22.2 Solar Thermal Heating
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Humidity Facts August 07
Relative Humidity & A Few Ways to Reduce It Tech to Tech August 07 “Make daily deposits to your box of knowledge, soon it will have many reference cards.”--Randal S. Ripley Does a hot air system remove the Now say the sponge just suddenly moisture from the air circulating through doubled in size. The size of the sponge, its it? ability to hold water and the relative If this question means that it reduces humidity have changed but the amount of the actual moisture content in the air as it water in the sponge is the same. passes over the heat exchanger, the answer When you doubled the size of the is “no”. sponge, you are also doubling the amount of When an air sample is heated, the water it can hold. Since you didn’t add amount of moisture in the air sample anymore water, the relative humidity is now remains the same. This is referred to as the only 50%. absolute humidity and is measured in When air is heat it expands and grains per pound of air or as grains per some increases its ability to hold moisture. This unit volume. It takes 7,000 grains of causes the relative humidity to drop. moisture to make 1 pound of water. The reason our skin, nose and eyes, When water vapor is heated, what furniture, etc, dry out under low humidity do we get? You guessed it, water vapor. conditions is because the human body or There is no change of water quantity; anything else that contains moisture will therefore the amount of water vapor in the release this moisture at a higher rate as the air sample entering the heat exchanger will relative humidity goes lower. -
Solar Thermal Energy an Industry Report
Solar Thermal Energy an Industry Report . Solar Thermal Technology on an Industrial Scale The Sun is Our Source Our sun produces 400,000,000,000,000,000,000,000,000 watts of energy every second and the belief is that it will last for another 5 billion years. The United States An eSolar project in California. reached peak oil production in 1970, and there is no telling when global oil production will peak, but it is accepted that when it is gone the party is over. The sun, however, is the most reliable and abundant source of energy. This site will keep an updated log of new improvements to solar thermal and lists of projects currently planned or under construction. Please email us your comments at: [email protected] Abengoa’s PS10 project in Seville, Spain. Companies featured in this report: The Acciona Nevada Solar One plant. Solar Thermal Energy an Industry Report . Solar Thermal vs. Photovoltaic It is important to understand that solar thermal technology is not the same as solar panel, or photovoltaic, technology. Solar thermal electric energy generation concentrates the light from the sun to create heat, and that heat is used to run a heat engine, which turns a generator to make electricity. The working fluid that is heated by the concentrated sunlight can be a liquid or a gas. Different working fluids include water, oil, salts, air, nitrogen, helium, etc. Different engine types include steam engines, gas turbines, Stirling engines, etc. All of these engines can be quite efficient, often between 30% and 40%, and are capable of producing 10’s to 100’s of megawatts of power. -
Table of Contents
Table of Contents Thermal Expansion Valves 1-57 Solenoid Valves 58-84 Coils 85-87 Industrial Solenoid Valves 88-103 Shut Off Valves 104-105 System Protectors 106-144 Storage Devices 145-147 Oil Controls 148-155 Regulators 156-182 Temperature Pressure Controls 183-199 Page Thermal Expansion Valves 1 A-Series 2 AFA Series 5 HFK Series 7 HF Series 10 TRAE+ Valve 16 TRAE Valve 17 T-Series 19 TLE Valve 23 TI Valve 25 ZZ Valve 26 LCL Valve 28 ESVB Valve 30 EX2 Valve 32 ACP(E) Valve 34 Solenoid Valves 58 50RB 59 100RB 60 200RB 62 240RA 65 500RB 67 540RA 69 710/713RA 71 702RA 73 207CB* 74 3031RB/RC 76 RV Series* 78 703RC 80 Coils 85 Industrial Solenoid Valves 88 202C* 89 203C* 91 204C* 93 210C/211C* 95 214C* 97 222C* 99 314U* 101 Shut Off Valves ABV 104 RD 105 ACK* 134 System Protectors 106 EK 109 EKP 110 ADK 112 BFK 114 BOK-HH 116 ALF* 118 CU - Spun Copper Service Drier* 119 CU - Spun Copper Liquid Line Drier* 120 STAS 121 ADKS 122 *Also Included in the Extended Products Catalog EMERSON CLIMATE TECHNOLOGIES INDEX Page Blocks and Cores 125 BTAS* 126 ASD 128 SFD 129 CSFD 130 ASK-HH 131 ASF 132 APD 133 ACK* 134 HMI 135 AMI 136 A-IHL 138 A-IHN 138 Storage Devices A-AS* 145 AVR* 147 AOR* 148 Oil Controls W-OLC* 149 OMB* 150 A-W/A-F* 151 High Efficiency Oil Separator 152 AOFD* 153 ASF* 153 AOF* 154 AAU 155 Regulators 156 ESR 157 MTB 1 158 IPR 159 EPRB(S) 160 OPR 162 ACP(E) 163 EGR(E) 165 DGR(E) 167 CPH(E) 168 HP/HPC 170 Temperature Pressure Controls 183 TS1 184 PS1 188 PS2 190 FD113 192 PS3 193 FS 196 FF4 198 FF444 199 Troubleshooting Guide 200 Competitive -
Dodge Cummins Coolant Bypass
FPE-2018-06 SUBJECT: DODGE CUMMINS COOLANT BYPASS KIT November, 2020 Page 1 of 6 FITMENT: 2003–2007 Dodge Cummins Manual Transmission Only 2007.5-2018 Dodge Cummins Manual and Automatic Transmissions KIT P/N: FPE-CLNTBYPS-CUMMINS-MAN, FPE-CLNTBYPS-CUMMINS-6.7 ESTIMATED INSTALLATION TIME: 2-3 Hours TOOLS REQUIRED: 16mm ratcheting wrench, 10mm socket, 8mm socket, 6mm Allen, 1” wrench, hammer, 5-gallon clean drain pan, 36” pry bar, Scotch-Brite TM pad (included in kit). KIT CONTENTS: Item Description Qty 1 Coolant bypass hose 1 2 Coolant bypass thermostat housing 1 and O-ring 3 Thermostat riser block and O-ring 1 3 4 4 Coolant bypass hose riser bracket 2 2 5 M8 x 1.25, 20mm socket head cap 2 screw 7 6 6 M6 x 1.00 x 60mm flange head bolt 3 5 7 M12 x 1.75, 40mm flange head bolt 2 8 Scotch-Brite TM pad (not pictured) 1 1 WARNINGS: • Use of this product may void or nullify the vehicle’s factory warranty. • User assumes sole responsibility for the safe & proper use of the vehicle at all times. • The purchaser and end user releases, indemnifies, discharges, and holds harmless Fleece Performance Engineering, Inc. from any and all claims, damages, causes of action, injuries, or expenses resulting from or relating to the use or installation of this product that is in violation of the terms and conditions on this page, the product disclaimer, and/or the product installation instructions. Fleece Performance Engineering, Inc. will not be liable for any direct, indirect, consequential, exemplary, punitive, statutory, or incidental damages or fines cause by the use or installation of this product. -
Optimization of the Design of a Polymer Flat Plate Solar Collector A
Optimization of the design of a polymer flat plate solar collector A. C. Mintsa Do Ango, Marc Médale, Chérifa Abid To cite this version: A. C. Mintsa Do Ango, Marc Médale, Chérifa Abid. Optimization of the design of a polymer flat plate solar collector. Solar Energy, Elsevier, 2013, 87, pp.64-75. 10.1016/j.solener.2012.10.006. hal- 01459491 HAL Id: hal-01459491 https://hal.archives-ouvertes.fr/hal-01459491 Submitted on 15 Mar 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Optimization of the design of a polymer flat plate solar collector A.C. Mintsa Do Ango ⇑, M. Medale, C. Abid Aix-Marseille Universite´, CNRS, IUSTI UMR 7343, 13453 Marseille, France This work presents numerical simulations aimed at optimizing the design of polymer flat plate solar collectors. Solar collectors’ absorbers are usually made of copper or aluminum and, although they offer good performance, they are consequently expensive. In com-parison, using polymer can improve solar collectors economic competitiveness. In this paper, we propose a numerical study of a new design for a solar collector to assess the influence of the design parameters (air gap thickness, collector’s length) and of the operating conditions (mass flow rate, incident solar radiation, inlet temperature) on efficiency. -
Water Scenarios Modelling for Renewable Energy Development in Southern Morocco
ISSN 1848-9257 Journal of Sustainable Development Journal of Sustainable Development of Energy, Water of Energy, Water and Environment Systems and Environment Systems http://www.sdewes.org/jsdewes http://www.s!ewes or"/js!ewes Year 2021, Volume 9, Issue 1, 1080335 Water Scenarios Modelling for Renewable Energy Development in Southern Morocco Sibel R. Ersoy*1, Julia Terrapon-Pfaff 2, Lars Ribbe3, Ahmed Alami Merrouni4 1Division Future Energy and Industry Systems, Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany e-mail: [email protected] 2Division Future Energy and Industry Systems, Wuppertal Institute for Climate, Environment and Energy, Döppersberg 19, 42103 Wuppertal, Germany e-mail: [email protected] 3Institute for Technology and Resources Management, Technical University of Cologne, Betzdorferstraße 2, 50679 Köln, Germany e-mail: [email protected] 4Materials Science, New Energies & Applications Research Group, Department of Physics, University Mohammed First, Mohammed V Avenue, P.O. Box 524, 6000 Oujda, Morocco Institut de Recherche en Energie Solaire et Energies Nouvelles – IRESEN, Green Energy Park, Km 2 Route Régionale R206, Benguerir, Morocco e-mail: [email protected] Cite as: Ersoy, S. R., Terrapon-Pfaff, J., Ribbe, L., Alami Merrouni, A., Water Scenarios Modelling for Renewable Energy Development in Southern Morocco, J. sustain. dev. energy water environ. syst., 9(1), 1080335, 2021, DOI: https://doi.org/10.13044/j.sdewes.d8.0335 ABSTRACT Water and energy are two pivotal areas for future sustainable development, with complex linkages existing between the two sectors. These linkages require special attention in the context of the energy transition. -
COOLANT CATALOG We Are Committed to Keeping Trucks on the Road and Moving Forward by Providing Quality Parts to All Who Repair Heavy-Duty Vehicles
COOLANT CATALOG We are committed to keeping trucks on the road and moving forward by providing quality parts to all who repair heavy-duty vehicles. CONFIDENCE. COVERAGE. COMMITMENT. TABLE OF CONTENTS EXTENDED LIFE COOLANTS . 4 CONVENTIONAL COOLANTS . 6 Parts that keep you moving. Quality that keeps you coming back. EXTENDED LIFE COOLANTS ROAD CHOICE® NOAT EXTENDED LIFE ANTIFREEZE & COOLANT Road Choice NOAT Extended Life Antifreeze & Coolant is formulated for heavy-duty diesel, gasoline and natural gas engine cooling systems . Road Choice NOAT Antifreeze & Coolant uses nitrite with organic additive inhibitors to provide long-term wet sleeve liner cavitation and corrosion protection for 750,000 miles of on-road or 15,000 hours of off-road use . PRODUCT HIGHLIGHTS: • Eliminates the need for SCAs and chemically charged filters • Improves heat transfer capability • Offers outstanding protection against corrosion and cavitation • Nonabrasive formula can improve water pump seal life • Eliminates drop-out and gel, and reduces scale • Provides exceptional long-term elastomer compatibility • Can be mixed with other coolants (to maintain corrosion protection, contamination levels should be kept below 25 percent) MEETS OR EXCEEDS THE NOAT EXTENDED LIFE FOLLOWING SPECIFICATIONS: ASTM D3306 ASTM D6210 TMC RP329 ASTM D4340 TMC RP351 (COLOR) RECOMMENDED FOR USE IN HEAVY-DUTY VEHICLES AND STATIONARY EQUIPMENT, REGARDLESS OF FUEL TYPE, INCLUDING: Caterpillar EC-1 Komatsu Cummins CES 14603 International John Deere H24A1, H24C1 GM Navistar Waukesha PACCAR -
Environmental and Safety Considerations for Solar Heating and Cooling Applications
IMBSIR 78-1532 Environmental and Safety Con- siderations for Solar Heating and Cooling Applications David Waksman John Holton Solar Criteria and Standards Program Building Economics and Regulatory Technology Division Center for Building Technology National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234 September 1978 Prepared for Department of Energy Office of Conservation and Solar Applications Washington, D.C. and Department of Housing and Urban Development Division of Energy, Building Technology and Standards Washington, D.C. 20410 "OC — 1 100 . U56 tf78-1532 / m faWeffa! Sireal of Stansf&ri* MAY 1 4 1979 NBSIR 78-1532 * »r ENVIRONMENTAL AND SAFETY CON- SIDERATIONS FOR SOLAR HEATING AND COOLING APPLICATIONS David Waksman John Holton Solar Criteria and Standards Program Building Economics and Regulatory Technology Division Center for Building Technology National Engineering Laboratory National Bureau of Standards Washington, D.C. 20234 September 1978 Prepared for Department of Energy Office of Conservation and Solar Applications Washington, D.C. and Department of Housing and Urban Development Division of Energy, Building Technology and Standards Washington, D.C. 20410 ; ; . a.c,: u j\, i \ : V. - - ( X id'..' U.S. DEPARTMENT OF COMMERCE, Juanita M. Kreps, Secretary Dr. Sidney Harman, Under Secretary Jordan J. Baruch, Assistant Secretary for Science and Technology NATIONAL BUREAU OF STANDARDS, Ernest Ambler, Director TABLE OF CONTENTS Page 1. INTRODUCTION 1 2. GENERAL PROVISIONS 1 3. FIRE SAFETY PROVISIONS . 2 3.1 FLAMMABLE MATERIALS 2 3.2 FIRE RESISTANCE OF BUILDING ASSEMBLIES 6 3.3 EMERGENCY ACCESS AND EGRESS 7 A. PROTECTION OF AIR AND POTABLE WATER 8 A. 1 PROTECTION OF POTABLE WATER 9 A. -
2224840 Engine Coolant Thermostat Housing Replacement (LUW)
Service Information 2012 Chevrolet Cruze | Document ID: 2224840 Engine Coolant Thermostat Housing Replacement (LUW) Removal Procedure Caution: Refer to Engine Coolant Thermostat Housing Caution . 1. Open the hood. 2. Raise and support the vehicle. Refer to Lifting and Jacking the Vehicle . 3. Place a drain pan below the vehicle. 4. Drain the cooling system. Refer to Cooling System Draining and Filling . 5. Loosen the radiator inlet hose clamp (2). 6. Remove the radiator inlet hose (3) from the engine coolant thermostat (1). 7. Remove the throttle body heater inlet hose (2) from the engine coolant thermostat (1). 8. Remove the heater outlet hose from the engine coolant thermostat housing. Refer to Heater Outlet Hose Replacement . 9. Remove the heater inlet hose from the engine coolant thermostat housing. Refer to Heater Inlet Hose Replacement . 10. Remove the thermostat housing bracket nut. 11. Remove the thermostat housing bracket. 12. Disconnect the engine coolant temperature sensor connector (1). 13. Remove the 2 engine oil cooler pipe bolts (6). Note: Pull the engine oil cooler pipe out of the engine oil cooler. 14. Remove the engine oil cooler pipe (5). 15. Remove the engine oil cooler pipe seals (4, 7). 16. Remove the 4 engine coolant thermostat housing bolts (3). 17. Remove the thermostat housing (2). 18. Remove the thermostat housing seal (8). Installation Procedure 1. Clean sealing surface. 2. Install a NEW engine coolant thermostat housing seal (8). 3. Install the engine coolant thermostat housing (2). Caution: Refer to Fastener Caution . Note: Partially install the 4 bolts until the engine coolant thermostat housing is in contact with the cylinder head. -
Solar Assisted Heat Pump System for High Quality Drying Applications: a Critical Review
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by UMS Institutional Repository Solar Assisted Heat Pump System for High Quality Drying Applications: A Critical Review J. Assadeg1,2, Ali H. A. Alwaeli1, K. Sopian1‡, H. Moria3, A. S. A. Hamid1,4 and A. Fudholi1 1Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia 2Renewable Energy Engineering Department Collage of Energy and Mining Engineering, Sebha University, Libya 3Department of Mechanical Engineering Technology, Yanbu Industrial College, Yanbu Al-Sinaiyah 41912, Kingdom of Saudi Arabia 4Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah, Malaysia ([email protected], [email protected], [email protected], [email protected], [email protected], [email protected]) ‡ Corresponding Author; K. Sopian, Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia, Tel: +03 89118572, Fax: + 03 89118574, [email protected] Received: 15.01.2020 Accepted:28.02.2020 Abstract- Solar assisted heat pump (SAHP) system integrates a solar thermal energy source with a heat pump. This technique is a very fundamental concept, especially for drying applications. By combining a solar thermal energy source such as solar thermal collectors and a heat pump dryer will assist in reducing the operation cost of drying and producing products with high quality. Many review papers in the literature evaluated the R&D aspects of solar-assisted heat pump dryers (SAHPD). This critical review paper studies some of the researches conducted in this field to understand and provides an update on recent developments in SAHPD. -
Recent Developments in Heat Transfer Fluids Used for Solar
enewa f R bl o e ls E a n t e n r e g Journal of y m a a n d d n u A Srivastva et al., J Fundam Renewable Energy Appl 2015, 5:6 F p f p Fundamentals of Renewable Energy o l i l ISSN: 2090-4541c a a n t r i DOI: 10.4172/2090-4541.1000189 o u n o s J and Applications Review Article Open Access Recent Developments in Heat Transfer Fluids Used for Solar Thermal Energy Applications Umish Srivastva1*, RK Malhotra2 and SC Kaushik3 1Indian Oil Corporation Limited, RandD Centre, Faridabad, Haryana, India 2MREI, Faridabad, Haryana, India 3Indian Institute of Technology Delhi, New Delhi, India Abstract Solar thermal collectors are emerging as a prime mode of harnessing the solar radiations for generation of alternate energy. Heat transfer fluids (HTFs) are employed for transferring and utilizing the solar heat collected via solar thermal energy collectors. Solar thermal collectors are commonly categorized into low temperature collectors, medium temperature collectors and high temperature collectors. Low temperature solar collectors use phase changing refrigerants and water as heat transfer fluids. Degrading water quality in certain geographic locations and high freezing point is hampering its suitability and hence use of water-glycol mixtures as well as water-based nano fluids are gaining momentum in low temperature solar collector applications. Hydrocarbons like propane, pentane and butane are also used as refrigerants in many cases. HTFs used in medium temperature solar collectors include water, water- glycol mixtures – the emerging “green glycol” i.e., trimethylene glycol and also a whole range of naturally occurring hydrocarbon oils in various compositions such as aromatic oils, naphthenic oils and paraffinic oils in their increasing order of operating temperatures. -
Second-Law Analysis to Improve the Energy Efficiency of Environmental Control Unit Ammar M
Purdue University Purdue e-Pubs International Refrigeration and Air Conditioning School of Mechanical Engineering Conference 2016 Second-Law Analysis to Improve the Energy Efficiency of Environmental Control Unit Ammar M. Bahman Ray W. Herrick Laboratories, Purdue University, United States of America, [email protected] Eckhard A. Groll Ray W. Herrick Laboratories, Purdue University, United States of America, [email protected] Follow this and additional works at: http://docs.lib.purdue.edu/iracc Bahman, Ammar M. and Groll, Eckhard A., "Second-Law Analysis to Improve the Energy Efficiency of Environmental Control Unit" (2016). International Refrigeration and Air Conditioning Conference. Paper 1706. http://docs.lib.purdue.edu/iracc/1706 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. Complete proceedings may be acquired in print and on CD-ROM directly from the Ray W. Herrick Laboratories at https://engineering.purdue.edu/ Herrick/Events/orderlit.html 2328, Page 1 Second-Law Analysis to Improve the Energy Efficiency of Environmental Control Unit Ammar M. BAHMAN*1, Eckhard A. GROLL1 1 Purdue University, School of Mechanical Engineering, Ray W. Herrick Laboratories, West Lafayette, Indiana, USA [email protected], [email protected] * Corresponding Author ABSTRACT This paper presents a second-law of thermodynamics analysis to quantify the exergy destruction in each component of an Environmental Control Unit (ECU) for military applications. The analysis is also used to identify the potential con- tribution from each component to improve the overall energy efficiency of the system. Three ECUs were investigated experimentally at high ambient temperature conditions to demonstrate the feasibility of the model presented herein.