Phyllomedusa 10-1.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Catalogue of the Amphibians of Venezuela: Illustrated and Annotated Species List, Distribution, and Conservation 1,2César L
Mannophryne vulcano, Male carrying tadpoles. El Ávila (Parque Nacional Guairarepano), Distrito Federal. Photo: Jose Vieira. We want to dedicate this work to some outstanding individuals who encouraged us, directly or indirectly, and are no longer with us. They were colleagues and close friends, and their friendship will remain for years to come. César Molina Rodríguez (1960–2015) Erik Arrieta Márquez (1978–2008) Jose Ayarzagüena Sanz (1952–2011) Saúl Gutiérrez Eljuri (1960–2012) Juan Rivero (1923–2014) Luis Scott (1948–2011) Marco Natera Mumaw (1972–2010) Official journal website: Amphibian & Reptile Conservation amphibian-reptile-conservation.org 13(1) [Special Section]: 1–198 (e180). Catalogue of the amphibians of Venezuela: Illustrated and annotated species list, distribution, and conservation 1,2César L. Barrio-Amorós, 3,4Fernando J. M. Rojas-Runjaic, and 5J. Celsa Señaris 1Fundación AndígenA, Apartado Postal 210, Mérida, VENEZUELA 2Current address: Doc Frog Expeditions, Uvita de Osa, COSTA RICA 3Fundación La Salle de Ciencias Naturales, Museo de Historia Natural La Salle, Apartado Postal 1930, Caracas 1010-A, VENEZUELA 4Current address: Pontifícia Universidade Católica do Río Grande do Sul (PUCRS), Laboratório de Sistemática de Vertebrados, Av. Ipiranga 6681, Porto Alegre, RS 90619–900, BRAZIL 5Instituto Venezolano de Investigaciones Científicas, Altos de Pipe, apartado 20632, Caracas 1020, VENEZUELA Abstract.—Presented is an annotated checklist of the amphibians of Venezuela, current as of December 2018. The last comprehensive list (Barrio-Amorós 2009c) included a total of 333 species, while the current catalogue lists 387 species (370 anurans, 10 caecilians, and seven salamanders), including 28 species not yet described or properly identified. Fifty species and four genera are added to the previous list, 25 species are deleted, and 47 experienced nomenclatural changes. -
Species Limits, and Evolutionary History of Glassfrogs
!" # $"%!&"'(!$ ! )*)') !+ ,-.',)'**'-*)*' /0/ // ')11,2 !"#"$$$%$$& ' & & (' ') ' * ') + ,-'.)"$$). / 0 &1& )2 ) #3")44 ) )56,7,443,5474,3) 8 9 '' & ' & ' & ' * ) ' & ** ,& % & & & ' & ' ): '& ' ' ' '2 ) : ' ' ' ; < ;=2 > < ' * & &' '& ;& <) '' *'' & & ' &'' 9 * ' )? ' & ' & @ ' & ) ' '&' * & ' ' ;* ' '< &'>&' ) (' ' & 7$$ && ' ' ' & ' * ' ' )= &' & &*'' ' ) > * *& *'' ' ) : ' & & & ) > & 65 : , * A ) ' & & *' ' ' & & ' '= & ) 2 '2 ' & - ! (' = ( . . ! "# $ " # "% " "#!&'()* " B. + ,-'"$$ :..=7#47,#"73 :.=56,7,443,5474,3 % %%% ,7$$"C;' %AA )@)A D E % %%% ,7$$"C< Mathematical representation is inevitably simplistic, and occasionally one has to be brutal in forcing it to suit a reality that can only be very complex. And yet, there is a beauty about trees because of the simplicity with which they allow you to describe a series of events […]. But one must ask whether one is justified simplifying reality to the extent necessary to represent it as a tree. Cavalli-Sforza, Genes, People, and Languages (2001) The universe is no narrow thing and the order within it is not constrained by any latitude in is conception to repeat what exists in one part in any other part. Even in this world more things exist -
Nuevos Datos De Distribución De Ranas De Cristal (Amphibia: Centrolenidae) En El Oriente De Ecuador, Con Comentarios Sobre La Diversidad En La Región
AVANCES EN CIENCIAS E INGENIERÍAS ARTÍCULO/ARTICLE SECCIÓN/SECTION B Nuevos datos de distribución de ranas de cristal (Amphibia: Centrolenidae) en el oriente de Ecuador, con comentarios sobre la diversidad en la región Mario H. Yánez-Muñoz1∗, Paúl Meza-Ramos1,2, H. Mauricio Ortega-Andrade1,3 J. Jairo Mueses-Cisneros4, Marco Reyes P.1,5, Juan P. Reyes P.1,5, Juan Carlos Durán L.2 1 Museo Ecuatoriano de Ciencias Naturales, División de Herpetología Calle Rumipamba 341 y Av. de Los Shyris. Casilla Postal 17-07-8976, Quito, Ecuador 2 PETROECUADOR, Vicepresidencia Corporativa de Ambiente, Responsabilidad Social, Seguridad y Salud, Coordinación, Mitigación y Remediación Ambiental. Iñaquito y Juan Pablo Sánz (Edificio Cámara de la Construcción), Quito, Ecuador 3 Instituto de Ecología, A.C. km 2,5 carretera antigua Coatepec 351, AP63, Xalapa, Veracruz, México 4 Investigador Independiente. Calle 11 # 4-96, Barrio Central, Colón Putumayo, Colombia. 5 Fundación Oscar Efrén Reyes, Calle 12 de Noviembre No 270 y Luis A. Martínez, Baños, Tungurahua, Ecuador ∗ Autor principal/Corresponding author, e-mail: [email protected] Editado por/Edited by: D. F. Cisneros-Heredia, M.Sc. Recibido/Received: 02/02/2010. Aceptado/Accepted: 07/25/2010. Publicado en línea/Published on Web: 12/08/2010. Impreso/Printed: 12/08/2010. Abstract We present new information on the latitudinal and altitudinal distribution of five species of recently-described or poorly-known glassfrogs from eastern Ecuador. We include novel data on its body size and natural history. Information on the diversity and biogeography of the centrolenid frogs of Eastern Ecuador is discussed, finding them associated with six ve- getation formations distributed between the eastern Andean slopes and lowland Amazonia. -
Anura: Centrolenidae) Author(S) :Santiago Castroviejo-Fisher, J
Resurrection of Hyalinobatrachium orocostale and Notes on the Hyalinobatrachium orientale Species Complex (Anura: Centrolenidae) Author(s) :Santiago Castroviejo-Fisher, J. Celsa Señaris, José Ayarzagüena, and Carles Vilà Source: Herpetologica, 64(4):472-484. 2008. Published By: The Herpetologists' League DOI: URL: http://www.bioone.org/doi/full/10.1655/07-049R2.1 BioOne (www.bioone.org) is a a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Herpetologica, 64(4), 2008, 472–484 E 2008 by The Herpetologists’ League, Inc. RESURRECTION OF HYALINOBATRACHIUM OROCOSTALE AND NOTES ON THE HYALINOBATRACHIUM ORIENTALE SPECIES COMPLEX (ANURA: CENTROLENIDAE) 1,5 2 2,3 1,4 SANTIAGO CASTROVIEJO-FISHER ,J.CELSA SEN˜ ARIS ,JOSE´ AYARZAGU¨ ENA , AND CARLES VILA` 1Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Norbyva¨gen 18D, 75236 Uppsala, Sweden 2Museo de Historia Natural, Fundacio´n La Salle de Ciencias Naturales, Apartado 1930, Caracas 1010-A, Venezuela 3Asociacio´n Amigos de Don˜ana, Panama 6, 41012 Sevilla, Spain 4Estacio´n Biolo´gica de Don˜ana-CSIC, Avd. -
3Systematics and Diversity of Extant Amphibians
Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water. -
WILDLIFE in a CHANGING WORLD an Analysis of the 2008 IUCN Red List of Threatened Species™
WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart coberta.indd 1 07/07/2009 9:02:47 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ first_pages.indd I 13/07/2009 11:27:01 first_pages.indd II 13/07/2009 11:27:07 WILDLIFE IN A CHANGING WORLD An analysis of the 2008 IUCN Red List of Threatened Species™ Edited by Jean-Christophe Vié, Craig Hilton-Taylor and Simon N. Stuart first_pages.indd III 13/07/2009 11:27:07 The designation of geographical entities in this book, and the presentation of the material, do not imply the expressions of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. The views expressed in this publication do not necessarily refl ect those of IUCN. This publication has been made possible in part by funding from the French Ministry of Foreign and European Affairs. Published by: IUCN, Gland, Switzerland Red List logo: © 2008 Copyright: © 2009 International Union for Conservation of Nature and Natural Resources Reproduction of this publication for educational or other non-commercial purposes is authorized without prior written permission from the copyright holder provided the source is fully acknowledged. Reproduction of this publication for resale or other commercial purposes is prohibited without prior written permission of the copyright holder. Citation: Vié, J.-C., Hilton-Taylor, C. -
Anura: Centrolenidae)
SALAMANDRA 57(3): 353–370 Reproduction and phylogenetic relationships of Vitreorana baliomma SALAMANDRA 15 August 2021 ISSN 0036–3375 German Journal of Herpetology Reproductive biology and phylogenetic relationships of Vitreorana baliomma (Anura: Centrolenidae) Victor Moraes Zucchetti1, Omar Rojas-Padilla1,2, Iuri Ribeiro Dias2, Mirco Solé2,3 & Santiago Castroviejo-Fisher1,4 1) Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul. CEP 90619-900 Porto Alegre, Rio Grande do Sul, Brazil 2) Laboratório de Herpetologia Tropical, Universidade Estadual de Santa Cruz. CEP 45662-900 Ilhéus, Bahia, Brazil 3) Herpetology Section, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany 4) Department of Herpetology, American Museum of Natural History, Central Park West & 79th St., New York, NY 10024, USA Corresponding author: Victor Moraes Zucchetti, e-mail: [email protected] Manuscript received: 15 December 2020 Accepted: 26 May 2021 by Jörn Köhler Abstract. The behaviour, ecology, and phylogenetics of glassfrogs from the Atlantic Forest are poorly understood. To con- tribute to these three topics, we studied reproductive behaviours, microhabitat use, influence of environmental variables on the activity of adults, and clutch thickness, as well as the phylogenetic relationships of V. baliomma, a key centrolenid species from the northern Atlantic Forest. We sampled two streams in the south of the state of Bahia, Brazil, between No- vember 2018 and April 2019, and measured relevant specimen and environmental variables. Our results include (i) the first observations of female-only egg-brooding in this species, (ii) the statistically significant dependence of reproductive activ- ity on daily rainfall and high humidity, and (iii) that adults use different leaf face for clutch deposition and activity, with clutches being placed on both sides of leaves and at statistically significant lower heights and horizontal distances from water. -
18Th Meeting of the Conference of the Parties
IUCN AND of the proposals to amend TRAFFIC the CITES Appendices at the 18TH MEETING OF THE CONFERENCE OF THE PARTIES Colombo, Sri Lanka, 23rd May – 3rd June, 2019 ANALYSES IUCN/TRAFFIC analyses of the proposals to amend the CITES Appendices at the 18TH MEETING OF THE CONFERENCE OF THE PARTIES Colombo, Sri Lanka 23rd Mary – 3rd June 2019 Prepared by IUCN Global Species Programme and Species Survival Commission and TRAFFIC Production of the 2019 IUCN/TRAFFIC Analyses of the Proposals to Amend the CITES Appendices was made possible through the support of: • The European Union • Canada -– Environment and Climate Change Canada • Finland – Ministry of the Environment • France – Ministry for the Ecological and Inclusive Transition • Germany – Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) • Monaco – Ministry of Foreign Affairs and Cooperation • Netherlands – Ministry of Agriculture, Nature and Food Quality • New Zealand – Department of Conservation • Spain – Ministry of Industry, Trade and Tourism • Switzerland – Federal Food Safety and Veterinary Office, Federal Department of Home Affairs • WWF International. This publication does not necessarily reflect the views of any of the project’s donors. IUCN – International Union for Conservation of Nature is the global authority on the status of the natural world and the measures needed to safeguard it. IUCN is a membership Union composed of both government and civil society organisations. It harnesses the experience, resources and reach of its more than 1,300 Member organisations and the input of more than 13,000 experts. The IUCN Species Survival Commission (SSC), the largest of IUCN’s six commissions, has over 8,000 species experts recruited through its network of over 150 groups (Specialist Groups, Task Forces and groups focusing solely on Red List assessments). -
PEARCE-SELLARDS Series NUMBER 11 Taxonomy of the Neotropical Hylidae
THE PEARCE- SELLARDS Series NUMBER 11 Taxonomy of the Neotropical Hylidae htj BERTHA LUTZ NOVEMBER, 1968 TEXAS MEMORIAL MUSEUM / 24TH & TRINITY / AUSTIN, TEXAS W. W. NEWCOMB, JR., DIRECTOR Contents Abstract - 5 Subfamily: Hvlinae Gadow 6 Subfamily: Phvllomedusinae 7 Subfamily: Triprioninae 10 Subfamily; Opisthodelphynae 13 Diagnoses 17 Generic Diagnoses 18 Appendix 22 Bibliography 24 Illustrations FIGURES 1. Possible scheme of relationships of hvlid genera 5 2. Hypothesized scheme of relationships of the Hvlidae ( Phyllomedusinae) 9 3. Hypothesized scheme ofrelationships of the Hylidae (Triprioninae) 11 4. Hypothesized scheme ofrelationships of the Hylidae (Opisthodelphynae) 14 TABLES 1. Genera Hylidarum 8 3 Taxonomy of the Neotropical Hylidae * BERTHA LUTZ ABSTRACT The Hylidae are arciferous, procoelian frogs, generally having maxillary teeth. Presumably derived from bnfonid stock (Noble, 1931), one of the dis- tinctive features of the family is the cartilage intercalated between the penul- timate and the terminal phalanx of the digits, which is claw-shaped and swollen at the base. The digits usually terminate in expanded disks which, together with the intercalary cartilage, subserve the function of climbing. Al- though most of the members of this family are tree frogs, some are aquatic in the adult stage; others are phragmotic, resting upright in cavities of the right size, and plugging the lumen with the head. A number are bromeli- colous, and one or two live in giant bamboos, having water-holding septa. One genus is fossorial. The type genus, Hyla (Fig. 1) is widespread except for a hiatus in the Indo-Malayan, Polynesian, Ethiopian and Madagascan regions. The largest number of species is found in the New World. -
Protected Areas Assessment for the Conservation of Threatened Amphibians in the Cordillera Oriental of Colombia
Herpetology Notes, volume 10: 685-696 (2017) (published online on 28 November 2017) Protected areas assessment for the conservation of threatened amphibians in the Cordillera Oriental of Colombia Mónica M. Albornoz-Espinel1, Carlos H. Cáceres-Martínez1,2 and Aldemar A. Acevedo-Rincón1,3,* Abstract. The global decline of amphibians is one of the greatest challenges in Conservation Biology. In this study we assessed the level of protection in Protected Areas (PAs) in the Cordillera Oriental of Colombia for 52 species of threatened amphibians. We also determined the changes in vegetation coverage, both inside and outside the PAs. Our data collection was made between February 2015 and June 2017, when we gathered information from databases, biological collections, and the literature. Geographical records were georeferenced and overlaid on the layers of 190 PAs and on the layers of land coverage of the Cordillera Oriental. Our results confirm the limited level of protection for amphibians provided by PAs, whereby only 33 species represented in 160 out of 509 geographical records showed a report within PAs. At the same time, drastic changes were evident in vegetation coverage, which for most localities where records of vegetation were made 10–30 years ago was reduced to mosaics of fragmented forests, crops, and grasslands. This study demonstrates the need to establish priority actions and efficiently generate geographical areas of protection, in terms of coverage of the distribution of threatened amphibians in the Eastern region of Colombia. Keywords: Amphibians, Andean region, conservation, protected areas, threats Introduction (10%), Dendrobatidae (10%), and Centrolenidae (9%), and the country is classified second in South South America harbours more than 2300 of the more American species richness after Brazil (Rivera-Correa, than 6500 known amphibian species (IUCN, 2016). -
Neotropical Diversification Seen Through Glassfrogs
Journal of Biogeography (J. Biogeogr.) (2014) 41, 66–80 SYNTHESIS Neotropical diversification seen through glassfrogs Santiago Castroviejo-Fisher1,2*, Juan M. Guayasamin3, Alejandro Gonzalez-Voyer4 and Carles Vila4 1Department of Herpetology, American ABSTRACT Museum of Natural History, New York, NY, Aim We used frogs of the clade Allocentroleniae (Centrolenidae + Allophryni- USA, 2Laboratorio de Sistematica de dae; c. 170 species endemic to Neotropical rain forests) as a model system to Vertebrados, Pontifıcia Universidade Catolica do Rio Grande do Sul, Porto Alegre, RS, address the historical biogeography and diversification of Neotropical rain for- Brazil, 3Universidad Tecnologica Indoamerica, est biotas. Centro de Investigacion de la Biodiversidad Location Neotropical rain forests. y el Cambio Climatico, Quito, Ecuador, 4Conservation and Evolutionary Genetics Methods We used an extensive taxon (109 species) and gene (seven nuclear Group, Estacion Biologica de Donana~ and three mitochondrial genes) sampling to estimate phylogenetic relation- (EBD-CSIC), Seville, Spain ships, divergence times, ancestral area distributions, dispersal–vicariance events, and the temporal pattern of diversification rate. Results The Allocentroleniae started to diversify in the Eocene in South Amer- ica and by the early Miocene were present in all major Neotropical rain forests except in Central America, which was colonized through 11 late range expan- sions. The initial uplifts of the Andes during the Oligocene and early Miocene, as well as marine incursions in the lowlands, are coincidental with our esti- mates of the divergence times of most clades of Allocentroleniae. Clades with broad elevational distributions occupy more biogeographical areas. Most dis- persals involve the Andes as a source area but the majority were between the Central and the Northern Andes, suggesting that the Andes did not play a major role as a species pump for the lowlands. -
List of Amphibian Species Lista De Especies De Anfibios
List of Amphibian Species Lista de Especies de Anfibios Updated January 2018 / Actualizado enero del 2018. Despite several surveys throughout the history of the Reserve the species list represents only roughly half of the expected species. This may be due to declining populations of those species or a lack of more systematic sampling during peak periods of activity. A pesar de varios estudios durante la historia de la Reserva, la lista actual de anfibios sola representa la mitad de las especies esperadas. Unas explicaciones incluyen la disminución de las poblaciones de estas especies y una falta de investigaciones coordinadas con periodos de actividad alta. Gymnophiona Dermophiidae Caecilians Gymnopis multiplicata Peters, 1874 Anura Hyloides Meridianura Eleutherodactylidae Dink Frogs Diasporus diastema (Cope, 1875) Craugastoridae Craugastorinae Rain Frogs Craugastor bransfordii (Cope, 1886) Craugastor crassidigitus (Taylor, 1952) Craugastor fitzingeri (Schmidt, 1857) Craugastor mimus (Taylor, 1955) Craugastor noblei (Barbour and Dunn, 1921) Ceuthomantinae Robber Frogs Pristimantis cerasinus (Cope, 1875) Pristimantis cruentus (Peters, 1873) Pristimantis ridens (Cope, 1866) Tinctanura Hylidae Treefrogs Hylinae Hypsiboas rufitelus (Fouquette, 1961) Scinax boulengeri (Cope, 1887) Scinax elaeochrous (Cope, 1875) Smilisca phaeota (Cope, 1862) Smilisca sordida (Peters, 1863) Phyllomedusinae Agalychnis callidryas (Cope, 1862) Agalychnis saltator Taylor, 1955 Centrolenidae Glass Frogs Centroleninae Cochranella granulosa (Taylor, 1949) Espadarana