Palladium(0) Complexes( Dissertation 全文 )

Total Page:16

File Type:pdf, Size:1020Kb

Palladium(0) Complexes( Dissertation 全文 ) Activation and Reactions of Si-Si and Si-Ge σ-Bonds by Title Bis(t-alkyl isocyanide)palladium(0) Complexes( Dissertation_全文 ) Author(s) Oike, Hideaki Citation Kyoto University (京都大学) Issue Date 1996-03-23 URL http://dx.doi.org/10.11501/3110570 Right Type Thesis or Dissertation Textversion author Kyoto University t SiYiL " + ma ; - b L s1--- -t k Lu 1 T g " " J - t 1030 ' i t ;tb- ' ' u' Ei7. )k:5ft pa } H+ - - , L--T b L Jh h t. J" s ' t wu " - , ' -"r vt - . L- li v- ' tl - ' ' IL r .y''[l yl Yx L. i ) n .t ' - li i FN ya L7 4L- 7 .-; , rLt - :v tv L " t- J-d Si-Ge 6,.B 'Activation and ReactionsLQf"Si-S-r e 1 an onds d T -r LV. ' -t1 it` -- - -of t 'f" L t.S r xtg- J by LBis(t-a!k. yl -lsoc yanl de) pallad tum-- (O)rComplexes ' i "n r l itt f'' ltJL i/ i r' , - t' -L' ttt r l F- .z - s ";" -;- .x )t ' rT't{ t - "- J i -t l " -?r ' +t - T ' J - Ntth t It -f t ' ' rg? e: "e , J ;-tl .. jLt Y="L Xt L . ' 1 u'k K ' .t i=- -L t - "]vLi L " nyc" te t l i' t ) ff L " ' 4t .V.,t r i g' L IT S4F "t -- "T - i nM-e \ , .e X h l t.- g• + L -- T ' r L- v -J - li Jt-tJ r-lv t , ,1 .k' -. ' ';" '( 1 lf 1 , ' ti l-l x- ' ' .- LkL ' J s- h ' ' s ) P .TL -1} L l -A!l S" d L :L n } rl1- Li r " `-" L:.' ' L. : J -- r- ' -- rt ) tt 1-tE cL . 2- s "N s ]L - 1 t Lt- Xt Lr L - t e bp F:: t" e .s S" tf . , : - -4 ty+ -1.lt t . )- fi 'i " j -t ff r - -L , -t V ..- tXk lx t ' IJ -ltJ rt i- 1 'lv )h' "t L] .1I SLt t v 1 '';' f.' #"' -i, TL ---.-fl k M F't- ;. ttr -k. vi . i.} i` TV, r LL- tF xl - ' -L ,r .i/. -..Åq-I etr ..s tL t/ liH;#: P- 1-J L "tF dJ" t.-"- -.S; '. ta' N4 -1. '. j t tr :zX": '- - -L 'r f "- - "j . .i T- f , z., .. i :r t / IL t -:'v T.i.,"' rL"'J s':. r. ;J tt"?`--t",.t p Lr{`tti;[? -. rl" f";'': eV' za'"- , . ,.- , s { a- t - ft l t- ' -; -; "tr -]"V Jlh Li-, ",:-{{{//I'i;:1//`il: 1'"Gr i-.,;'{t"l.t`i':' /i; J ' e- lt r- ) ]L" ryf t- t; slt "iAit - H -TN. X' xl/;: ;--"i-r. tt .hr ; L -t.r -- u-g' - - iti ". N t-- ' i - ih-lt .y P- L) '.r nS .m;...,tl'Ltf.;' ,,Lii li.-.:` L}l.-f' tAL k. t!i '.X Jk .. T- +.'N S- 'C-fiL F -t i ) ..JÅq,ny;JII;.f` ."-;tMf""=S'[' - L '" '. 'S.- Fl' . rb eaki 1Oik'er f LI '- ` LL i v-Lj .S ` rr'".i•i- , Ce- Hid t ' :lr .t -; - -- r rvk t-f LtJ "t- 7f rt rr J t- td " - ry hf t .IPt t ""t-' ti: N- -b- .-.1`- i;"l,L?9I-(iilf"1,1',fL ','i, )1:L;"r" /1-'" i' ' , s'f=' m"' - L t? - IS fil- T.. 1-' '- ' L""'li .: . •-l:L ys ';"i ).: .z .t evic " v [ x' 'f s-L .-.ik ,kl 1/r"si ."' i' l..r).". 'il.s:e ;;i-.-Zt`i-'1 ', :r"El;.. IIf.vit-r ". f S; tf ' . T )1" cF tillÅq}..1:i'L.""'l,.. N"1thU'l' " .v . ktE 1 L)- .. " --' h."IJ'.,'r.].':.:+l{nl" :.;t., .--- l`;.fi "t, .'-.2.IIet2L l, .;f.. - .. 1. .]...;' eti "" .'t vt-'rN :,L11 'r/f , ' , " . i; S t- -".-NK .- J" vAJ.ft r- Nn .,g r` lls'tsD `X L-tlt,,- .:)-.'. -'.c.. s tL jN' t.i -- tE., - 'lr)-li. Fv k, gi-:,,:'i t -Jltlii';/lpl L) 1,r" ."I" -fit;.,-;;[)vli""Z tl Lr" -'it • - tH , 4 ;-i . t!- gN .t-..s - .v:1= , "fi lx.x .lt.".. t. , .- FlTT. Activation and Reactions of Si-Si and Si-Ge 6-Bonds by Bis(t-alkyl isocyanide)palladium(O) Complexes Hideaki Oike 1996 Preface The studies presented in this thesis have been carried out under the direction of Professor Yoshihiko Ito at Kyoto University during 1993-1996. The studies are con- cerned with activation and reactions of Si-Si and Si-Ge 6-bonds by bis(t-alkyl isocyanide)palladium complexes. The author wishes to express his sincerest gratitilde to Professor Yoshihiko Ito for his constant guidance, valuable suggestions, and hearty encouragement through out this work. The author is deeply grateful to Dr, Michinori Suginome for his con- tinuous advice and helpful discussions during course of this work. The author is also indebted to Associate Professor Masahiro Murakami, Dr. Masaya Sawamura, and Professor Kohei Tamao for their helpful suggestions, The author is fortunate to have had the great assistance ofMessrs. Mitsuru Sugawara, Sang-Soo Park, Miss Philippa H. Shuff, and Mr. Nobuhiko Takeda. The author is deeply grateful to Professor Tatsuya Shono who led the author to chemistry during 1991-1993. The author is thankful to Dr. Naoki Kise and other rnembers ofProf. Shono's group for their kind considerations. The author wishes to express his gratitude to Professor Yoshild Chujo for the measurement of molecular weight of polymers. The author wishes to thank to Mr. Tadao Kobatake and Mr. Haruo Fujita for the measurement of Mass and NMR spec- tra, respectively. The author is thankful to the staff at the Microanalysis Center of Kyoto University for the elemental analysis. The author wishes to thank to Dr. Eiji Ihara, Dr. Hitoshi Hamashima, and Dr. Minoru Hayashi for their kind advice. The author is thankilul to Messrs. Hideki Amii, Hajime Ito, Ryoichi Kuwano, Hiroshi Nakamura, Takafurni Ohara, and Akira Matsumoto for their kindness and good will in carrying out this work. Furthermore, he is sincerely grateful to Miss Chiyo Nagae and other members of Prof. Ito's re•- search group for their kind encouragement. The author thanks the Shin-Etsu Co. Ltd. and ASAI Germanium Research In- stitute for the donation of various chlorosilanes and germanium tetrachloride, respec- tively. iii Finally, the author express his deep appreciation to his family, especially his father, Mr. Yusai Dike and his late mother, Mrs. Mihoko Dike for their constant assistance and encouragement. Hideaki Dike Department of Synthetic Chemistry and Biological Chemistry Faculty ofEngineering Kyoto University 1996 IV Contents General Introduction -._-. -- --- -_. 1 Chapter 1 Stereoselective Synthesis of 1,2,4-Triols via Intramolecular Bis-Silylation of Carbon-Carbon Triple Bonds Followed by Hydrogenation <0 •••••••••••••••••••••••••••••••••••••••••• _ ••• -_.-.................... 7 Chapter 2 Reactions of Si-Si (I-Bonds with Bis(t-alkyl isocyanide)­ palladium(O) Complexes. Synthesis and Reactions of Cyclic Bis(organosilyl)palladium Complexes _...-................. 27 Chapter 3 Double Oxidative Addition of the Si-Si and Si-Ge (I-Bonds onto Isonitrile-Platinum(O) Complexes Leading to the Formation of Tetrakis(organosilyl)- and Bis(organogermy1)bis (organosilyl)platinum(IV) Complexes 71 Chapter 4 Synthesis of Organosilicon Macrocycles. Palladium-Catalyzed Ring-Enlargement Oligomerization of Cyclic Disilanes via Si-Si (I-Bond Metathesis······················· 95 List ofPublications ., -.-.............. 144 v General Introduction Today, in the field of organic chemistry as well as material science, group 14 organometallic compounds, especially organosilanes play an important role. For synthetic chemists, various selective transformations of organosilicon reagents have been useful and attractive in the construction of complex molecules.1 On the other hand, organosilicon polymers containing silicon-silicon bonds in which sigma elec­ trons delocalize have been of great interest in material science because of their unique chemical and physical properties.2 Furthermore, the chemistry of silicon has been extendeq. to germanium chemistry due to its close proximity to silicon in the periodic table. Therefore, the development of new methods for the selective fonna­ tion of silicon---earbon and silicon-silicon bonds has become more and more desir­ able. From this point of view, transition metal catalyzed reactions provide a new pathway to many organosilicon and related organogennanium compounds. In the coordination sphere of transition metals, the formation and cleavage of silicon-ele­ ment bonds occur under mild conditions. Over the past two decades, considerable attention has been focused on the pal­ ladium-catalyzed addition of Si-Si bonds to unsaturated compounds, Le., bis­ silylation, which forms two silicon--carbon bonds simultaneously.3 The reaction is considered to proceed through the mechanism shown in Scheme 1 for acetylene. The steps included are: (1) oxidative addition of the Si-Si bond to palladium(O), fonning bis(organosilyl)palladium(II), (2) formation of a 1t-complex with acetylene, (3) in­ sertion of the acetylene into one of the palladium-silicon bonds, and (4) reductive elimination of the bis-silylated product. In early investigations, reactive disilanes bearing electron-withdrawing groups or strained cyclic disilanes were required to obtain bis-silylated products in high yields. Since the calculated heat of reaction for the formation of bis(organosilyl)alkenes from substituted disilanes and acetylenes is ca. -40 kcal/ mol,4 even peralkylated (non-activated) disilanes should give products if a kineti­ cally favored reaction pathway is developed. In spite of many efforts, however, it was difficult to activate Si-Si bonds ofsuch disilanes using conventional palladium­ phosphine catalysts. Moreover, bis-silylation of alkenes was hardly achieved. 1 Scheme 1. (' 51-51 51 51, /51 Pd Ln During the last five years, much progress has been made in many aspects ofthis field.
Recommended publications
  • NBO Applications, 2020
    NBO Bibliography 2020 2531 publications – Revised and compiled by Ariel Andrea on Aug. 9, 2021 Aarabi, M.; Gholami, S.; Grabowski, S. J. S-H ... O and O-H ... O Hydrogen Bonds-Comparison of Dimers of Thiocarboxylic and Carboxylic Acids Chemphyschem, (21): 1653-1664 2020. 10.1002/cphc.202000131 Aarthi, K. V.; Rajagopal, H.; Muthu, S.; Jayanthi, V.; Girija, R. Quantum chemical calculations, spectroscopic investigation and molecular docking analysis of 4-chloro- N-methylpyridine-2-carboxamide Journal of Molecular Structure, (1210) 2020. 10.1016/j.molstruc.2020.128053 Abad, N.; Lgaz, H.; Atioglu, Z.; Akkurt, M.; Mague, J. T.; Ali, I. H.; Chung, I. M.; Salghi, R.; Essassi, E.; Ramli, Y. Synthesis, crystal structure, hirshfeld surface analysis, DFT computations and molecular dynamics study of 2-(benzyloxy)-3-phenylquinoxaline Journal of Molecular Structure, (1221) 2020. 10.1016/j.molstruc.2020.128727 Abbenseth, J.; Wtjen, F.; Finger, M.; Schneider, S. The Metaphosphite (PO2-) Anion as a Ligand Angewandte Chemie-International Edition, (59): 23574-23578 2020. 10.1002/anie.202011750 Abbenseth, J.; Goicoechea, J. M. Recent developments in the chemistry of non-trigonal pnictogen pincer compounds: from bonding to catalysis Chemical Science, (11): 9728-9740 2020. 10.1039/d0sc03819a Abbenseth, J.; Schneider, S. A Terminal Chlorophosphinidene Complex Zeitschrift Fur Anorganische Und Allgemeine Chemie, (646): 565-569 2020. 10.1002/zaac.202000010 Abbiche, K.; Acharjee, N.; Salah, M.; Hilali, M.; Laknifli, A.; Komiha, N.; Marakchi, K. Unveiling the mechanism and selectivity of 3+2 cycloaddition reactions of benzonitrile oxide to ethyl trans-cinnamate, ethyl crotonate and trans-2-penten-1-ol through DFT analysis Journal of Molecular Modeling, (26) 2020.
    [Show full text]
  • FULL PAPER Enantioselective Addition of Alkynyl Ketones To
    This is the peer reviewed version of the following article: T. E. Campano, I. Iriarte, O. Olaizola, J. Etxabe, A. Mielgo, I. Ganboa, J. M. Odriozola, J. M. García, M. Oiarbide, C. Palomo, Chem. Eur. J. 2019, 25, 4390, which has been published in final form at https:// doi.org/10.1002/chem.201805542. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions FULL PAPER Enantioselective Addition of Alkynyl Ketones to Nitroolefins Assisted by Brønsted Base/H-Bonding Catalysis Teresa E. Campano,[a] Igor Iriarte,[a] Olatz Olaizola,[a] Julen Etxabe,[a] Antonia Mielgo,[a] Iñaki Ganboa,[a] José M. Odriozola,[b] Jesús M. García,[b] Mikel Oiarbide*[a] and Claudio Palomo*[a] Abstract: Various sets of enolizable alkynyl ketones (including methyl ideal atom economy and usually broad functional group ynones w ith -aryl, -alkenyl and -alkoxy groups) are able to react tolerance.[8] How ever, a general problem w ith this type of smoothly w ith nitroolefins under the assistance of bifunctional activation is the functional pKa barrier of most catalysts that Brønsted base/H-bond catalysts to provide adducts w ith two compromises their efficiency w ith less acidic carbon consecutive tertiary stereocenters in a highly diastereo- and pronucleophiles.[9] To our know ledge there is a single report on enantioselective fashion. Further transformation of the obtained asymmetric Brønsted base-catalyzed -additions of enolizable adducts into optically active acyclic and polycyclic molecules, ynones, by Peng, Wang and Shao (Scheme 1a, top).[10] Ynone including some w ith intricate carbon skeletons, is also demonstrated.
    [Show full text]
  • The Impact of Nanosciences and Biochemistry 2. Computational
    1. The Changing Landscape of Human Chemistry, Wright State University, Dayton, OH, 2 Performance – The Impact of Nanosciences United States; Department of Mechanical and and Biochemistry Materials Engineering, Wright State University, Dayton, OH, United States; 3Department of Physics, Morley O. Stone. 711th Human Performance Wing, Wright State University, Dayton, OH, United States. Air Force Research Laboratory, Wright-Patterson AFB, OH, United States. The potential application of silicene as a hydrogen storage material is studied by computational In all human endeavors, there is a desire to push the modeling using both first principles calculations and limits of human performance – operations within the classical grand canonical Monte Carlo simulations. Air Force are no exception. From aviation to ground The energetics of the adsorption of hydrogen atoms operations, traditional stressors such as fatigue are on silicene are investigated by DFT calculations. In being compounded by the need to process ever- addition, classical simulations were carried out to increasing amounts of information. This deluge of study the physisorption of molecular hydrogen in a information caused by sensor and bandwidth slit-pore model, constructed using two silicene layers, proliferation makes human-intensive operations, such and whose slit-pore size is varied by changing the as decision making, increasingly complicated. interlayer separation. Traditional approaches to alleviate this problem have relied upon increases in manpower (the 4. Interfacial Friction and Sliding in “brainpower”) to sift, prioritize, and act upon this Amorphous Carbon/Nanotube mountain of information. Increasingly, the Nanocomposites Department of Defense and the Air Force are realizing that this solution is untenable. Within the Zhenhai Xia, Jianbing Niu.
    [Show full text]
  • Metal-Free Methodology for the Preparation of Ynones Using Pota Ssium Alkynyltrifluorobora Tes and Its Applicat Ion to the Synthesis of Natural Products
    METAL-FREE METHODOLOGY FOR THE PREPARATION OF YNONES USING POTA SSIUM ALKYNYLTRIFLUOROBORA TES AND ITS APPLICAT ION TO THE SYNTHESIS OF NATURAL PRODUCTS by Cassandra Taylor A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science In The Faculty of Science Applied Bioscience University of Ontario Institute of Technology March 2015 © Cassandra Taylor, 2015 ABSTRACT A straightforward procedure for the preparation of ynones from potassium alkynyltrifluoroborate salts and acyl chlorides or anhydrides has been developed. The one-pot reaction is advantageous in that it does not require exclusion of air or water, is operationally simple, has broad substrate scope, and proceeds rapidly under mild conditions in the presence of a Lewis acid. 2,6-dimethoxy substituted anhydrides afford the corresponding mono-demethylated o-alkynoylphenol precursors of aurone and flavone natural product scaffolds in good yields. A variety of flavones were obtained via 6-endo cyclization of o-alkynoylphenol intermediates in the presence of trifluoromethanesulfonic acid (TfOH). Cesium carbonate was discovered to promote the rapid 5-exo cyclization of o-alkynoylphenols to form aurone products in excellent yields. ii ACKNOWLEDGEMENTS I would like to thank my supervisor Dr. Yuri Bolshan for his continued guidance, advice, and support. I would also like to express my sincere gratitude for having confidence in me and for pushing me to reach my full potential. I would not have pursued graduate studies without his encouragement. Thanks to Matthew Baxter for being a good friend, peer, and lab companion over the past five years. I am very grateful to have had him by my side throughout this journey with the knowledge that somebody else understands the struggle.
    [Show full text]
  • Transition Metal‑Catalyzed Radical Functionalization of Alkenes with Alcohols and Formamide Derivatives
    This document is downloaded from DR‑NTU (https://dr.ntu.edu.sg) Nanyang Technological University, Singapore. Transition metal‑catalyzed radical functionalization of alkenes with alcohols and formamide derivatives Cheng, Jun Kee 2016 Cheng, J. K. (2016). Transition metal‑catalyzed radical functionalization of alkenes with alcohols and formamide derivatives. Doctoral thesis, Nanyang Technological University, Singapore. https://hdl.handle.net/10356/69209 https://doi.org/10.32657/10356/69209 Downloaded on 04 Oct 2021 15:36:58 SGT ALCOHOLS T .M. - CATALYZED RADICAL FUNCTIONALIZATION OF ALKENES WITH & FORMAMIDE S TRANSITION METAL-CATALYZED RADICAL FUNCTIONALIZATION OF ALKENES WITH ALCOHOLS AND FORMAMIDE DERIVATIVES CJK CHENG JUN KEE 2016 SCHOOL OF PHYSICAL AND MATHEMATICAL SCIENCES 2016 TRANSITION METAL-CATALYZED RADICAL FUNCTIONALIZATION OF ALKENES WITH ALCOHOLS AND FORMAMIDE DERIVATIVES CHENG JUN KEE School of Physical and Mathematical Sciences A thesis submitted to the Nanyang Technological University in partial fulfillment of the requirement for the degree of Doctor of Philosophy 2016 ACKNOWLEDGEMENTS Without the never-wavering encouragement and assistance of many parties in all ways, I would not have come thus far to present this dissertation. I would therefore, like to take this opportunity to convey my ‘vote of thanks’. First and foremost, I am obliged to my supervisor, Professor Loh Teck Peng who kindly offered me a position in his research group in 2012. His constant encouragement and invaluable guidance all along my tenure as a PhD student are greatly appreciated. Special mention goes to Ms Chen Xiao Ping, Ms Florence Ng Pei Fan and Ms Celine Hum Wei Mei who always tend to my relentless enquiries in administrative and academic matters.
    [Show full text]
  • Hydrates Hemiacetals Acetals.Pdf
    Chem%345%Extraneous%Information:% The$procedure$in$the$box$came$from%Modern'Organic'Synthesis'in'the'Laboratory$by$ Jie$Jack$Li,$Chris$Limberakis,$and$Derek$Pflum.$$This$book$contains$some$examples$of$ common$procedures$used$in$the$laboratory.$$They$combed$the$literature$to$find$ procedures$for$reactions/techniques$and$then$published$a$book.$$Do$you$need$to$ know$this$for$Chem$345?$$Well,$not$at$all.$$I$thouGht$that$some$of$you$miGht$like$to$ see$how$chemists$actually$carry$out$these$syntheses.$$It$may$be$helpful$for$those$ enrolled$in$Chem$344.$$If$you$Go$into$Graduate$school$for$orGanic$chemistry,$then$I$ highly$suggest$that$you$get$the$book,$but$not$before.$$This$particular$procedure$for$ acetal$formation$comes$from$J.'Org.'Chem.'2004,%69,$6751K6760.$ $ $ O HO OH O O PPTS, PhH, reflux overnight 48% ynone $ To$a$solution$of$ynone$(3.8$G,$28.3$mmol)$in$benzene$(70$mL)$was$added$PPTS$(0.7$ G,$2.83$mmol)$and$2,2KdimethylK1,3Kpropane$diol$(2.95$G,$28.3$mmol),$and$the$ resultinG$solution$was$refluxed$overnight$under$DeanKStark$conditions.$$The$ reaction$was$cooled$to$room$temperature$and$quenched$with$saturated$NaHCO3$ solution.$$The$product$was$extracted$with$CH2Cl2$and$the$organic$layer$dried$over$ MgSO4$and$the$solvent$was$evaporated.$$Purification$of$the$residue$by$flash$ chromatoGraphy$(hexane/CH2Cl2$10:1$to$4:1)$furnished$the$acetal$(2.5$g,$48%).$ $ Interpretation:$$$ $ Some$names$are$so$unwieldy,$that$often$chemists$will$abbreviate$it$by$a$key$ feature.$$In$this$case,$ynone$is$used.$$Yn$refers$to$an$alkyne.$$One$refers$to$the$ketone.$$
    [Show full text]
  • The Development of Titanium-Catalyzed Enyne Cyclocarbonylations and Related Methodologies
    The Development of Titanium-Catalyzed Enyne Cyclocarbonylations and Related Methodologies by Frederick A. Hicks B.S. Chemistry, University of Central Florida, 1993 Submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY IN ORGANIC CHEMISTRY at the Massachusetts Institute of Technology February 1999 © Massachusetts Institute of Technology, 1998 All Rights Reserved Signature of the Author Department of Chemistry September 10, 1998 Stephen L. Buchwald Thesis Supervisor Accepted by Dietmar Seyferth Chair, Departmental Committee on Graduate Studies MASSACHUSETTS INSTITUTE LIBRARIES This doctoral thesis has been examined by a committee of the Department of Chemistry as follows: Professor Gregory C. Fu Chairperson Professor Stephen L. Buchwald I- -- Thesis Supervisor Professor Peter H. Seeberger 2 The Development of Titanium-Catalyzed Enyne Cyclocarbonylations and Related Methodologies by Frederick A. Hicks Submitted to the Department of Chemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology ABSTRACT An improved titanium-catalyzed procedure for the synthesis of bicyclic iminocyclopentenes from the cyclocondensation of enynes and silylcyanides is described. The use of finely ground air- and moisture-stable Cp 2TiCI 2 in combination with n-BuLi and enynes allows for the in situ generation of titanacyclopentenes, which serve as precatalysts for the silylimine synthesis. This methodology represents a practical advance compared to the previously reported methodology employing Cp 2Ti(PMe 3)2. The silylimines can be hydrolyzed to the corresponding cyclopentenones utilizing established procedures. A protocol for reduction and acylation of the silylimine products has also been developed which provides allylic amides in good to excellent yields.
    [Show full text]
  • Visible-Light-Induced Intramolecular Charge Transfer in the Radical Spirocyclisation of Indole-Tethered Ynones
    This is a repository copy of Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indole-tethered ynones. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/157506/ Version: Published Version Article: Ho, Hon Eong orcid.org/0000-0003-1037-2505, Pagano, Angela, Rossi-Ashton, James A. et al. (7 more authors) (2020) Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indole-tethered ynones. Chemical Science. pp. 1353-1360. ISSN 2041-6539 https://doi.org/10.1039/c9sc05311e Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative works on the same terms. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue Visible-light-induced intramolecular charge transfer in the radical spirocyclisation of indole- Cite this: Chem. Sci., 2020, 11,1353 All publication charges for this article tethered ynones† have been paid for by the Royal Society a b a a of Chemistry Hon Eong Ho, Angela Pagano, James A.
    [Show full text]
  • Efficient Synthesis of Α‑Allylbutenolides from Allyl Ynoates Via Tandem Ligand-Enabled Au(I) Catalysis and the Claisen Rearra
    Letter Cite This: ACS Catal. 2019, 9, 10339−10342 pubs.acs.org/acscatalysis Efficient Synthesis of α‑Allylbutenolides from Allyl Ynoates via Tandem Ligand-Enabled Au(I) Catalysis and the Claisen Rearrangement † ‡ § † § † † Huiyan Wang, , , Ting Li, , Zhitong Zheng, and Liming Zhang*, † Department of Chemistry and Biochemistry, University of California, Santa Barbara, California 93106, United States ‡ School of Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, People’s Republic of China *S Supporting Information ABSTRACT: A facile construction of α-allylbutenolides from readily available allyl ynoates has been developed via tandem gold-catalyzed alkyne isomerization to allene and cyclo- isomerization, the Claisen rearrangement and a double bond migration. The gold catalysis is enabled by a bifunctional phosphine ligand featuring a critical remote tertiary amino group, and the reaction tolerates a range of substituents and exhibits yields up to 96%. KEYWORDS: gold, cycloisomerization, catalysis, the Claisen rearrangement, bifunctional phosphine ligand ver the past few years, we have embarked on the allylbutenolide product 2. As such, the anticipated gold O development of new bifunctional phosphine ligands1 catalysis would permit the transformation of a readily available specifically designed for homogeneous gold catalysis.2 These allyl ynoate into an α-functionalized butenolide. Notably, we ligands share the well-studied and privileged biphenyl-2- are not aware of any example of such a Claisen rearrangement ylphosphine framework, yet are distinguished by the featured and, moreover, there is no precedent of direct cyclo- remoted basic substituents that can engage beneficial isomerization of ynoates to valuable electron-rich 2-alkoxylfur- interactions with gold-activated alkynes/allenes or incoming an, although the related ynone cases leading to 2-alkylfurans nucleophiles, because of the rather unique linear ligand− have been realized via Pd catalysis4 or Cu catalysis.5 Au(I)-substrate organization (see Scheme 1A).
    [Show full text]
  • A Nucleophile-Catalyzed Cycloisomerization Permits a Concise Synthesis of (؉)-Harziphilone
    A nucleophile-catalyzed cycloisomerization permits a concise synthesis of (؉)-harziphilone Lucy M. Stark, Klaus Pekari, and Erik J. Sorensen* Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 Edited by Kyriacos C. Nicolaou, The Scripps Research Institute, La Jolla, CA, and approved May 6, 2004 (received for review April 9, 2004) Substantial structural transformations of much use in complex chemical synthesis can be achieved by channeling the reactivity of highly unsaturated molecules. This report describes the direct conversion of an acyclic polyunsaturated diketone to the HIV-1 Rev͞Rev-responsive element inhibitor harziphilone under mild reaction conditions. nucleophilic catalysis ͉ Baylis–Hillman reaction ͉ conjugate additions ͉ electrocyclizations ͉ domino reactions Scheme 1. Can (ϩ)-harziphilone (2) be formed by a cycloisomerization of he reactivity of activated polyenes is the basis for some of the acyclic diketone 1? Tmost impressive structural transformations in nature and chemical synthesis. The biosyntheses of the complex structures of the polycyclic triterpenes from squalene and 2,3-oxidosqualene ing text, which is published as supporting information on the may be viewed as paragons for processes that build polycyclic PNAS web site. molecular complexity directly from reactive polyenes (1–3). In connection with our efforts to channel the reactivity of activated Results and Discussion polyunsaturated molecules, we sought mild reaction conditions Aspects of our design for synthesis call to mind the Morita–Baylis– under which compound 1 could be isomerized to the bicyclic Hillman reaction (18, 19), and we reasoned that nucleophiles structure of harziphilone (2), a naturally occurring inhibitor of known to be effective at instigating this useful reaction might also the binding interaction between the HIV-1 Rev protein and the bring about the type of bicyclization we were seeking.
    [Show full text]
  • Metal-Free Synthesis of Ynones from Acyl Chlorides and Potassium Alkynyltrifluoroborate Salts
    Journal of Visualized Experiments www.jove.com Video Article Metal-free Synthesis of Ynones from Acyl Chlorides and Potassium Alkynyltrifluoroborate Salts Cassandra L. Taylor1, Yuri Bolshan1 1 Faculty of Science, University of Ontario Institute of Technology Correspondence to: Yuri Bolshan at [email protected] URL: https://www.jove.com/video/52401 DOI: doi:10.3791/52401 Keywords: Chemistry, Issue 96, Organic synthesis, trifluoroborates, ketones, ynones, Lewis acid, boron, acyl chlorides Date Published: 2/24/2015 Citation: Taylor, C.L., Bolshan, Y. Metal-free Synthesis of Ynones from Acyl Chlorides and Potassium Alkynyltrifluoroborate Salts. J. Vis. Exp. (96), e52401, doi:10.3791/52401 (2015). Abstract Ynones are a valuable functional group and building block in organic synthesis. Ynones serve as a precursor to many important organic functional groups and scaffolds. Traditional methods for the preparation of ynones are associated with drawbacks including harsh conditions, multiple purification steps, and the presence of unwanted byproducts. An alternative method for the straightforward preparation of ynones from acyl chlorides and potassium alkynyltrifluoroborate salts is described herein. The adoption of organotrifluoroborate salts as an alternative to organometallic reagents for the formation of new carbon-carbon bonds has a number of advantages. Potassium organotrifluoroborate salts are shelf stable, have good functional group tolerance, low toxicity, and a wide variety are straightforward to prepare. The title reaction proceeds rapidly at ambient temperature in the presence of a Lewis acid without the exclusion of air and moisture. Fair to excellent yields may be obtained via reaction of various aryl and alkyl acid chlorides with alkynyltrifluoroborate salts in the presence of boron trichloride.
    [Show full text]
  • The Chemistry of 1-Acylpyridiniums
    Baran Lab T h e C h e m i s t r y o f 1 - A c y l p y r i d i n i u m s D. W. Lin 1,4-addition A Big Player in The Acylpyridinium Field 1,2-addition 1,2-addition N O R acyl transfer 1,4-addition 1,2-addition acyl transfer Nu* O * * * N Nu Prof. Daniel Comins N * R Nu* N North Carolina State University O R * * O R B.S., SUNY Potsdam, 1972 Ph.D. (Robert Lyle, advisor), University of New Hampshire, 1977 Despite the electron-deficient nature of pyridines, direct nucleophilic addition is Postdoctoral Associate (A.I. Meyers), Colorado State University, 1977-1979 difficult without activating the pyridine in some fashion. This review will cover the use of acylating agents to activate the ring -- and the acyl group -- to nucleophilic addition. Reviews on Related Topics Other stratgies for activating the ring (which will not be covered in this review) include N-alkylation, N-fluorination, N-sulfonation, N-oxidation, and N-amination. The chemistry of N-alkylpyridiniums is not covered in this seminar. For a For an overview of this chemistry, see Joule and Mills' Heterocyclic Chemistry, 4th representative review, see: J. Bosch, Bennasar, M.-L. Synlett 1995, 587, and Edition (2000), Chapters 4-5. references therein. Notice that N-acylation, subsequent nucleophilic addition, and further A review covering catalytic enantioselective methods of addition to imines: T. functionalization reactions can rapidly produce stereochemically and functionally Vilaivan, W. Banthumnavin, Y. Sritana-Anant. Curr. Org. Chem. 2005, 9, 1315.
    [Show full text]