis) by essentially every green plant. Cellulose forms part of a plant’s rigid structures, the wood in a tree trunk, for example. -
Development of Slow Release Nano Composite Fertilizer Using
DEVELOPMENT OF SLOW-RELEASE NANO-COMPOSITE FERTILIZER USING BIODEGRADABLE SUPERABSORBENT POLYMER By Benard Kiplangat Rop I80/50014/2015 Department of Chemistry, University of Nairobi A Thesis Submitted in Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Chemistry of the University of Nairobi November, 2019 1 DECLARATION I declare that this thesis is my original work and has not been submitted elsewhere for examination, award of degree or publication. Where other people’s work or my own has been used, this property has been acknowledged and referenced in accordance with the University of Nairobi’s requirements. Signature____________________ Date__________________________ Benard Kiplangat Rop I80/50014/2015 Department of Chemistry, School of Physical Sciences, University of Nairobi This thesis has been submitted for examination with our approval as research supervisors. 1. Dr. Damaris Mbui Signature________________ Date______________ Department of Chemistry, University of Nairobi 2. Dr. George N. Karuku Signature________________ Date______________ Department of Land Resources & Agricultural Technology, University of Nairobi 3. Dr. Njagi Njomo Signature________________ Date______________ Department of Chemistry, University of Nairobi 4. Dr. Immaculate Michira Signature________________ Date______________ Department of Chemistry, University of Nairobi i DEDICATION My wife Gladys for her constant love, support and encouragement throughout this journey; I couldn’t have done it without you. My sons, Brian, Ian and Allan ii ACKNOWLEDGMENT I would like to sincerely and gratefully thank my supervisors, Dr. Damaris Mbui, Dr. George N. Karuku, Dr. Njagi Njomo and Dr. Immaculate Michira, all from the University of Nairobi for their support, guidance, understanding and friendship during my studies. They gave me an opportunity to work independently with their guidance. -
High Performance of Chitosan-Co-Polyacrylamide-Tio2 Crosslinked Glutaraldehyde Hydrogel As Soil Conditioner for Soybean Plant (Glycine Max)
SOIL SCIENCE ANNUAL 2020, 71(3), 194–204 https://doi.org/10.37501/soilsa/125847 High Performance of Chitosan-co-Polyacrylamide-TiO2 Crosslinked Glutaraldehyde Hydrogel as Soil Conditioner for Soybean Plant (Glycine max) Halimahtussaddiyah Ritonga1, Muhammad Ihram Basri1, Fransiskus S. Rembon2, La Ode Ahmad Nur Ramadhan1, Muhammad Nurdin1* 1 Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Halu Oleo, Kendari 93232, Southeast Sulawesi, Indonesia 2 Department of Soil Science, Faculty of Agriculture, Universitas Halu Oleo, Kendari 93232, Southeast Sulawesi, Indonesia * Prof. Muhammad Nurdin, Ph.D, [email protected], ORCID ID: https://orcid.org/0000-0002-6727-9283 Abstract Received: 10.01.2020 Research on hydrogels as soil conditioners has been developed based on hydrogels copolymerized Accepted: 29.07.2020 with composite materials in the form of chitosan and TiO2 to overcome low physical properties and Associated editor: J. Antonkiewicz low swelling of polyacrylamide. The aims of the study are synthesis, characterization, application of hydrogels, and determination of the physical and chemical properties of soil and the growth of soy- bean plants. Synthesis of chitosan-co-polyacrylamide-TiO2 crosslinked glutaraldehyde hydrogel was Keywords prepared by the chemical crosslinking method. The characterization of hydrogel was performed by using Fourier Transform Infra-Red (FTIR) and Scanning Electron Microscope (SEM). FTIR spectrum Composite shows the functional groups of chitosan co-polyacrylamide-TiO2 crosslinked glutaraldehyde which –1 –1 –1 –1 Hydrogel includes OH functional groups (3408.22 cm ), NH (1602.85 cm ), C=O (1502 cm ), CN (1600.92 cm ), –1 Soil conditioner and Ti-O (619.15 cm ). The SEM image shows the formation of pores and cavities in the hydrogel. -
Sodium Polyacrylate Superabsorbent Polymers SCIENTIFIC
Sodium Polyacrylate Superabsorbent Polymers SCIENTIFIC Introduction Water from one cup is poured into an “empty” cup (actually containing sodium polyacrylate) and the water “disappears!” Concepts • Polymers • Osmosis • Superabsorbents • Industrial chemistry Materials Sodium polyacrylate, 0.5 g Styrofoam® cups or other opaque containers, 2 Distilled or deionized water, 100 mL Safety Precautions Sodium polyacrylate is nontoxic. However, it is irritating to the eyes and also to nasal membranes if inhaled. Wear chemical splash goggles whenever working with chemicals, heat or glassware. Sodium polyacrylate is an obvious choice for student pranks. Be careful students do not have access to sodium polyacrylate outside of chemistry class. Please review current Material Safety Data Sheets for additional safety, handling, and disposal information. Pre-Lab Preparation Before the students come into the room, place 0.5 g of sodium polyacrylate in one of the Styrofoam cups. Procedure 1. Add approximately 100 mL of distilled or deionized water to the second Styrofoam cup. 2. Tell the students that the water will “disappear” when poured into the other cup. (You can tip the cup forward some- what to show that it is “empty”; it will be difficult to see the 0.5 g of sodium polyacrylate against the white Styrofoam cup.) 3. Slowly pour the water into the cup containing sodium polyacrylate. Swirl the cup a bit (give the sodium polyacrylate time to absorb the water). 4. Tip the cup downward slightly to show the students that the water has “disappeared”! (Don’t turn the cup upside down, or you may dump the jelly-like mass on the floor!) Disposal Please consult your current Flinn Scientific Catalog/Reference Manual for general guidelines and specific procedures, and review all federal, state and local regulations that may apply, before proceeding. -
A Guide to Using Polyacrylamide (PAM) Polymers for Control of Irrigation Run-Off on the Central Coast Michael Cahn, Irrigation A
A Guide to Using Polyacrylamide (PAM) Polymers for Control of Irrigation Run-off on the Central Coast Michael Cahn, Irrigation and Water Resources Advisor, Monterey County Introduction Federal and state water quality regulations require that growers implement management practices to minimize impairments to surface and ground water quality. Although many farmers are currently using recommended practices such as drip irrigation, cover crops, and integrated pest management to reduce the impacts of agriculture on water quality, additional management tools could help achieve more dramatic improvements to water quality. Irrigation run-off can often be difficult to control on soils with low infiltration capacity such as poorly aggregated sandy soils, or soils susceptible to crusting. Sediments suspended in irrigation tail water carry adsorbed nutrients and some classes of pesticides such as pyrethroids. Nitrogen, phosphorus, and several classes of pesticides have been determined to impair the quality of surface water on the Central Coast. The use of practices such as retention ponds and drip irrigation can significantly control irrigation tail water, but these practices can be expensive and may not be suited for all crops and farms. Baby greens, for example, are typically irrigated with overhead sprinklers, and although many cool season vegetables can be grown with drip, almost all of these crops are established with overhead sprinklers during the first 2 to 4 weeks of stand establishment. Research studies conducted since 2003 on the Central Coast have repeatedly demonstrated that polyacrylamide (PAM), a chemical polymer can significantly reduce sediment, nutrient, and pesticide concentrations in irrigation run-off from sprinkler and furrow systems. -
Download/2014-Ghg-Emissions-From-Oil-Sands-Tailings-Ponds-Overview- And-Modelling-Based-On-Fermentable-Sub.Pdf (Accessed on 14 May 2021)
minerals Review Geochemical Stability of Oil Sands Tailings in Mine Closure Landforms Heidi L. Cossey 1, Anya E. Batycky 1 , Heather Kaminsky 2 and Ania C. Ulrich 1,* 1 Department of Civil & Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada; [email protected] (H.L.C.); [email protected] (A.E.B.) 2 Centre for Oil Sands Sustainability, Northern Alberta Institute of Technology (NAIT), Edmonton, AB T5G 0Y2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-780-492-8293 Abstract: Oil sands surface mining in Alberta has generated over a billion cubic metres of waste, known as tailings, consisting of sands, silts, clays, and process-affected water that contains toxic organic compounds and chemical constituents. All of these tailings will eventually be reclaimed and integrated into one of two types of mine closure landforms: end pit lakes (EPLs) or terrestrial landforms with a wetland feature. In EPLs, tailings deposits are capped with several metres of water while in terrestrial landforms, tailings are capped with solid materials, such as sand or overburden. Because tailings landforms are relatively new, past research has heavily focused on the geotechnical and biogeochemical characteristics of tailings in temporary storage ponds, referred to as tailings ponds. As such, the geochemical stability of tailings landforms remains largely unknown. This review discusses five mechanisms of geochemical change expected in tailings landforms: consolidation, chemical mass loading via pore water fluxes, biogeochemical cycling, polymer degradation, and surface water and groundwater interactions. Key considerations and knowledge gaps with regard Citation: Cossey, H.L.; Batycky, A.E.; Kaminsky, H.; Ulrich, A.C.