Synopsis of Biological Data on Sarotherodon Galialeus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phytoplankton Dynamics in the Congo River
Freshwater Biology (2016) doi:10.1111/fwb.12851 Phytoplankton dynamics in the Congo River † † † JEAN-PIERRE DESCY*, ,FRANCßOIS DARCHAMBEAU , THIBAULT LAMBERT , ‡ § † MAYA P. STOYNEVA-GAERTNER , STEVEN BOUILLON AND ALBERTO V. BORGES *Research Unit in Organismal Biology (URBE), University of Namur, Namur, Belgium † Unite d’Oceanographie Chimique, UniversitedeLiege, Liege, Belgium ‡ Department of Botany, University of Sofia St. Kl. Ohridski, Sofia, Bulgaria § Department of Earth & Environmental Sciences, KU Leuven, Leuven, Belgium SUMMARY 1. We report a dataset of phytoplankton in the Congo River, acquired along a 1700-km stretch in the mainstem during high water (HW, December 2013) and falling water (FW, June 2014). Samples for phytoplankton analysis were collected in the main river, in tributaries and one lake, and various relevant environmental variables were measured. Phytoplankton biomass and composition were determined by high-performance liquid chromatography analysis of chlorophyll a (Chl a) and marker pigments and by microscopy. Primary production measurements were made using the 13C incubation technique. In addition, data are also reported from a 19-month regular sampling (bi-monthly) at a fixed station in the mainstem of the upper Congo (at the city of Kisangani). 2. Chl a concentrations differed between the two periods studied: in the mainstem, they varied À À between 0.07 and 1.77 lgL 1 in HW conditions and between 1.13 and 7.68 lgL 1 in FW conditions. The relative contribution to phytoplankton biomass from tributaries (mostly black waters) and from a few permanent lakes was low, and the main confluences resulted in phytoplankton dilution. Based on marker pigment concentration, green algae (both chlorophytes and streptophytes) dominated in the mainstem in HW, whereas diatoms dominated in FW; cryptophytes and cyanobacteria were more abundant but still relatively low in the FW period, both in the tributaries and in the main channel. -
Hydropolitical Vulnerability and Resilience Along International Waters: Africa Is the First of a Five-Part Series of Continental Reports
Copyright © 2005, United Nations Environment Programme ISBN: 92-807-2575-0 UNEP Job No. DEWA/0672/NA This publication is printed on chlorine and acid free paper from sustainable forests. This publication may be reproduced in whole or in part and in any form for educational or nonprofit purposes without special permission from the copyright holder, provided acknowledgment of the source is made. UNEP and the authors would appreciate receiving a copy of any publication that uses this report as a source. No use of this publication may be made for resale or for any other commercial purpose whatsoever without prior permission in writing from the United Nations Environment Programme. United Nations Environment Programme PO Box 30552-00100, Nairobi, KENYA Tel: +254 20 7624028 Fax: +254 20 7623943/44 E-mail: [email protected] Web: www.unep.org United Nations Environment Programme Division of Early Warning and Assessment–North America 47914 252nd Street, EROS Data Center, Sioux Falls, SD 57198-0001 USA Tel: 1-605-594-6117 Fax: 1-605-594-6119 E-mail: [email protected] Web: www.na.unep.net www.unep.org The “Hydropolitical Vulnerability and Resilience in International River Basins” project, directed by Aaron T. Wolf and managed by Marcia F. Macomber, both of Oregon State University (OSU), USA, is a collaboration between the United Nations Environment Programme - Division of Early Warning and Assessment (UNEP-DEWA) and the Universities Partnership for Transboundary Waters. The Partnership is an international consortium of water expertise, including ten universities on five continents, seeking to promote a global water governance culture that incorporates peace, environmental protection, and human security <http://waterpartners.geo.orst.edu>. -
A BIBLIOGRAPHY of IMPORTANT TILAPIAS (PISCES: CICHLIDAE) for AQUACULTURE Oreochromisvariabilis, 0 Andersoni, 0
AMV'__ BIBLIOGRAPHIES 6 A BIBLIOGRAPHY OF IMPORTANT TILAPIAS (PISCES: CICHLIDAE) FOR AQUACULTURE Oreochromisvariabilis, 0 andersoni, 0. esculentus, 0. leucostictus, 0. rortimer, 0. spilurus niger,Sarotherodon melanotheron and Tilapia sparnmani PETER SCHOENEN INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT A BIBLIOGRAPHY OF IMPORTANT TILAPIAS (PISCES: CICHLIDAE) FOR AQUACULTURE Oreochromls variabilis, 0. andersoni, 0. esculentus, 0. leucostictus, 0. mortimeri, 0. spilurus niger, Saro therodon melano theron and Tilapia sparrmanii Peter Schoenen International Collection "Cichlid Papers" The Referencc Service Parkstr. 15 D-5176 Inden 4 Federal Republic of Germany 1985 INTERNATIONAL CENTER FOR LIVING AQUATIC RESOURCES MANAGEMENT MANILA, PHILIPPINES A bibliography of important tilapias (Pisces: Cichlidae) for aquaculture Oreochromis variabilis, 0. andersonii, 0. esculentus, 0. leucostictus, 0. mort/tmer, 0. spilunis niger, Sarotherodon melanothero,, ard -/ilapiasparrmanii PETER SCHOENEN Published by the International Center for Living Aquatic Resources Management, MCC P.O. Box 1501, Makati, Metro Manila, Philippines with financial assistance from the International Development Research Centre of Canada through ICLARM's Selective Information Service project. 1985 Printed in Manila, Philippins This bibliography is produced directly from the author's manuscript in oider to provide tilapia workers with a useful document in the shortest time. The author should be consulted in the event of difficulty ir verifying details of particular references or in locating sources. ISSN 0115-5997 ISBN 971-1022-19-2 Schoenen, P. 1985, A bibliography of important tilapias (Pisces: Cichlidae) for aquaculture Oreochromis variabilis, 0. andersonii, 0. esculentus, 0. leucostictus, 0. mortimeri, 0. spilurut niger, Sarotherodon mela. notheron and Tilapia sparrrnanii. ICLAHM Biblio graphies 6,99 p. International Center for Living Aquatic Resources Management, Manila, Philippines. -
Blackchin Tilapia (Sarotherodon Melanotheron) Ecological Risk Screening Summary
U.S. Fish and Wildlife Service Blackchin Tilapia (Sarotherodon melanotheron) Ecological Risk Screening Summary Web Version – 10/01/2012 Photo: © U.S. Geological Survey From Nico and Neilson (2014). 1 Native Range and Nonindigenous Occurrences Native Range From Nico and Neilson (2014): “Tropical Africa. Brackish estuaries and lagoons from Senegal to Zaire (Trewavas 1983).” Nonindigenous Occurrences From Nico and Neilson (2014): “Established in Florida and Hawaii. Evidence indicates it is spreading rapidly in both fresh and salt water around island of Oahu, Hawaii (Devick 1991b).” “The first documented occurrence of this species in Florida was a specimen gillnetted by commercial fishermen in Hillsborough Bay near Tampa, Hillsborough County, in 1959 (Springer and Finucane 1963). Additional records for the western part of the state indicate that this species is established in brackish and freshwaters in eastern Tampa Bay and in adjoining drainages in Hillsborough County, ranging from the Alafia River south to Cockroach Bay. The species has been recorded from the Alafia River from its mouth up to Lithia Springs; from the Hillsborough River, Bullfrog Creek, the Palm River, and the Little Manatee River; and from various western drainage and irrigation ditches (Springer and Finucane 1963; Finucane and Rinckey 1967; Buntz Sarotherodon melanotheron Ecological Risk Screening Summary U.S. Fish and Wildlife Service – Web Version – 10/01/2012 and Manooch 1969; Lachner et al. 1970; Courtenay et al. 1974; Courtenay and Hensley 1979; Courtenay and Kohler 1986; Lee et al. 1980 et seq.; Courtenay and Stauffer 1990; DNR collections; UF museum specimens). There are two records of this species from the west side of Tampa Bay, in Pinellas County: a collection from Lake Maggiore in St. -
Norntates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
AMERICAN MUSEUM Norntates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 3157, 44 pp., 14 figures, 8 tables February 14, 1996 Systematic Revision of Sub-Saharan African Dormice (Rodentia: Myoxidae: Graphiurus) Part 1: An Introduction to the Generic Revision, and a Revision of Graphiurus Surdus1 MARY ELLEN HOLDEN2 ABSTRACT African dormice, genus Graphiurus (Rodentia: of Graphiurus surdus, represents the first distilla- Myoxidae), occur from the Cape of Good Hope tion of the large amount of data that has been to Senegal. The genus has never been adequately collected. The completed revision ofthe genus will revised, and thus the species diversity within the form one of the few comprehensive taxonomic genus, interspecific relationships, and biogeogra- revisions for any group ofAfrican rodents in which phy have not been documented. This report con- the intent is to present a reliable estimate ofspecies stitutes the first of seven papers whose collective diversity and document patterns of geographical purpose is to provide a morphological revision of distributions. It will provide a framework for the the genus, explore the phylogenetic relationships future tasks oftesting hypotheses of species limits of species or species groups within the genus, and and interspecific relationships within Graphiurus document biogeographic patterns inferred from using molecular and perhaps other anatomical data, species distributions and relationships. Over 2700 and determining the significance of the docu- museum specimens ofAfrican dormice have been mented geographic distributional patterns relative examined and measured from institutions in the to distributions of other African mammals and United States, Europe, and Africa for this study. -
A Guide to the Parasites of African Freshwater Fishes
A Guide to the Parasites of African Freshwater Fishes Edited by T. Scholz, M.P.M. Vanhove, N. Smit, Z. Jayasundera & M. Gelnar Volume 18 (2018) Chapter 2.1. FISH DIVERSITY AND ECOLOGY Martin REICHARD Diversity of fshes in Africa Fishes are the most taxonomically diverse group of vertebrates and Africa shares a large portion of this diversity. This is due to its rich geological history – being a part of Gondwana, it shares taxa with the Neotropical region, whereas recent close geographical affnity to Eurasia permitted faunal exchange with European and Asian taxa. At the same time, relative isolation and the complex climatic and geological history of Africa enabled major diversifcation within the continent. The taxonomic diversity of African freshwater fshes is associated with functional and ecological diversity. While freshwater habitats form a tiny fraction of the total surface of aquatic habitats compared with the marine environment, most teleost fsh diversity occurs in fresh waters. There are over 3,200 freshwater fsh species in Africa and it is likely several hundreds of species remain undescribed (Snoeks et al. 2011). This high diversity and endemism is likely mirrored in diversity and endemism of their parasites. African fsh diversity includes an ancient group of air-breathing lungfshes (Protopterus spp.). Other taxa are capable of breathing air and tolerate poor water quality, including several clariid catfshes (e.g., Clarias spp.; Fig. 2.1.1D) and anabantids (Ctenopoma spp.). Africa is also home to several bichir species (Polypterus spp.; Fig. 2.1.1A), an ancient fsh group endemic to Africa, and bonytongue Heterotis niloticus (Cuvier, 1829) (Osteoglossidae), a basal actinopterygian fsh. -
Temporal Variability of Sediments, Dissolved Solids and Dissolved Organic Matter Fluxes in the Congo River at Brazzaville/Kinshasa
geosciences Article Temporal Variability of Sediments, Dissolved Solids and Dissolved Organic Matter Fluxes in the Congo River at Brazzaville/Kinshasa Guy Dieudonne Moukandi N’kaya 1,* , Didier Orange 2,* , Sandra Murielle Bayonne Padou 1, Pankyes Datok 3 and Alain Laraque 4 1 LMEI/CUSI/ENSP/Marien N’gouabi University, BP 69 Brazzaville, Congo; [email protected] 2 Eco&Sols-UMR IRD/INRA/CIRAD/SupAgro—U. Montpellier—Place Viala, 34060 Montpellier, France 3 Laboratoire écologie Fonctionnelle et Environment, Université de Toulouse, CNRS, INPT, UPS, 31326 Castanet-Tolosan, Toulouse, France; [email protected] 4 UMR 5562 du CNRS, UR 234 de l’IRD—14, av. E. Belin, 31400 Toulouse, France; [email protected] * Correspondence: [email protected] (G.D.M.N.); [email protected] (D.O.); Tel.: +242-0665-996-14 (G.D.M.N. & D.O.) Received: 12 August 2020; Accepted: 20 August 2020; Published: 28 August 2020 Abstract: For three decades, the solid and dissolved fluxes of the Congo River have been regularly monitored on a monthly basis, despite 12 years of deficiencies (1994–2005). Two programs successively carried out these follow-ups: PEGI/GBF (1987–1993) and SO HYBAM (2006–2017), upstream and downstream, respectively, of the Malebo Pool near Brazzaville, the main hydrometric station of the Congo River. The objective of this study is to examine the temporal dynamic of TSS, TDS and DOC, to explore how these descriptors change over time. Comparison with the two time programs will shed more light on how these descriptors are related to discharge. Afterward, we then find a relationship between total TSS in the water column and that measured in surface for eventual estimation of TSS by remote sensing. -
Acqua Arma Stategica.Pdf
Ad Anna Garofalo Hanno collaborato: Coordinamento editoriale: Omero Rampa Revisione testi: Annarita Laurenzi Progetto e elaborazione grafica: Ubaldo Russo Direttore Responsabile Marco Ciampini © 2009 Proprietà letteraria artistica e scientifica riservata Finito di stampare febbraio 2009 da Stilgrafica srl - Roma 4 Indice 7 Introduzione 8 Presentazione 9 Capitolo I - Acqua arma strategica 3 3 Capitolo II - Le dighe 7 5 Capitolo III - Europa 117 Capitolo IV - Medio Oriente 181 Capitolo V - Asia 217 Capitolo VI - Africa 251 Capitolo VII - America Latina 285 Capitolo VIII - L’uso dello strumento militare 301 Bibliografia 5 6 PREFAZIONE Perché l’acqua? La globalizzazione ha alterato radicalmente la nostra percezione della sicurezza e ha introdotto problemi e pericoli di portata internazionale e collettiva. Dopo il crollo del muro di Berlino, le minacce globali si caratterizzano per una complessità che non era mai stata raggiunta in preceden- za, con implicazioni di natura tecnologica, politica, ideologica, demografica e ambientale. In parti- colare, la minaccia demografico-sociale è determinata dalle esplosive differenze tra la crescita della popolazione e la ricchezza di risorse disponibile nelle varie regioni, con conseguenti movimenti migratori di massa che causano profondi cambiamenti sociali nei Paesi di destinazione. E la minac- cia ambientale è rappresentata dal crescente degrado delle condizioni naturali del pianeta e dal- l’esaurimento delle risorse vitali, come l’acqua. Quindi un’emergenza ambientale legata non solo all’inquinamento ma anche alla mancanza natura- le di risorse, alla povertà e ai particolari andamenti demografici. Agli inizi del XXI secolo, in piena civiltà post-industriale, almeno la metà della popolazione mondiale è costretta a vivere in carenza di risorse idriche, forse sufficienti al fabbisogno complessivo ma distribuite dalla natura in modo irre- golare. -
The Effects of Introduced Tilapias on Native Biodiversity
AQUATIC CONSERVATION: MARINE AND FRESHWATER ECOSYSTEMS Aquatic Conserv: Mar. Freshw. Ecosyst. 15: 463–483 (2005) Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/aqc.699 The effects of introduced tilapias on native biodiversity GABRIELLE C. CANONICOa,*, ANGELA ARTHINGTONb, JEFFREY K. MCCRARYc,d and MICHELE L. THIEMEe a Sustainable Development and Conservation Biology Program, University of Maryland, College Park, Maryland, USA b Centre for Riverine Landscapes, Faculty of Environmental Sciences, Griffith University, Australia c University of Central America, Managua, Nicaragua d Conservation Management Institute, College of Natural Resources, Virginia Tech, Blacksburg, Virginia, USA e Conservation Science Program, World Wildlife Fund, Washington, DC, USA ABSTRACT 1. The common name ‘tilapia’ refers to a group of tropical freshwater fish in the family Cichlidae (Oreochromis, Tilapia, and Sarotherodon spp.) that are indigenous to Africa and the southwestern Middle East. Since the 1930s, tilapias have been intentionally dispersed worldwide for the biological control of aquatic weeds and insects, as baitfish for certain capture fisheries, for aquaria, and as a food fish. They have most recently been promoted as an important source of protein that could provide food security for developing countries without the environmental problems associated with terrestrial agriculture. In addition, market demand for tilapia in developed countries such as the United States is growing rapidly. 2. Tilapias are well-suited to aquaculture because they are highly prolific and tolerant to a range of environmental conditions. They have come to be known as the ‘aquatic chicken’ because of their potential as an affordable, high-yield source of protein that can be easily raised in a range of environments } from subsistence or ‘backyard’ units to intensive fish hatcheries. -
The Botanical Exploration of Angola by Germans During the 19Th and 20Th Centuries, with Biographical Sketches and Notes on Collections and Herbaria
Blumea 65, 2020: 126–161 www.ingentaconnect.com/content/nhn/blumea RESEARCH ARTICLE https://doi.org/10.3767/blumea.2020.65.02.06 The botanical exploration of Angola by Germans during the 19th and 20th centuries, with biographical sketches and notes on collections and herbaria E. Figueiredo1, *, G.F. Smith1, S. Dressler 2 Key words Abstract A catalogue of 29 German individuals who were active in the botanical exploration of Angola during the 19th and 20th centuries is presented. One of these is likely of Swiss nationality but with significant links to German Angola settlers in Angola. The catalogue includes information on the places of collecting activity, dates on which locations botanical exploration were visited, the whereabouts of preserved exsiccata, maps with itineraries, and biographical information on the German explorers collectors. Initial botanical exploration in Angola by Germans was linked to efforts to establish and expand Germany’s plant collections colonies in Africa. Later exploration followed after some Germans had settled in the country. However, Angola was never under German control. The most intense period of German collecting activity in this south-tropical African country took place from the early-1870s to 1900. Twenty-four Germans collected plant specimens in Angola for deposition in herbaria in continental Europe, mostly in Germany. Five other naturalists or explorers were active in Angola but collections have not been located under their names or were made by someone else. A further three col- lectors, who are sometimes cited as having collected material in Angola but did not do so, are also briefly discussed. Citation: Figueiredo E, Smith GF, Dressler S. -
A Small Cichlid Species Flock from the Upper Miocene (9–10 MYA)
Hydrobiologia https://doi.org/10.1007/s10750-020-04358-z (0123456789().,-volV)(0123456789().,-volV) ADVANCES IN CICHLID RESEARCH IV A small cichlid species flock from the Upper Miocene (9–10 MYA) of Central Kenya Melanie Altner . Bettina Reichenbacher Received: 22 March 2020 / Revised: 16 June 2020 / Accepted: 13 July 2020 Ó The Author(s) 2020 Abstract Fossil cichlids from East Africa offer indicate that they represent an ancient small species unique insights into the evolutionary history and flock. Possible modern analogues of palaeolake Waril ancient diversity of the family on the African conti- and its species flock are discussed. The three species nent. Here we present three fossil species of the extinct of Baringochromis may have begun to subdivide haplotilapiine cichlid Baringochromis gen. nov. from their initial habitat by trophic differentiation. Possible the upper Miocene of the palaeolake Waril in Central sources of food could have been plant remains and Kenya, based on the analysis of a total of 78 articulated insects, as their fossilized remains are known from the skeletons. Baringochromis senutae sp. nov., B. same place where Baringochromis was found. sonyii sp. nov. and B. tallamae sp. nov. are super- ficially similar, but differ from each other in oral-tooth Keywords Cichlid fossils Á Pseudocrenilabrinae Á dentition and morphometric characters related to the Palaeolake Á Small species flock Á Late Miocene head, dorsal fin base and body depth. These findings Guest editors: S. Koblmu¨ller, R. C. Albertson, M. J. Genner, Introduction K. M. Sefc & T. Takahashi / Advances in Cichlid Research IV: Behavior, Ecology and Evolutionary Biology. The tropical freshwater fish family Cichlidae and its Electronic supplementary material The online version of estimated 2285 species is famous for its high degree of this article (https://doi.org/10.1007/s10750-020-04358-z) con- phenotypic diversity, trophic adaptations and special- tains supplementary material, which is available to authorized users. -
Translitterering Och Alternativa Geografiska Namnformer
TRANSLITTERERING OCH ALTERNATIVA GEOGRAFISKA NAMNFORMER Version XX, 27 juli 2015, Stefan Nordblom 1 FÖRORD För många utländska egennamn, i första hand personnamn och geografiska namn, finns det på svenska väl etablerade namnformer. Om det inte finns någon sådan kan utländska egennamn dock vålla bekymmer vid översättning till svenska. Föreliggande material är tänkt att vara till hjälp i sådana situationer och tar upp fall av translitterering1 och transkribering2 samt exonymer3 . Problemen uppstår främst på grund av att olika språk har olika system för translitterering och transkribering från ett visst språk och på grund av att orter kan ha olika namn på olika utländska språk. Eftersom vi oftast översätter från engelska och franska innehåller sammanställningen även translittereringar och exonymer på engelska och franska (samt tyska). Man kan alltså i detta material göra en sökning på sådana namnformer och komma fram till den svenska namnformen. Om man t.ex. i en engelsk text träffar på det geografiska namnet Constance kan man söka på det namnet här och då få reda på att staden (i detta fall på tyska och) på svenska kallas Konstanz. Den efterföljande sammanställningen bygger i huvudsak på följande källor: Institutet för de inhemska språken (FI): bl.a. skriften Svenska ortnamn i Finland - http://kaino.kotus.fi/svenskaortnamn/ Iate (EU-institutionernas termbank) Nationalencyklopedin Nationalencyklopedins kartor Interinstitutionella publikationshandboken - http://publications.europa.eu/code/sv/sv-000100.htm Språkbruk (Tidskrift utgiven av Svenska språkbyrån i Helsingfors) Språkrådet© (1996). Publikation med rekommendationer i term- och språkfrågor som utarbetas av rådets svenska översättningsenhet i samråd med övriga EU-institutioner. TT-språket - info.tt.se/tt-spraket/ I de fall uppgifterna i dessa källor inte överensstämmer med varandra har det i enskilda fall varit nödvändigt att väga, välja och sammanjämka namnförslagen, varvid rimlig symmetri har eftersträvats.