Uddeholm Vanadis® 8 Superclean Uddeholm Vanadis 8 Superclean

Total Page:16

File Type:pdf, Size:1020Kb

Uddeholm Vanadis® 8 Superclean Uddeholm Vanadis 8 Superclean Uddeholm Vanadis® 8 SuperClean Uddeholm Vanadis 8 SuperClean © UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder. This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose. Classified according to EU Directive 1999/45/EC For further information see our “Material Safety Data Sheets”. Edition 8, 05.2019 2 Uddeholm Vanadis 8 SuperClean CRITICAL TOOL APPLICATIONS STEEL PROPERTIES Uddeholm Vanadis 8 SuperClean is espe- cially suitable for very long run tooling where FOR GOOD TOOL PERFORMANCE abrasive wear is the dominating problem. Its • Correct hardness for the application very good combination of extremely high wear • Very high wear resistance resistance and good toughness also make • Sufficient toughness to prevent premature Uddeholm Vanadis 8 SuperClean an interest- failure due to chipping/crack formation ing alternative in applications where tooling made of such materials as cemented carbide High wear resistance is often associated with or high speed steels tends to chip or crack. low toughness and vice-versa. However, for op timal tool performance both high wear Examples: resis tance and toughness are essential in • Blanking and forming many cases. • Fine blanking Uddeholm Vanadis 8 SuperClean is a pow- • Blanking of electrical sheet der metallurgical cold work tool steel offering a • Gasket stamping combina tion of extremely high wear resistan ce • Deep drawing and good toughness. • Cold forging • Slitting knives (paper and foil) FOR TOOLMAKING • Powder pressing • Granulator knives • Machinability • Extruder screws etc. • Heat treatment • Dimensional stability in heat treatment • Surface treatment Toolmaking with highly alloyed steels means GENERAL that machining and heat treatment are often Uddeholm Vanadis 8 SuperClean is a more of a problem than with the lower alloyed chromium-molybdenum-vana dium alloyed grades. This can, of course, raise the cost of steel which is characterized by: toolmaking. • Very high abrasive and adhesive wear Due to the very carefully balanced alloying resistance and the powder me­­tallurgical manufacturing route, Uddeholm Vanadis 8 SuperClean has a • High compressive strength, 64 HRC similar heat treatment pro ced ure to the steel • Very good through-hardening properties AISI D2. One very big ad vantage with Udde- • Good ductility holm Vanadis 8 SuperClean is that the dimen- • Very good stability in hardening sional stability after hardening and tempering • Good resistance to tempering back is much better than for the conventionally • Good machining and grinding properties produced high performance cold work steels. This also means that Uddeholm Vanadis 8 Su- perClean is a tool steel which is very suitable Typical C Si Mn Cr Mo V for surface coatings. analysis % 2.3 0.4 0.4 4.8 3.6 8.0 Delivery condition Soft annealed to ≤ 270 HB Colour code Green/light violet 3 Uddeholm Vanadis 8 SuperClean PROPERTIES MACHINABILITY PHYSICAL DATA Relative machinability for Uddeholm PM SuperClean steels Vanadis 10, Vanadis 8, Hardened and tempered to 62 HRC. Vanadis 23 and Vanadis 4 Extra compared with Temperature 20°C 200°C 400°C a 10% Vanadium steel from another producer, (68°F) (390°F) (750°F) PM10V. Density kg/m3 7 460 – – lbs/in3 0.270 Modulus of elasticity N/mm2 230 000 210 000 200 000 psi 33.8 x 106 31.9 x 106 29.7 x 106 Turning uncoated carbide Drilling uncoated HSS Coefficient of thermal expansion per Machinablity pro °C ab 20°C – 10.8 x 10–6 11.6 x 10–6 1 °F from 68°F 6.0 x 10-6 6.5 x 10-6 Thermal 0.8 conductivity W/m • °C – 25 28 Btu in/(ft2 h °F) 173 194 0.6 Specific heat J/kg °C 470 – – 0.4 Btu/lb °F 0.11 0.2 DUCTILITY Vanadis 10 PM 10V Vanadis 8 Vanadis 23 Vanadis 4 Extra Impact test, unnotched, CR2 (thickness direction). The impact strengths shown, are average HEAT TREATMENT values. Uddeholm Vanadis 8 SuperClean and Uddeholm Vanadis 23 SuperClean have a SOFT ANNEALING similar impact strength. Protect the steel and heat through to 900°C (1650°F). Cool in the furnace at 10°C (20°F) Joule per hour to 650°C (1200°F), then freely in air. 100 90 Vanadis 4 Extra 80 STRESS RELIEVING 70 After rough machining the tool should be heated through to 650°C (1200°F), holding 60 time 2 hours. Cool slowly to 500°C (930°F), 50 then freely in air. 40 30 Vanadis 8 and HARDENING Vanadis 60 Vanadis 23 20 Pre-heating temperature: First pre-heating 10 at 600–650°C (1110–1200°F) and second at 850–900°C (1560–1650°F) 54 56 58 60 62 64 66 68 70 72 HRC Austenitizing temperature: 1020–1180°C (1870–2160°F) Holding time: 30 minutes for hardening tem- peratures up to 1100°C (2010°F), 15 minutes for temperatures higher than 1100°C (2010°F). Note: Holding time = time at hardening tem- perature after the tool is fully heated through. 4 Uddeholm Vanadis 8 SuperClean A holding time of less than recommended time will result in loss of hardness. The tool should be protected against de- car buriza tion and oxidation during hardening. Further information can be found in the Uddeholm brochure “Heat treatment of tool steels”. QUENCHING MEDIA • Vacuum (high speed gas at sufficient overpressure minimum 2 bar) • Martempering bath or fluidized bed at 200–550°C (390–1020°F) • Forced air/gas Note: Temper the tool as soon as its tempera- ture reaches 50–70°C (120–160°F). In order to obtain the optimum properties for the tool, the cooling rate should be as fast as possible with regards to acceptable distortion. A slow quench rate will result in loss of hardness compared with the given tempering curves. Martempering should be followed by forced air cooling if wall thickness is exceeding 50 mm (2"). CCT-GRAPH Austenitizing temperature 1020°C (1870°F). Holding time 30 minutes. °F °C 2000 1100 Austenitizing temperature 1020°C (1870°F) Holding time 30 min. 1800 1000 Ac 900 1f 1600 = 865°C (1590°F) Ac 1s 800 = 818°C (1505°F) 1400 Carbide 700 Cooling T Curve Hardness 8 1200 Pearlite No. HV 10 (sec) 600 1 853 1 1000 500 2 822 28 800 3 761 450 400 Bainite 4 793 1030 600 300 5 721 2325 Ms 400 200 Martensite 6 533 5215 518 200 100 7 7320 1 2 3 4 5 6 7 8 8 469 10400 1 10 100 1 000 10 000 100 000 Seconds 1 10 100 1 000 Minutes 1 10 100 Hours Air cooling of 0.2 1.5 10 90 600 ars mm 5 Uddeholm Vanadis 8 SuperClean TEMPERING and compressive strength to some extent but Choose the tempering temperature according also impair cracking resistance and dimen- to the hardness required by reference to the sional stability. However, if lowering the tempering graph. Temper at least twice with tempering temperature, do not temper below intermediate cooling to room temperature. 520°C (970°F). For highest dimensional stability and ductil- When tempering twice the minimum holding ity, a minimum temperature of 540°C (1000°F) time at temperature is 2 hours. When temper- and three tempers is strongly recommended. ing three times the minimum holding time is Tempering at a lower temperature than 1 hour. 540°C (1000°F) may increase the hardness TEMPERING GRAPH Vanadis 8 SupeClean (T8/5=300s). The tempering curves are obtained after heat treatment of samples with a size of 15 x 15 x 40 mm, cooling in forced air. Lower hardness can be expected after heat treatment of tools and dies due to factors like actual tool size and heat treatment parameters. 70 80 1020°C 70 1100°C 65 8C 60 50 60 40 55 30 20 50 10 Hardness HRC 45 0 Retained Austenite % 400 450 470 490 500 510 520 530 540 550 560 575 600 Tempering temperature (2x2h) 6 Uddeholm Vanadis 8 SuperClean CUTTING DATA MILLING RECOMMENDATIONS FACE AND SQUARE SHOULDER MILLING Milling with carbide The cutting data below are to be considered Cutting data parameter Rough milling Fine milling as guiding values which must be adapted to Cutting speed (v ) existing local conditions. Further information c m/min. 40–70 70–100 can be found in the Uddeholm publication f.p.m. 130–230 230–330 “Cutting data recommendations”. Feed (fz) mm/tooth 0.2–0.4 0.1–0.2 Delivery condition: Soft annealed to ≤270 HB in/tooth 0.008–0.016 0.004–0.008 Depth of cut (ap) mm 2–4 1–2 inch 0.08–0.16 0.04–0.08 TURNING Carbide designation * * Turning with carbide Turning with ISO K20, P10–P20 K15, P10 high speed C3, C7–C6 C3, C7 steel * Use a wear resistant Al 0 -coated carbide grade Cutting data Rough Fine Fine 2 3 parameter turning turning turning Cutting speed (v ) c END MILLING m/min 70–100 100–120 8–10 f.p.m. 230–330 330–395 28–22 Type of mill Feed (f) Carbide mm/rev 0.2–0.4 0.05–0.2 0.05–0.3 Cutting data Solid indexable High speed i.p.r. 0.008–0.016 0.002–0.008 0.002–0.012 parameter carbide insert steel1) Depth of cut (ap) Cutting mm 2–4 0.5–2 0.5–3 speed (vc) inch 0.08–0.16 0.02–0.08 0.02–0.12 m/min.
Recommended publications
  • Effects of Heat Treatment on the Mechanical Properties of the Vanadis 4 Extra and Vanadis 10 Tool Steels
    cien al S ce Baykara and Bedir, J Material Sci Eng 2017, 6:2 ri s te & a E M n DOI: 10.4172/2169-0022.1000330 f g o i n l e a e n r r i n u g o Journal of Material Sciences & Engineering J ISSN: 2169-0022 Research Article Article Open Access Effects of Heat Treatment on the Mechanical Properties of the Vanadis 4 Extra and Vanadis 10 Tool Steels Baykara T* and Bedir HF Mechanical Engineering Department, Doğuş University, Istanbul, Turkey Abstract Vanadis tool steels which are a trademark of the Uddeholm AB Company are high vanadium content (along with chromium and molybdenum) steels with unique mechanical properties such as very high wear resistance along with a good machinability, dimensional stability and grind ability. They are widely used in blanking operations, stamping, and deep drawing, cutting and slitting blades. Microstructural features of Vanadis steels are directly depended upon the distribution of the carbide grains. Based upon the carbon and vanadium contents of the Vanadis tool steels, wear test results and micro hardness values are correlated with the resulting microstructural features. Keywords: Tool steels; Vanadis; Powder metallurgy; Wear resistance after machining. Thereafter, the Vanadis 4 extra samples were annealed at 1000°C for 9 minutes and Vanadis 10 at 800°C for 5 minutes and Introduction quenched into water at room temperature (heat treatment procedure Vanadis tool steels which are a trademark of Uddeholm Company was selected according to Uddeholm AB Materials Safety Data Sheet). are high vanadium content (along with chromium and molybdenum) All the measurements were determined on both as-received (witness steels with unique mechanical properties such as very high wear samples) and heat treated samples.
    [Show full text]
  • Tool Steel Solutions Product Leaflets
    Tooling solutions for advanced high strength steels KAPTIELNAMN CONTENTS INTRODUCTION 5 About SSAB 6 General 6 SSAB’s advanced high strength steel and its benefits for the automotive industry 6 SHEET STEELS AND TOOL STEELs 8 Advanced High Strength Steels 8 Micro alloyed steels 8 Bainitic steels 8 Dual phase steels 8 Complex Phase steels 8 Roll forming steels 8 Martensitic steels 8 Available dimension range 8 Tool steels 10 Characteristics for forming and cutting operations 10 Conventional metallurgy 11 Electro slag remelting metallurgy 11 Powder metallurgy 11 TOOL STEEL SELECTION GUIDELINEs 12 Overview 12 Forming tool operations 14 General 14 Bending 14 Roll forming 14 Stamping 14 Hole flanging 14 FEM analysis of tool loads and galling 15 Tool steel selection and surface treatment in forming applications 16 Cutting tool operations 18 General 18 Blanking and punching 18 Cutting and shearing 24 Tool steel selection and surface treatment in cutting applications 26 Surface treatment 27 Tool Steel selection 28 Application examples 32 B-pillar reinforcement 32 Bumper for passenger car 33 Tow hook bracket 33 LUBRICATION 34 Forming tool operations 34 Cutting tool operations 34 Domex MC grades 34 Docol DP/DL, LA and ROLL grades 34 Dogal DP/CP, LAD and ROLL grades 34 Docol M and M+ZE grades 34 TOOLING ECONOMY 35 TECHNICAL SUPPORT 37 Experts to help you 37 Advanced resources for analysis 37 Courses and seminars 38 Handbooks 38 Trial sheets 38 Product information 38 INTRODUCTION INTRODUCTION Using advanced high strength steels (AHSS) can provide organi- In the automotive industry, lower emission levels can be achieved zations with many advantages.
    [Show full text]
  • Uddeholm Sverker 21
    Uddeholm Sverker®21 Uddeholm Sverker 21 © UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder. This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose. Classified according to EU Directive 1999/45/EC For further information see our “Material Safety Data Sheets”. Edition 9, 209.2016 Uddeholm Sverker 21 Uddeholm Sverker® 21 THE BACKBONE OF COLD WORK TOOLING The steel grade was developed around 1930 and is still going strong. Ledeburitic 12 % Cr-steel are still the most commonly used tool steel for cold work tooling all over the world. PROPERTIES PROFILE Uddeholm Sverker 21 is a tool steel with very good abrasive wear resistance but with rather limited cracking resistance. Being the bulk grade for cold work applications there are many advantages such as well established know-how concerning all types of treatments and tool processing. The risk with the popularity is, however, that the grade by routine is used in applications where the properties profile not is entirely appropriate. In such cases normally there are better alternatives like Uddeholm Sleipner, Uddeholm Caldie or Uddeholm Vanadis 4 Extra. APPLICATIONS The properties profile of Uddeholm Sverker 21 combine to give a steel suitable for the manufacture of medium run tooling for applications where abrasive wear is dominant and the risk of chipping or cracking is not so high, e.g.
    [Show full text]
  • Improvement of Punch and Die Life and Part Quality in Blanking of Miniature Parts
    Improvement of Punch and Die Life and Part Quality in Blanking of Miniature Parts DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Soumya Subramonian Graduate Program in Mechanical Engineering The Ohio State University 2013 Dissertation Committee: Dr.Taylan Altan, Advisor Dr.Blaine Lilly, Advisor Dr.Gary L.Kinzel Dr.Jerald Brevick Abstract Blanking or piercing is one of the most commonly used sheet metal manufacturing processes in the industry. Having a good understanding of the fundamentals and science behind this high deformation shearing process can help to improve the tool life and blanked edge quality in various ways. Finite Element Modeling of the blanking process along with experimental testing is used in this study to study the influence of various process parameters on punch and die life and blanked edge quality. In high volume blanking and blanking of high strength materials, improving the tool life can save not only tool material but also change over time which can take up to a few hours for every change over. The interaction between punch, stripper plate and sheet material is first studied experimentally since a fundamental understanding of the behavior of these components at different blanking speeds is very essential to design robust tooling for high speeds. A methodology is developed using the experimentally obtained blanking load and FEM of blanking to obtain flow stress data of the sheet material at high strains and strain rates. This flow stress data is used to investigate the effects of various process parameters on tool stress and blanked edge quality.
    [Show full text]
  • Vanadis 8 Superclean Uddeholm Vanadis 8 Superclean Reference Standard
    VANADIS 8 SUPERCLEAN UDDEHOLM VANADIS 8 SUPERCLEAN REFERENCE STANDARD AISI WNr. JIS ASSAB DF-3 ARNE O1 1.2510 SKS 3 ASSAB XW-10 RIGOR A2 1.2363 SKD 12 ASSAB XW-42 SVERKER 21 D2 1.2379 (SKD 11) CALMAX / CARMO CALMAX / CARMO 1.2358 VIKING VIKING / CHIPPER (1.2631) CALDIE CALDIE ASSAB 88 SLEIPNER ASSAB PM 23 SUPERCLEAN VANADIS 23 SUPERCLEAN (M3:2) 1.3395 (SKH 53) ASSAB PM 30 SUPERCLEAN VANADIS 30 SUPERCLEAN (M3:2 + Co) 1.3294 SKH 40 ASSAB PM 60 SUPERCLEAN VANADIS 60 SUPERCLEAN (1.3292) VANADIS 4 EXTRA SUPERCLEAN VANADIS 4 EXTRA SUPERCLEAN VANADIS 8 SUPERCLEAN VANADIS 8 SUPERCLEAN VANCRON SUPERCLEAN VANCRON SUPERCLEAN ELMAX SUPERCLEAN ELMAX SUPERCLEAN VANAX SUPERCLEAN VANAX SUPERCLEAN ASSAB 518 P20 1.2311 ASSAB 618 T (P20) (1.2738) ASSAB 618 / 618 HH (P20) 1.2738 ASSAB 718 SUPREME / 718 HH IMPAX SUPREME / IMPAX HH (P20) 1.2738 NIMAX / NIMAX ESR NIMAX / NIMAX ESR VIDAR 1 ESR VIDAR 1 ESR H11 1.2343 SKD 6 UNIMAX UNIMAX CORRAX CORRAX ASSAB 2083 420 1.2083 SUS 420J2 STAVAX ESR STAVAX ESR (420) (1.2083) (SUS 420J2) MIRRAX ESR MIRRAX ESR (420) MIRRAX 40 MIRRAX 40 (420) TYRAX ESR TYRAX ESR POLMAX POLMAX (420) (1.2083) (SUS 420J2) ROYALLOY ROYALLOY (420 F) COOLMOULD COOLMOULD ASSAB 2714 1.2714 SKT 4 ASSAB 2344 H13 1.2344 SKD 61 ASSAB 8407 2M ORVAR 2M H13 1.2344 SKD 61 ASSAB 8407 SUPREME ORVAR SUPREME H13 Premium 1.2344 SKD 61 DIEVAR DIEVAR QRO 90 SUPREME QRO 90 SUPREME FORMVAR FORMVAR 20190618 ( ) - modified grade “ASSAB” and the logo are trademark registered.
    [Show full text]
  • Uddeholm Premium Steel for Knives RETAIN YOUR EDGE UDDEHOLM KNIFE STEEL AWARDS
    Uddeholm Premium Steel for Knives RETAIN YOUR EDGE UDDEHOLM KNIFE STEEL AWARDS YEAR BLADESHOW PRICE / AWARD 2016 Overall Knife of the Year 2014 Overall Knife of the Year 2014 Manufacturing Quality Award 2011 Collaboration of the Year 2010 American made Knife of the Year 2010 Most Innovative Imported Design 2009 American made Knife of the Year Classified according to EU Directive 1999/45/EC. For further information see our “Material Safety Data Sheets”. Edition 6, 03.2017. The latest revised edition of this brochure is the English version, which is always published on our website www.uddeholm.com A CUT ABOVE THE REST UDDEHOLM PREMIUM TOOL STEEL FOR KNIVES Uddeholm is the world leader in the development and production of premium tool steel for the manufacturing industry. Products used in your everyday life, like your car, dishwasher or lawn mower, all contain parts that have been cut out and formed using tools made from Uddeholm steel. Stringent modern demands on productivity and the cutting of difficult and hard work materials, have inspired us to develop the best tool steel in the world. If we can improve tool performance in the most demanding industrial applications, imagine what it can do for your knife blade performance. CLEAN, CLEANER, SUPERCLEAN Uddeholm has state-of-the-art steel making facilities. Among them is one of the world’s most modern plants for powder metallurgical steel, where the steel making process is a triple update from standard levels. That’s why we call our PM grades SuperClean. For knife manufacturers it means steel that enables sharper edges, tougher blades and trouble-free production with excellent grinding and polishing properties.
    [Show full text]
  • ASSAB Tool Steel Performance Comparison Chart
    ASSAB Tool Steel Performance Comparison Chart Reference Standard Hardness Chemical Composition % Austenising Range of ASSAB Grade Uddeholm Grade Characteristics Applications AISI WNr. JIS Supplied C Si Mn Cr Mo W V Others TempoC Hardness Cutting : blanking, punching, shearing, trimming. ASSAB DF-3 ARNE O1 1.2510 SKS 3 HB 230 0.95 0.3 1.1 0.6 - 0.6 0.1 - 790-850 56-62 General purpose oil hardening tool steel with good surface hardness and wear Forming : bending, drawing, rim rolling, spinning, flow forming. (max) resistance. Gauges and measuring tools. ASSAB XW-5 SVERKER 3 D6 (D3) (1.2436) (SKD 2) HB 240 2.05 0.3 0.8 12.7 - 1.1 - - 920-1000 56-62 A 12% Cr, high carbon tool steel with excellent abrasive wear resistance. Blanking, punching, cropping, shearing, trimming and clipping. Good hardenability, wear resistance and excellent size stability for medium Blanking, punching, piercing, cropping, shearing, trimming and moulds for ASSAB XW-10 RIGOR A2 1.2363 SKD 12 HB 215 1.0 0.3 0.6 5.3 1.1 - 0.2 - 925-970 56-62 runs. abrasive plastics. ASSAB XW-42 SVERKER 21 D2 1.2379 SKD 11 HB 240 1.55 0.3 0.3 11.6 0.8 - 0.8 - 990-1080 58-63 A 12% Cr tool steel with high wear resistance and strength. Blanking, fine blanking, punching, cropping, shearing, trimming and clipping. Moulds for the production of electrical components. Typical for blanking dies CALMAX CALMAX 1.2358 HB 200 0.6 0.35 0.8 4.5 0.5 - 0.2 - 950-970 52-59 A general steel with high toughness, good wear resistance and polishability.
    [Show full text]
  • Calmax Calmax Calmax
    UDDEHOLM CALMAX CALMAX CALMAX REFERENCE STANDARD AISI DIN JIS DF-2 ARNE O1 1.2510 SKS 3 DF-3 O1 1.2510 SKS 3 XW-5 SVERKER 3 D6 (D3) (1.2436) (SKD 2) XW-10 RIGOR A2 1.2363 SKD 12 XW-41 SVERKER 21 D2 1.2379 SKD 11 XW-42 D2 1.2379 SKD 11 CARMO CARMO CALMAX CALMAX CALDIE CALDIE ASSAB 88 SLEIPNER ASP 23 (M3:2) 1.3344 SKH 53 ASP 30 (M3:2 + Co) 1.3244 SKH 40 ASP 60 1.3241 VANADIS 4 EXTRA VANADIS 4 EXTRA VANADIS 6 VANADIS 6 VANADIS 10 VANADIS 10 VACRON 40 VANCRON 40 618 P20 Mod. 1.2738 618 HH P20 Mod. 1.2738 618 T P20 Mod. 1.2738 Mod. 718 SUPREME IMPAX SUPREME P20 Mod. 1.2738 718 HH IMPAX HH P20 Mod. 1.2738 NIMAX NIMAX UNIMAX UNIMAX CORRAX CORRAX STAVAX ESR STAVAX ESR 420 Mod. 1.2083 ESR SUS 420J2 MIRRAX ESR MIRRAX ESR 420 Mod. POLMAX POLMAX ELMAX ELMAX RAMAX LH RAMAX LH 420 F Mod. RAMAX HH RAMAX HH 420 F Mod. ROYALLOY PRODAX ASSAB PT18 ASSAB MMXL ASSAB MM40 ALVAR 14 ALVAR 14 1.2714 SKT 4 8407 2M ORVAR 2M H13 1.2344 SKD 61 8407 SUPREME ORVAR SUPREME H13 Premium 1.2344 ESR SKD 61 DIEVAR DIEVAR HOTVAR HOTVAR QRO 90 SUPREME QRO 90 SUPREME 705 4340 1.6582 SNCM8 709 4140 1.7225 SCM4 760 1050 1.1730 S50C This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses.
    [Show full text]
  • Welding of Uddeholm Tool Steels
    WELDING OF UDDEHOLM TOOL STEELS TREATMENT WELDING OF TOOL STEEL 1 © UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder. This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose. Classified according to EU Directive 1999/45/EC For further information see our “Material Safety Data Sheets”. Edition 7, 10.2017 2 TREATMENT WELDING OF TOOL STEEL CONTENTS General information on welding of tool steel ..................... 4 Welding methods for tool steel .......................................... 4 The welding bay ................................................................ 6 Filler material ..................................................................... 7 Hydrogen in tool steel ....................................................... 8 Elevated working temperature .......................................... 9 Welding procedure ............................................................ 10 Heat treatment after welding ............................................. 11 Guidelines for welding in – hot work tool steel ........................................................ 13 – cold work tool steel ..................................................... 14 – plastic mould steel .......................................................
    [Show full text]
  • Tooling Solutions for Advanced High Strength Steels
    TOOLING SOLUTIONS FOR ADVANCED HIGH STRENGTH STEELS TOOLING SOLUTIONS FOR AHSS 1 © UDDEHOLMS AB No part of this publication may be reproduced or transmitted for commercial purposes without permission of the copyright holder. This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses. It should not therefore be construed as a warranty of specific properties of the products described or a warranty for fitness for a particular purpose. Classified according to EU Directive 1999/45/EC For further information see our “Material Safety Data Sheets”. Edition: 2, 10.2016 2 TOOLING SOLUTIONS FOR AHSS Selecting a tool steel supplier is a key decision for all parties, including the tool maker, the tool user and the end user. Thanks to superior material properties, Uddeholm’s customers get reliable tools and components. Our products are always state-of-the-art. Consequently, we have built a reputation as the most innovative tool steel producer in the world. Uddeholm produce and deliver high quality Swedish tool steel to more than 100,000 customers in over 100 countries. Wherever you are in the manufacturing chain, trust Uddeholm to be your number one partner and tool steel provider for optimal tooling and production economy. CONTENTS Introduction 5 Uddeholm’s offer to the automotive industry 5 Sheet steels and tool steels 6 – Advanced high strength steels 6 – Tool steels 7 Tool steel selection guidelines 9 – Overview 9 – Forming tool operations 11 – Cutting tool operations 16 – Application examples 30 Lubrication 31 – Forming tool operations – Cutting tool operations Tooling economy 32 Technical support 33 – Experts to help you – Advanced resource for analysis – Courses and seminars – Technical information TOOLING SOLUTIONS FOR AHSS 3 B-Pillar to a car.
    [Show full text]
  • Vanadis 4 Extra Vanadis 4 Extra Vanadis 4 Extra
    UDDEHOLM VANADIS 4 EXTRA VANADIS 4 EXTRA VANADIS 4 EXTRA REFERENCE STANDARD AISI DIN JIS DF-2 ARNE O1 1.2510 SKS 3 DF-3 O1 1.2510 SKS 3 XW-5 SVERKER 3 D6 (D3) (1.2436) (SKD 2) XW-10 RIGOR A2 1.2363 SKD 12 XW-41 SVERKER 21 D2 1.2379 SKD 11 XW-42 D2 1.2379 SKD 11 CARMO CARMO CALMAX CALMAX CALDIE CALDIE ASSAB 88 SLEIPNER ASP 23 VANADIS 23 (M3:2) 1.3344 SKH 53 ASP 30 VANADIS 30 M3:2 + Co 1.3244 SKH 40 ASP 60 VANADIS 60 1.3241 VANADIS 4 EXTRA VANADIS 4 EXTRA VANADIS 6 VANADIS 6 VANADIS 10 VANADIS 10 VACRON 40 VANCRON 40 618 P20 Mod. 1.2738 618 HH P20 Mod. 1.2738 618 T P20 Mod. 1.2738 Mod. 718 SUPREME IMPAX SUPREME P20 Mod. 1.2738 718 HH IMPAX HH P20 Mod. 1.2738 NIMAX NIMAX UNIMAX UNIMAX CORRAX CORRAX STAVAX ESR STAVAX ESR 420 Mod. 1.2083 ESR SUS 420J2 MIRRAX ESR MIRRAX ESR 420 Mod. POLMAX POLMAX ELMAX ELMAX RAMAX LH RAMAX LH 420 F Mod. RAMAX HH RAMAX HH 420 F Mod. ROYALLOY PRODAX PT18 MOLDMAX SC MMXL MOLDMAX XL MM40 MOLDMAX HH ALVAR 14 ALVAR 14 1.2714 SKT 4 8407 2M ORVAR 2M H13 1.2344 SKD 61 8407 SUPREME ORVAR SUPREME H13 Premium 1.2344 ESR SKD 61 DIEVAR DIEVAR HOTVAR HOTVAR QRO 90 SUPREME QRO 90 SUPREME 705 4340 1.6582 SNCM8 709 4140 1.7225 SCM4 760 1050 1.1730 S50C This information is based on our present state of knowledge and is intended to provide general notes on our products and their uses.
    [Show full text]
  • UDDEHOLM POCKET BOOK the Uddeholm Range of Tooling Materials CONTENTS
    UDDEHOLM POCKET BOOK The Uddeholm range of tooling materials CONTENTS UDDEHOLM STEEL GRADES – Composition ................................................................................ 2 – 3 – International standards ............................................................. 4 – 5 – Heat treatment ........................................................................... 6 – 7 – Hardness after hardening and tempering.............................. 8 – 9 STEEL FOR COLD WORK TOOLING ........................................ 10–16 STEEL FOR INDUSTRIAL KNIVES ................................................ 17–19 STEEL FOR DIE CASTING DIES .................................................... 20–23 STEEL FOR EXTRUSION DIES ...................................................... 24–27 STEEL FOR FORGING DIES ........................................................... 28–31 MATERIALS FOR PLASTIC MOULDS .......................................... 32–39 PRINCIPLES OF HARDENING ....................................................... 41 POWDER METALLURGY TOOL STEEL ...................................... 42–43 UDDEHOLM COMPONENT BUSINESS ..................................... 44–45 PRE-MACHINED TOOL STEEL ...................................................... 46–47 MACHINING SERVICE ..................................................................... 48 HINTS ON – improved tool performance..................................................... 49 – basic tool design ......................................................................... 50 – tool
    [Show full text]