The Development of Titanium-Catalyzed Enyne Cyclocarbonylations and Related Methodologies

Total Page:16

File Type:pdf, Size:1020Kb

The Development of Titanium-Catalyzed Enyne Cyclocarbonylations and Related Methodologies The Development of Titanium-Catalyzed Enyne Cyclocarbonylations and Related Methodologies by Frederick A. Hicks B.S. Chemistry, University of Central Florida, 1993 Submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY IN ORGANIC CHEMISTRY at the Massachusetts Institute of Technology February 1999 © Massachusetts Institute of Technology, 1998 All Rights Reserved Signature of the Author Department of Chemistry September 10, 1998 Stephen L. Buchwald Thesis Supervisor Accepted by Dietmar Seyferth Chair, Departmental Committee on Graduate Studies MASSACHUSETTS INSTITUTE LIBRARIES This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Gregory C. Fu Chairperson Professor Stephen L. Buchwald I- -- Thesis Supervisor Professor Peter H. Seeberger 2 The Development of Titanium-Catalyzed Enyne Cyclocarbonylations and Related Methodologies by Frederick A. Hicks Submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology ABSTRACT An improved titanium-catalyzed procedure for the synthesis of bicyclic iminocyclopentenes from the cyclocondensation of enynes and silylcyanides is described. The use of finely ground air- and moisture-stable Cp 2TiCI 2 in combination with n-BuLi and enynes allows for the in situ generation of titanacyclopentenes, which serve as precatalysts for the silylimine synthesis. This methodology represents a practical advance compared to the previously reported methodology employing Cp 2Ti(PMe 3)2. The silylimines can be hydrolyzed to the corresponding cyclopentenones utilizing established procedures. A protocol for reduction and acylation of the silylimine products has also been developed which provides allylic amides in good to excellent yields. A titanocene-catalyzed cyclocarbonylative route to bicyclic cyclopentenones employing commercially available Cp 2Ti(CO) 2, enynes, and CO is described. The synthetic scope of this protocol has been explored in detail with a variety of 1,6- and 1,7-enynes. Initial studies support a mechanism involving the carbonylation of a titanacyclopentene followed by reductive elimination to provide the enone product and regenerate the titanium catalyst. The first catalytic asymmetric Pauson-Khand type reaction is described. The catalyst, (S,S)-(EBTHI)Ti(CO) 2, is generated in situ from (S,S)-(EBTHI)TiMe 2 under a CO atmosphere. A variety of 1,6-enynes are converted to the corresponding bicyclic cyclopentenones with excellent enantioselectivity (87-96 % ee). The scope and limitations of this methology with respect to enyne substitution are discussed. The assignment of the absolute configuration for the enone products and a rationale for the observed absolute configuration and levels of asymmetric induction are presented. Thesis Supervisor: Professor Stephen L. Buchwald Title: Camille Dreyfus Professor of Chemistry 3 Acknowledgments I will certainly omit some people who deserve my gratitude for their assistance and support during my five years in the Buchwald group; everyone who I have had the pleasure of interacting with during my stay in Boston has contributed to this document in some way, and I am thankful to all of you. There are three men who are most responsible for my becoming a chemist, and they warrant special recognition. My grandfather, a chemistry professor, John Mariani, my high school chemistry teacher, and Dr. John Gupton, my undergraduate research advisor. Each of them showed a joy and a passion for teaching chemistry which were infectious to all who met them. Most people soon recovered from the disease, but I was too far gone to do to anything else. There have been three people with whom I have collaborated closely during my time in this group. I have learned an enormous amount about many different aspects of chemistry during my five years in the Buchwald lab, and for that I am indebted to my advisor Steve. He has given me the freedom to explore chemistry while providing guidance and support at the times when I needed it. Natasha Kablaoui not only developed chemistry upon which the majority of this thesis is based, she also rolled up her sleeves and helped me get the work in Chapter 2 off the ground. I am not sure what this thesis would look like without her influence, both as a scientist and a friend, but I owe much of its present state to her. I have also had the pleasure of introducing Shana Sturla to the joys of Group 4 chemistry. Her enthusiasm for research and general good spirits have certainly helped me at times when I myself was short on those qualities. The lab experience depends greatly on the rapport one develops with their baymate, and I have been blessed in this regard. In the beginning, Scott Berk and Mary Beth Carter were extremely patient and understanding as they helped me develop the tools and techniques I needed for research. Though we only shared a bay for one summer, I have found a good friend in Linda Molnar. From Kazumasa Aoki, I learned to handle the vicissitudes of research with the simple maxim "Shit Happens." Last and certainly not least, I have had the pleasure of working with Marcus Hansen. His friendship and support during the past few years at MIT have made all the difference. The extended network of friends that develops in graduate school is one of its greater rewards; everyone needs someone to chat with over a coffee or a beer. 4 Though I have already thanked some of them, Natasha Kablaoui, Marcus Hansen, Malisa Troutman, Seble Wagaw, Nora Radu, Jens Ahman, Shana Sturla and Dave Old all have shared more than a few beverages with me over the years, and hopefully there will be many more in the future. Throughout this process, one turns to their family for the support, encouragement, and unquestioning faith that only they can provide. My family, my wife's family, and two friends, Jeff Gibbs and Denise Main, who are family, have all helped me in ways they will never know. Finally, I want to thank my wife Jessica, without whom all of this means nothing. It has been rough at times, but she has held my hand and stood by my side throughout, and I promise to do the same for her forever. 5 Preface Parts of this thesis have been adapted from the following articles co-written by the author: Hicks, F. A.; Berk, S. C.; Buchwald, S. L. "A Practical Titanium-Catalyzed Synthesis of Bicyclic Cyclopentenones and Allylic Amines" J. Org. Chem. 1996, 61, 2713. Hicks, F. A.; Kablaoui, N. M.; Buchwald, S. L. "Titanocene-Catalyzed Cyclocarbonylation of Enynes to Cyclopentenones" J. Am. Chem. Soc. 1996, 118, 9450. Hicks, F. A.; Buchwald, S. L. "Highly Enantioselective Catalytic Pauson-Khand Type Formation of Bicyclic Cyclopentenones" J. Am. Chem. Soc. 1996, 118, 11688. 6 Table of Contents Introduction 9 Chapter 1. The Development of a Practical Titanium-Catalyzed Synthesis of Bicyclic Cyclopentenones and Allylic Amines 17 Introduction 18 Results and Discussion 21 Experimental Procedures 29 References 38 Chapter 2. The Intramolecular Titanocene-Catalyzed Pauson-Khand Type Reaction 42 Introduction 43 Results and Discussion 47 Experimental Procedures 69 References 93 Chapter 3. A Titanium-Catalyzed Asymmetric Pauson-Khand Type Reaction 97 Introduction 98 Results and Discussion 102 7 Experimental Procedures 113 References 122 Appendix A. Synthetic Procedures and Characterization Data for Novel Substrates not Prepared by the Author 127 Appendix B. X-ray Crystallographic Data for the Enone from Chapter 1, Table 1, Entry 5 132 8 Introduction In the field of organic chemistry, the search for new and more efficient methods of carbon-carbon bond formation for application in complex molecule total synthesis continues to be a major theme. Recently, an important area of investigation towards this end has involved transition metal-mediated cycloaddition reactions. This work has allowed for the combination of unsaturated functional groups in ways which are either difficult or impossible without the action of a transition metal complex. Examples of this approach include the intramolecular Diels-Alderi and Alder-Ene 2 cyclization of unactivated substrates, the homo-Diels-Alder reaction, 3 [2 + 2 + 2] alkyne cyclotrimerization,4 intramolecular triene-ene cyclization5, [5 +2] cyclopropyl enyne and diene 6 and [4 + 4] 1,3-diene cycloadditions.7 The possibility also exists for Figure 1 H HH H HM M HH M M HO"Cf H O O 0 Me estrone, [2+2+2] (+)-asteriscanolide, [4+4] (-)-sterepolide, enyne cycloisomerization M N N HH o H" Me (±)-yohimban, [4 + 2] (+)-Isoiridomyrmecin, triene-ene cyclization asymmetric induction with the use of chiral ligands. A number of excellent reviews on the progress in this field have been published recently.8 The proof of the utility of these methodologies lies in their elegant applications to total synthesis; select 9 examples are shown in Fig 1.9 An interesting subset of the aforementioned cycloaddition reactions is cyclocarbonylation, which involves the incorporation of one or more molecules of CO and leads to more highly functionalized products. Some of these reactions involve the opening of strained rings with subsequent ring expansion by insertion of an attached functional group and CO. Cyclopropenes substituted with aryl rings, alkenes or esters provide napthols, 10 phenols and x-pyrones1 1 upon treatment with the appropriate Ac H h Co2(CO)8 Ph (3) P Ph then Me H Cr(CO)6 PhP Ac2 0, NEt3 OAc P><P & Ph P P IrC1(CO)(PPh 3) M ' M (4) Ee Me 5 atm CO M ( Et (2) Me 0 Et H Y OEt M e-- Me OEt Me Me Fe(CO) 5 or [RhCI(CO)2] Et 1 atm CO Et H Ph PM Ph [Rh(cod)2]PF6 Ph E& Ph me N___Me--' (6) Me dppe, 1 atm CO Me 0 Ru 3 (CO) 12, PCy3 E rSitBuMe2 C -7 (7) HSit-BuMe , 50 2 atm CO E 'c]( OSitBuMe 2 E = CO 2Et metal complexes (eq 1 and 2).
Recommended publications
  • NBO Applications, 2020
    NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020.
    [Show full text]
  • FULL PAPER Enantioselective Addition of Alkynyl Ketones To
    This is the peer reviewed version of the following article: T. E. Campano, I. Iriarte, O. Olaizola, J. Etxabe, A. Mielgo, I. Ganboa, J. M. Odriozola, J. M. García, M. Oiarbide, C. Palomo, Chem. Eur. J. 2019, 25, 4390, which has been published in final form at https:// doi.org/10.1002/chem.201805542. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions FULL PAPER Enantioselective Addition of Alkynyl Ketones to Nitroolefins Assisted by Brønsted Base/H-Bonding Catalysis Teresa E. Campano,[a] Igor Iriarte,[a] Olatz Olaizola,[a] Julen Etxabe,[a] Antonia Mielgo,[a] Iñaki Ganboa,[a] José M. Odriozola,[b] Jesús M. García,[b] Mikel Oiarbide*[a] and Claudio Palomo*[a] Abstract: Various sets of enolizable alkynyl ketones (including methyl ideal atom economy and usually broad functional group ynones w ith -aryl, -alkenyl and -alkoxy groups) are able to react tolerance.[8] How ever, a general problem w ith this type of smoothly w ith nitroolefins under the assistance of bifunctional activation is the functional pKa barrier of most catalysts that Brønsted base/H-bond catalysts to provide adducts w ith two compromises their efficiency w ith less acidic carbon consecutive tertiary stereocenters in a highly diastereo- and pronucleophiles.[9] To our know ledge there is a single report on enantioselective fashion. Further transformation of the obtained asymmetric Brønsted base-catalyzed -additions of enolizable adducts into optically active acyclic and polycyclic molecules, ynones, by Peng, Wang and Shao (Scheme 1a, top).[10] Ynone including some w ith intricate carbon skeletons, is also demonstrated.
    [Show full text]
  • The Impact of Nanosciences and Biochemistry 2. Computational
    1. The Changing Landscape of Human Chemistry, Wright State University, Dayton, OH, 2 Performance – The Impact of Nanosciences United States; Department of Mechanical and and Biochemistry Materials Engineering, Wright State University, Dayton, OH, United States; 3Department of Physics, Morley O. Stone. 711th Human Performance Wing, Wright State University, Dayton, OH, United States. Air Force Research Laboratory, Wright-Patterson AFB, OH, United States. The potential application of silicene as a hydrogen storage material is studied by computational In all human endeavors, there is a desire to push the modeling using both first principles calculations and limits of human performance – operations within the classical grand canonical Monte Carlo simulations. Air Force are no exception. From aviation to ground The energetics of the adsorption of hydrogen atoms operations, traditional stressors such as fatigue are on silicene are investigated by DFT calculations. In being compounded by the need to process ever- addition, classical simulations were carried out to increasing amounts of information. This deluge of study the physisorption of molecular hydrogen in a information caused by sensor and bandwidth slit-pore model, constructed using two silicene layers, proliferation makes human-intensive operations, such and whose slit-pore size is varied by changing the as decision making, increasingly complicated. interlayer separation. Traditional approaches to alleviate this problem have relied upon increases in manpower (the 4. Interfacial Friction and Sliding in “brainpower”) to sift, prioritize, and act upon this Amorphous Carbon/Nanotube mountain of information. Increasingly, the Nanocomposites Department of Defense and the Air Force are realizing that this solution is untenable. Within the Zhenhai Xia, Jianbing Niu.
    [Show full text]
  • Metal-Free Methodology for the Preparation of Ynones Using Pota Ssium Alkynyltrifluorobora Tes and Its Applicat Ion to the Synthesis of Natural Products
    METAL-FREE METHODOLOGY FOR THE PREPARATION OF YNONES USING POTA SSIUM ALKYNYLTRIFLUOROBORA TES AND ITS APPLICAT ION TO THE SYNTHESIS OF NATURAL PRODUCTS by Cassandra Taylor A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science In The Faculty of Science Applied Bioscience University of Ontario Institute of Technology March 2015 © Cassandra Taylor, 2015 ABSTRACT A straightforward procedure for the preparation of ynones from potassium alkynyltrifluoroborate salts and acyl chlorides or anhydrides has been developed. The one-pot reaction is advantageous in that it does not require exclusion of air or water, is operationally simple, has broad substrate scope, and proceeds rapidly under mild conditions in the presence of a Lewis acid. 2,6-dimethoxy substituted anhydrides afford the corresponding mono-demethylated o-alkynoylphenol precursors of aurone and flavone natural product scaffolds in good yields. A variety of flavones were obtained via 6-endo cyclization of o-alkynoylphenol intermediates in the presence of trifluoromethanesulfonic acid (TfOH). Cesium carbonate was discovered to promote the rapid 5-exo cyclization of o-alkynoylphenols to form aurone products in excellent yields. ii ACKNOWLEDGEMENTS I would like to thank my supervisor Dr. Yuri Bolshan for his continued guidance, advice, and support. I would also like to express my sincere gratitude for having confidence in me and for pushing me to reach my full potential. I would not have pursued graduate studies without his encouragement. Thanks to Matthew Baxter for being a good friend, peer, and lab companion over the past five years. I am very grateful to have had him by my side throughout this journey with the knowledge that somebody else understands the struggle.
    [Show full text]
  • Transition Metal‑Catalyzed Radical Functionalization of Alkenes with Alcohols and Formamide Derivatives
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Transition metal‑catalyzed radical functionalization of alkenes with alcohols and formamide derivatives Cheng, Jun Kee 2016 Cheng, J. K. (2016). Transition metal‑catalyzed radical functionalization of alkenes with alcohols and formamide derivatives. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/69209 https://doi.org/10.32657/10356/69209 Downloaded on 04 Oct 2021 15:36:58 SGT ALCOHOLS T .M. - CATALYZED RADICAL FUNCTIONALIZATION OF ALKENES WITH & FORMAMIDE S TRANSITION METAL-CATALYZED RADICAL FUNCTIONALIZATION OF ALKENES WITH ALCOHOLS AND FORMAMIDE DERIVATIVES CJK CHENG JUN KEE 2016 SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES 2016 TRANSITION METAL-CATALYZED RADICAL FUNCTIONALIZATION OF ALKENES WITH ALCOHOLS AND FORMAMIDE DERIVATIVES CHENG JUN KEE School of Physical and Mathematical Sciences A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2016 ACKNOWLEDGEMENTS Without the never-wavering encouragement and assistance of many parties in all ways, I would not have come thus far to present this dissertation. I would therefore, like to take this opportunity to convey my ‘vote of thanks’. First and foremost, I am obliged to my supervisor, Professor Loh Teck Peng who kindly offered me a position in his research group in 2012. His constant encouragement and invaluable guidance all along my tenure as a PhD student are greatly appreciated. Special mention goes to Ms Chen Xiao Ping, Ms Florence Ng Pei Fan and Ms Celine Hum Wei Mei who always tend to my relentless enquiries in administrative and academic matters.
    [Show full text]
  • Hydrates Hemiacetals Acetals.Pdf
    Chem%345%Extraneous%Information:% The$procedure$in$the$box$came$from%Modern'Organic'Synthesis'in'the'Laboratory$by$ Jie$Jack$Li,$Chris$Limberakis,$and$Derek$Pflum.$$This$book$contains$some$examples$of$ common$procedures$used$in$the$laboratory.$$They$combed$the$literature$to$find$ procedures$for$reactions/techniques$and$then$published$a$book.$$Do$you$need$to$ know$this$for$Chem$345?$$Well,$not$at$all.$$I$thouGht$that$some$of$you$miGht$like$to$ see$how$chemists$actually$carry$out$these$syntheses.$$It$may$be$helpful$for$those$ enrolled$in$Chem$344.$$If$you$Go$into$Graduate$school$for$orGanic$chemistry,$then$I$ highly$suggest$that$you$get$the$book,$but$not$before.$$This$particular$procedure$for$ acetal$formation$comes$from$J.'Org.'Chem.'2004,%69,$6751K6760.$ $ $ O HO OH O O PPTS, PhH, reflux overnight 48% ynone $ To$a$solution$of$ynone$(3.8$G,$28.3$mmol)$in$benzene$(70$mL)$was$added$PPTS$(0.7$ G,$2.83$mmol)$and$2,2KdimethylK1,3Kpropane$diol$(2.95$G,$28.3$mmol),$and$the$ resultinG$solution$was$refluxed$overnight$under$DeanKStark$conditions.$$The$ reaction$was$cooled$to$room$temperature$and$quenched$with$saturated$NaHCO3$ solution.$$The$product$was$extracted$with$CH2Cl2$and$the$organic$layer$dried$over$ MgSO4$and$the$solvent$was$evaporated.$$Purification$of$the$residue$by$flash$ chromatoGraphy$(hexane/CH2Cl2$10:1$to$4:1)$furnished$the$acetal$(2.5$g,$48%).$ $ Interpretation:$$$ $ Some$names$are$so$unwieldy,$that$often$chemists$will$abbreviate$it$by$a$key$ feature.$$In$this$case,$ynone$is$used.$$Yn$refers$to$an$alkyne.$$One$refers$to$the$ketone.$$
    [Show full text]
  • Palladium(0) Complexes( Dissertation 全文 )
    Activation and Reactions of Si-Si and Si-Ge σ-Bonds by Title Bis(t-alkyl isocyanide)palladium(0) Complexes( Dissertation_全文 ) Author(s) Oike, Hideaki Citation Kyoto University (京都大学) Issue Date 1996-03-23 URL http://dx.doi.org/10.11501/3110570 Right Type Thesis or Dissertation Textversion author Kyoto University t SiYiL " + ma ; - b L s1--- -t k Lu 1 T g " " J - t 1030 ' i t ;tb- ' ' u' Ei7. )k:5ft pa } H+ - - , L--T b L Jh h t. J" s ' t wu " - , ' -"r vt - . L- li v- ' tl - ' ' IL r .y''[l yl Yx L. i ) n .t ' - li i FN ya L7 4L- 7 .-; , rLt - :v tv L " t- J-d Si-Ge 6,.B 'Activation and ReactionsLQf"Si-S-r e 1 an onds d T -r LV. ' -t1 it` -- - -of t 'f" L t.S r xtg- J by LBis(t-a!k. yl -lsoc yanl de) pallad tum-- (O)rComplexes ' i "n r l itt f'' ltJL i/ i r' , - t' -L' ttt r l F- .z - s ";" -;- .x )t ' rT't{ t - "- J i -t l " -?r ' +t - T ' J - Ntth t It -f t ' ' rg? e: "e , J ;-tl .. jLt Y="L Xt L . ' 1 u'k K ' .t i=- -L t - "]vLi L " nyc" te t l i' t ) ff L " ' 4t .V.,t r i g' L IT S4F "t -- "T - i nM-e \ , .e X h l t.- g• + L -- T ' r L- v -J - li Jt-tJ r-lv t , ,1 .k' -. ' ';" '( 1 lf 1 , ' ti l-l x- ' ' .- LkL ' J s- h ' ' s ) P .TL -1} L l -A!l S" d L :L n } rl1- Li r " `-" L:.' ' L.
    [Show full text]
  • Visible-Light-Induced Intramolecular Charge Transfer in the Radical Spirocyclisation of Indole-Tethered Ynones
    This is a repository copy of Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indole-tethered ynones. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/157506/ Version: Published Version Article: Ho, Hon Eong orcid.org/0000-0003-1037-2505, Pagano, Angela, Rossi-Ashton, James A. et al. (7 more authors) (2020) Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indole-tethered ynones. Chemical Science. pp. 1353-1360. ISSN 2041-6539 https://doi.org/10.1039/c9sc05311e Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative works on the same terms. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indole- Cite this: Chem. Sci., 2020, 11,1353 All publication charges for this article tethered ynones† have been paid for by the Royal Society a b a a of Chemistry Hon Eong Ho, Angela Pagano, James A.
    [Show full text]
  • Efficient Synthesis of Α‑Allylbutenolides from Allyl Ynoates Via Tandem Ligand-Enabled Au(I) Catalysis and the Claisen Rearra
    Letter Cite This: ACS Catal. 2019, 9, 10339−10342 pubs.acs.org/acscatalysis Efficient Synthesis of α‑Allylbutenolides from Allyl Ynoates via Tandem Ligand-Enabled Au(I) Catalysis and the Claisen Rearrangement † ‡ § † § † † Huiyan Wang, , , Ting Li, , Zhitong Zheng, and Liming Zhang*, † Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States ‡ School of Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, People’s Republic of China *S Supporting Information ABSTRACT: A facile construction of α-allylbutenolides from readily available allyl ynoates has been developed via tandem gold-catalyzed alkyne isomerization to allene and cyclo- isomerization, the Claisen rearrangement and a double bond migration. The gold catalysis is enabled by a bifunctional phosphine ligand featuring a critical remote tertiary amino group, and the reaction tolerates a range of substituents and exhibits yields up to 96%. KEYWORDS: gold, cycloisomerization, catalysis, the Claisen rearrangement, bifunctional phosphine ligand ver the past few years, we have embarked on the allylbutenolide product 2. As such, the anticipated gold O development of new bifunctional phosphine ligands1 catalysis would permit the transformation of a readily available specifically designed for homogeneous gold catalysis.2 These allyl ynoate into an α-functionalized butenolide. Notably, we ligands share the well-studied and privileged biphenyl-2- are not aware of any example of such a Claisen rearrangement ylphosphine framework, yet are distinguished by the featured and, moreover, there is no precedent of direct cyclo- remoted basic substituents that can engage beneficial isomerization of ynoates to valuable electron-rich 2-alkoxylfur- interactions with gold-activated alkynes/allenes or incoming an, although the related ynone cases leading to 2-alkylfurans nucleophiles, because of the rather unique linear ligand− have been realized via Pd catalysis4 or Cu catalysis.5 Au(I)-substrate organization (see Scheme 1A).
    [Show full text]
  • A Nucleophile-Catalyzed Cycloisomerization Permits a Concise Synthesis of (؉)-Harziphilone
    A nucleophile-catalyzed cycloisomerization permits a concise synthesis of (؉)-harziphilone Lucy M. Stark, Klaus Pekari, and Erik J. Sorensen* Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 Edited by Kyriacos C. Nicolaou, The Scripps Research Institute, La Jolla, CA, and approved May 6, 2004 (received for review April 9, 2004) Substantial structural transformations of much use in complex chemical synthesis can be achieved by channeling the reactivity of highly unsaturated molecules. This report describes the direct conversion of an acyclic polyunsaturated diketone to the HIV-1 Rev͞Rev-responsive element inhibitor harziphilone under mild reaction conditions. nucleophilic catalysis ͉ Baylis–Hillman reaction ͉ conjugate additions ͉ electrocyclizations ͉ domino reactions Scheme 1. Can (ϩ)-harziphilone (2) be formed by a cycloisomerization of he reactivity of activated polyenes is the basis for some of the acyclic diketone 1? Tmost impressive structural transformations in nature and chemical synthesis. The biosyntheses of the complex structures of the polycyclic triterpenes from squalene and 2,3-oxidosqualene ing text, which is published as supporting information on the may be viewed as paragons for processes that build polycyclic PNAS web site. molecular complexity directly from reactive polyenes (1–3). In connection with our efforts to channel the reactivity of activated Results and Discussion polyunsaturated molecules, we sought mild reaction conditions Aspects of our design for synthesis call to mind the Morita–Baylis– under which compound 1 could be isomerized to the bicyclic Hillman reaction (18, 19), and we reasoned that nucleophiles structure of harziphilone (2), a naturally occurring inhibitor of known to be effective at instigating this useful reaction might also the binding interaction between the HIV-1 Rev protein and the bring about the type of bicyclization we were seeking.
    [Show full text]
  • Metal-Free Synthesis of Ynones from Acyl Chlorides and Potassium Alkynyltrifluoroborate Salts
    Journal of Visualized Experiments www.jove.com Video Article Metal-free Synthesis of Ynones from Acyl Chlorides and Potassium Alkynyltrifluoroborate Salts Cassandra L. Taylor1, Yuri Bolshan1 1 Faculty of Science, University of Ontario Institute of Technology Correspondence to: Yuri Bolshan at [email protected] URL: https://www.jove.com/video/52401 DOI: doi:10.3791/52401 Keywords: Chemistry, Issue 96, Organic synthesis, trifluoroborates, ketones, ynones, Lewis acid, boron, acyl chlorides Date Published: 2/24/2015 Citation: Taylor, C.L., Bolshan, Y. Metal-free Synthesis of Ynones from Acyl Chlorides and Potassium Alkynyltrifluoroborate Salts. J. Vis. Exp. (96), e52401, doi:10.3791/52401 (2015). Abstract Ynones are a valuable functional group and building block in organic synthesis. Ynones serve as a precursor to many important organic functional groups and scaffolds. Traditional methods for the preparation of ynones are associated with drawbacks including harsh conditions, multiple purification steps, and the presence of unwanted byproducts. An alternative method for the straightforward preparation of ynones from acyl chlorides and potassium alkynyltrifluoroborate salts is described herein. The adoption of organotrifluoroborate salts as an alternative to organometallic reagents for the formation of new carbon-carbon bonds has a number of advantages. Potassium organotrifluoroborate salts are shelf stable, have good functional group tolerance, low toxicity, and a wide variety are straightforward to prepare. The title reaction proceeds rapidly at ambient temperature in the presence of a Lewis acid without the exclusion of air and moisture. Fair to excellent yields may be obtained via reaction of various aryl and alkyl acid chlorides with alkynyltrifluoroborate salts in the presence of boron trichloride.
    [Show full text]
  • The Chemistry of 1-Acylpyridiniums
    Baran Lab T h e C h e m i s t r y o f 1 - A c y l p y r i d i n i u m s D. W. Lin 1,4-addition A Big Player in The Acylpyridinium Field 1,2-addition 1,2-addition N O R acyl transfer 1,4-addition 1,2-addition acyl transfer Nu* O * * * N Nu Prof. Daniel Comins N * R Nu* N North Carolina State University O R * * O R B.S., SUNY Potsdam, 1972 Ph.D. (Robert Lyle, advisor), University of New Hampshire, 1977 Despite the electron-deficient nature of pyridines, direct nucleophilic addition is Postdoctoral Associate (A.I. Meyers), Colorado State University, 1977-1979 difficult without activating the pyridine in some fashion. This review will cover the use of acylating agents to activate the ring -- and the acyl group -- to nucleophilic addition. Reviews on Related Topics Other stratgies for activating the ring (which will not be covered in this review) include N-alkylation, N-fluorination, N-sulfonation, N-oxidation, and N-amination. The chemistry of N-alkylpyridiniums is not covered in this seminar. For a For an overview of this chemistry, see Joule and Mills' Heterocyclic Chemistry, 4th representative review, see: J. Bosch, Bennasar, M.-L. Synlett 1995, 587, and Edition (2000), Chapters 4-5. references therein. Notice that N-acylation, subsequent nucleophilic addition, and further A review covering catalytic enantioselective methods of addition to imines: T. functionalization reactions can rapidly produce stereochemically and functionally Vilaivan, W. Banthumnavin, Y. Sritana-Anant. Curr. Org. Chem. 2005, 9, 1315.
    [Show full text]